Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Physicochemical Studies
2.2.1. Determination of Lipophilicity
2.2.2. Theoretical Calculation of Physicochemical Properties
2.3. Biological Evaluation
2.4. Computational Studies—Docking Simulation Soybean Lipoxygenase
3. Experimental Section
3.1. Materials and Instruments
3.2. Chemistry General Procedure
3.2.1. Synthesis of α,β-Unsaturated Ketones (1a–1h)
3.2.2. Synthesis of pyrido [2,3-d]pyrimidin-4(1H)-Ones (2a–2h)
3.3. Physicochemical Studies
Experimental Determination of Lipophilicity as RM Values
3.4. Biological In Vitro Assays
3.4.1. Determination of the Reducing Activity of the Stable Radical DPPH
3.4.2. Inhibition of AAPH Induced Linoleic Acid Peroxidation
3.4.3. Inhibition of Soybean Lipoxygenase
3.4.4. Interaction with Glutathione
3.4.5. Cell Viability and Cytotoxicity Assay
3.5. Computational Methods
3.5.1. Molecular Docking Studies on Soybean Lipoxygenase
3.5.2. In Silico Determination of Drug-Likeness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Antonelli, M.; Kushner, I. It’s Time to Redefine Inflammation. FASEB J. 2017, 31, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef] [PubMed]
- Headland, S.E.; Norling, L.V. The Resolution of Inflammation: Principles and Challenges. Semin. Immunol. 2015, 27, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Karin, M. Nuclear Factor-ΚB in Cancer Development and Progression. Nature 2006, 441, 431–436. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Mantovani, A. Inflammation by Remote Control. Nature 2005, 435, 752–753. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Allavena, P.; Garlanda, C.; Borrello, M.G.; Sica, A.; Mantovani, A. Pathways Connecting Inflammation and Cancer. Curr. Opin. Genet Dev. 2008, 18, 3–10. [Google Scholar] [CrossRef]
- Ohshima, H.; Tatemichi, M.; Sawa, T. Chemical Basis of Inflammation-Induced Carcinogenesis. Arch. Biochem. Biophys. 2003, 417, 3–11. [Google Scholar] [CrossRef]
- Weitzman, S.A.; Weitberg, A.B.; Clark, E.P.; Stossel, T.P. Phagocytes as Carcinogens: Malignant Transformation Produced by Human Neutrophils. Science 1985, 227, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Bruner, S.D.; Norman, D.P.G.; Verdine, G.L. Structural Basis for Recognition and Repair of the Endogenous Mutagen 8-Oxoguanine in DNA. Nature 2000, 403, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Wisastra, R.; Dekker, F. Inflammation, Cancer and Oxidative Lipoxygenase Activity Are Intimately Linked. Cancers 2014, 6, 1500–1521. [Google Scholar] [CrossRef]
- Rani, N.V.; Kunta, R. PEG-400 Promoted a Simple, Efficient and Eco-Friendly Synthesis of Functionalized Novel Isoxazolyl Pyrido[2,3-d]Pyrimidines and Their Antimicrobial and Anti-Inflammatory Activity. Synth. Commun. 2021, 51, 1–13. [Google Scholar] [CrossRef]
- Dasari, S.R.; Tondepu, S.; Vadali, L.R.; Seelam, N. PEG-400 Mediated an Efficient Eco-Friendly Synthesis of New Isoxazolyl Pyrido[2,3-d]Pyrimidines and Their Anti-Inflammatory and Analgesic Activity. Synth. Commun. 2020, 50, 2950–2961. [Google Scholar] [CrossRef]
- El-Gazzar, A.-R.B.A.; Hafez, H.N. Synthesis of 4-Substituted Pyrido[2,3-d]Pyrimidin-4(1H)-One as Analgesic and Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2009, 19, 3392–3397. [Google Scholar] [CrossRef]
- Madasu, C.; Gudem, S.; Sistla, R.; Uppuluri, V.M. Synthesis and Anti-Inflammatory Activity of Some Novel Pyrimidine Hybrids of Myrrhanone A, a Bicyclic Triterpene of Commiphora Mukul Gum Resin. Mon. Für. Chem.–Chem. Mon. 2017, 148, 2183–2193. [Google Scholar] [CrossRef]
- Mallavadhani, U.V.; Chandrashekhar, M.; Nayak, V.L.; Ramakrishna, S. Synthesis and Anticancer Activity of Novel Fused Pyrimidine Hybrids of Myrrhanone C, a Bicyclic Triterpene of Commiphora Mukul Gum Resin. Mol. Divers. 2015, 19, 745–757. [Google Scholar] [CrossRef]
- Rajesh, S.M.; Kumar, R.S.; Libertsen, L.A.; Perumal, S.; Yogeeswari, P.; Sriram, D. A Green Expedient Synthesis of Pyridopyrimidine-2-Thiones and Their Antitubercular Activity. Bioorg. Med. Chem. Lett. 2011, 21, 3012–3016. [Google Scholar] [CrossRef]
- Elsaedany, S.K.; AbdEllatif zein, M.; AbdElRehim, E.M.; Keshk, R.M. Synthesis and Biological Activity Studies of Novel Pyrido[2,3-d]Pyrimidines and Pyrido[2,3-d]Triazines. Russ. J. Bioorg. Chem. 2021, 47, 552–560. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Darwesh, O.M.; El-Shahat, M. Synthesis of Arylidene Hydrazinylpyrido[2,3-d]Pyrimidin-4-Ones as Potent Anti-Microbial Agents. Heliyon 2020, 6, e04956. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Al-Harbi, S.A.; Allehyani, E.S. Construction, Characterization, and Antimicrobial Evaluation of the Novel Heteroannulated Chromeno[2′′,3′′:6′,5′]Pyrido[2′,3′-d][1,3]Thiazolo[3,2-a]Pyrimidines. J. Heterocycl. Chem. 2021, 58, 241–249. [Google Scholar] [CrossRef]
- Huang, M.; Huang, Y.; Guo, J.; Yu, L.; Chang, Y.; Wang, X.; Luo, J.; Huang, Y.; Tu, Z.; Lu, X.; et al. Pyrido[2, 3-d]Pyrimidin-7(8H)-Ones as New Selective Orally Bioavailable Threonine Tyrosine Kinase (TTK) Inhibitors. Eur. J. Med. Chem. 2021, 211, 113023. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.Z.; Mao, Y.; Lee, C.-H.; Pratt, J.K.; Koenig, J.R.; Perner, R.J.; Cowart, M.D.; Gfesser, G.A.; McGaraughty, S.; Chu, K.L.; et al. Adenosine Kinase Inhibitors: Polar 7-Substitutent of Pyridopyrimidine Derivatives Improving Their Locomotor Selectivity. Bioorg. Med. Chem. Lett. 2003, 13, 3041–3044. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.; Yuan, M.; Xue, L.; Li, H.; Tian, C.; Wang, X.; Liu, J.; Zhang, Z. Synthesis and Antiproliferative Activity of a Series of Novel 6-Substituted Pyrido[3,2- d ]Pyrimidines as Potential Nonclassical Lipophilic Antifolates Targeting Dihydrofolate Reductase. Eur. J. Med. Chem. 2017, 128, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Gangjee, A.; Adair, O.; Queener, S.F. Synthesis of 2,4-Diamino-6-(Thioarylmethyl)Pyrido[2,3-d]Pyrimidines as Dihydrofolate Reductase Inhibitors. Bioorg. Med. Chem. 2001, 9, 2929–2935. [Google Scholar] [CrossRef]
- DeGoey, D.A.; Betebenner, D.A.; Grampovnik, D.J.; Liu, D.; Pratt, J.K.; Tufano, M.D.; He, W.; Krishnan, P.; Pilot-Matias, T.J.; Marsh, K.C.; et al. Discovery of Pyrido[2,3-d]Pyrimidine-Based Inhibitors of HCV NS5A. Bioorg. Med. Chem. Lett. 2013, 23, 3627–3630. [Google Scholar] [CrossRef]
- Medjdoub, A.; Belhadj, F.; Saidi Merzouk, A.; Baba Hamed, Y.; Kibou, Z.; Choukchou-Braham, N.; Merzouk, H. In Vitro Peripheral Blood Mononuclear Cell Proliferation, Cytokine Secretion and Oxidative Stress Modulation by Pyrido[2,3-d] Pyrimidines. Chem. Pap. 2020, 74, 903–913. [Google Scholar] [CrossRef]
- Khajeh Dangolani, S.; Panahi, F.; Tavaf, Z.; Nourisefat, M.; Yousefi, R.; Khalafi-Nezhad, A. Synthesis and Antioxidant Activity Evaluation of Some Novel Aminocarbonitrile Derivatives Incorporating Carbohydrate Moieties. ACS Omega 2018, 3, 10341–10350. [Google Scholar] [CrossRef]
- Gouda, M.A.S.; Salem, M.A.I.; Mahmoud, N.F.H. 3D-Pharmacophore Study Molecular Docking and Synthesis of Pyrido[2,3-d]Pyrimidine-4(1H) Dione Derivatives with in Vitro Potential Anticancer and Antioxidant Activities. J. Heterocycl. Chem. 2020, 57, 3988–4006. [Google Scholar] [CrossRef]
- Talevi, A. Multi-Target Pharmacology: Possibilities and Limitations of the “Skeleton Key Approach” from a Medicinal Chemist Perspective. Front Pharmacol 2015, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abbas, S.E.-S.; Youssef, M.M.; Eladwy, R.A. Synthesis and Antitumor Activity of Pyrido [2,3-d]Pyrimidine and Pyrido[2,3-d] [1,2,4]Triazolo[4,3-a]Pyrimidine Derivatives That Induce Apoptosis through G1 Cell-Cycle Arrest. Eur. J. Med. Chem. 2014, 83, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.; El Hadi, S.R.A.; Eladwy, R.A.; Shoun, A.A.; Abdel-Aziz, M.M.; Eldehna, W.M.; Abdel-Aziz, H.A.; Keller, P.A. An Improved Synthesis of Pyrido[2,3-:D]Pyrimidin-4(1H)-Ones and Their Antimicrobial Activity. Org. Biomol. Chem. 2018, 16, 3389–3395. [Google Scholar] [CrossRef]
- Detsi, A.; Majdalani, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and Synthetic 2′-Hydroxy-Chalcones and Aurones: Synthesis, Characterization and Evaluation of the Antioxidant and Soybean Lipoxygenase Inhibitory Activity. Bioorg. Med. Chem. 2009, 17, 8073–8085. [Google Scholar] [CrossRef]
- Chebanov, V.A.; Saraev, V.E.; Gura, E.A.; Desenko, S.M.; Musatov, V.I. Some Aspects of Reaction of 6-Aminouracil and 6-Amino-2-Thiouracil with α,β-Unsaturated Ketones. Collect Czechoslov. Chem. Commun. 2005, 70, 350–360. [Google Scholar] [CrossRef]
- El-Gazzar, A.B.A.; Gaafar, A.M.; Aly, A.S. Synthesis of Some New Thiazolo[3,2-a]Pyrido[2,3-d]Pyrimidinones and Isoxazolo[5′,4′:4,5]Thiazolo [3,2-a]Pyrido[2,3-d]Pyrimidinone. Phosphorus Sulfur. Silicon. Relat. Elem. 2002, 177, 45–58. [Google Scholar] [CrossRef]
- Quiroga, J.; Insuasty, B.; Sanchez, A.; Nogueras, M.; Meier, H. Synthesis of Pyrido[2,3-d]Pyrimidines in the Reaction of 6-Amino-2,3-Dihydro-2-Thioxo-4(1H)-Pyrimidinone with Chalcones. J. Heterocycl. Chem. 1992, 29, 1045–1048. [Google Scholar] [CrossRef]
- Bate-Smith, E.C.; Westall, R.G. Chromatographic Behaviour and Chemical Structure I. Some Naturally Occuring Phenolic Substances. Biochim. Biophys. Acta 1950, 4, 427–440. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou-Litina, D. Multi-Target Cinnamic Acids for Oxidative Stress and Inflammation: Design, Synthesis, Biological Evaluation and Modeling Studies. Molecules 2018, 24, 12. [Google Scholar] [CrossRef]
- Maccarrone, M.; Melino, G.; Finazzi-Agro, A. Lipoxygenases and Their Involvement in Programmed Cell Death. Cell Death Differ 2001, 8, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Jones, R.E.; Diehl, R.E.; Bennett, C.D.; Kargman, S.; Rouzer, C.A. Cloning of the CDNA for Human 5-Lipoxygenase. Proc. Natl. Acad. Sci. USA 1988, 85, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Pontiki, E.; Hadjipavlou-Litina, D. Lipoxygenase Inhibitors: A Comparative QSAR Study Review and Evaluation of New QSARs. Med. Res. Rev. 2008, 28, 39–117. [Google Scholar] [CrossRef] [PubMed]
- Pati, H.; Das, U.; Sharma, R.; Dimmock, J. Cytotoxic Thiol Alkylators. Mini-Rev. Med. Chem. 2007, 7, 131–139. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for Cell Viability Assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Kasthuri, J.K.; Singh Jadav, S.; Thripuram, V.D.; Gundabolu, U.R.; babu Ala, V.; Kolla, J.N.; Jayaprakash, V.; Ahsan, M.J.; Bollikolla, H.B. Synthesis, Characterization, Docking and Study of Inhibitory Action of Some Novel C-Alkylated Chalcones on 5-LOX Enzyme. Chemistry Europe. 2017, 2, 8771–8778. [Google Scholar] [CrossRef]
- Mavridis, E.; Bermperoglou, E.; Pontiki, E.; Hadjipavlou-Litina, D. 5-(4H)-Oxazolones and Their Benzamides as Potential Bioactive Small Molecules. Molecules 2020, 25, 3173. [Google Scholar] [CrossRef]
- Kostopoulou, I.; Tzani, A.; Polyzos, N.I.; Karadendrou, M.A.; Kritsi, E.; Pontiki, E.; Liargkova, T.; Hadjipavlou-Litina, D.; Zoumpoulakis, P.; Detsi, A. Exploring the 2′-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents. Molecules 2021, 26, 2777. [Google Scholar] [CrossRef]
- Kouzi, O.; Pontiki, E.; Hadjipavlou-Litina, D. 2-Arylidene-1-Indandiones as Pleiotropic Agents with Antioxidant and Inhibitory Enzymes Activities. Molecules 2019, 24, 4411. [Google Scholar] [CrossRef]
- Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules 2021, 26, 3439. [Google Scholar] [CrossRef]
- Bashary, R.; Khatik, G.L. Design, and Facile Synthesis of 1,3 Diaryl-3-(Arylamino)Propan-1-One Derivatives as the Potential Alpha-Amylase Inhibitors and Antioxidants. Bioorg. Chem. 2019, 82, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, C.; Wu, F.; Zhao, L. Microwave-Assisted Synthesis and Tyrosinase Inhibitory Activity of Chalcone Derivatives. Chem. Biol. Drug Des. 2013, 82, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Mlostoń, G.; Grzelak, P.; Heimgartner, H. Hetero-Diels–Alder Reactions of Hetaryl Thiochalcones with Acetylenic Dienophiles. J. Sulfur Chem. 2017, 38, 1–10. [Google Scholar] [CrossRef]
- Zheng, C.-J.; Jiang, S.-M.; Chen, Z.-H.; Ye, B.-J.; Piao, H.-R. Synthesis and Anti-Bacterial Activity of Some Heterocyclic Chalcone Derivatives Bearing Thiofuran, Furan, and Quinoline Moieties. Arch. Pharm. 2011, 344, 689–695. [Google Scholar] [CrossRef]
- Wong, K.T.; Osman, H.; Parumasivam, T.; Supratman, U.; Che Omar, M.T.; Azmi, M.N. Synthesis, Characterization and Biological Evaluation of New 3,5-Disubstituted-Pyrazoline Derivatives as Potential Anti-Mycobacterium Tuberculosis H37Ra Compounds. Molecules 2021, 26, 2081. [Google Scholar] [CrossRef]
- Lahyani, A.; Chtourou, M.; Frikha, M.H.; Trabelsi, M. Amberlyst-15 and Amberlite-200C: Efficient Catalysts for Aldol and Cross-Aldol Condensation under Ultrasound Irradiation. Ultrason. Sonochem 2013, 20, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Perjéssy, A.; Al-Amood, H.K.; Fadhil, G.F.; Prónayová, N. Substituent Effect Investigation of 3-(2,4-Dichlorophenyl)-1-(4′-X-Phenyl)-2-Propen-1-One. Part 1. Correlation Analysis of 13C NMR Chemical Shifts. J. Phys. Org. Chem. 2011, 24, 140–146. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou-Litina, D. Antioxidant and Anti-Inflammatory Activity of Aryl-Acetic and Hydroxamic Acids as Novel Lipoxygenase Inhibitors. Med. Chem. 2006, 2, 251–264. [Google Scholar] [CrossRef]
- Katopodi, A.; Tsotsou, E.; Iliou, T.; Deligiannidou, G.-E.; Pontiki, E.; Kontogiorgis, C.; Tsopelas, F.; Detsi, A. Synthesis, Bioactivity, Pharmacokinetic and Biomimetic Properties of Multi-Substituted Coumarin Derivatives. Molecules 2021, 26, 5999. [Google Scholar] [CrossRef]
- Gohulkumar, M.; Gurushankar, K.; Rajendra Prasad, N.; Krishnakumar, N. Enhanced Cytotoxicity and Apoptosis-Induced Anticancer Effect of Silibinin-Loaded Nanoparticles in Oral Carcinoma (KB) Cells. Mater. Sci. Eng. C 2014, 41, 274–282. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Fiser, A.; Šali, A. Modeller: Generation and Refinement of Homology-Based Protein Structure Models. In Macromolecular Crystallography; Academic Press: Cambridge, MA, USA, 2003; pp. 461–491. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE–AnteChamber PYthon Parser InterfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins: Struct. Funct. Bioinform. 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings 1PII of Original Article: S0169-409X(96)00423-1. The Article Was Originally Published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
Compound | Pyrimidine Scaffold | Ar1 | Ar2 |
---|---|---|---|
2a | |||
2b | |||
2c | |||
2d | |||
2e | |||
2f | |||
2g | |||
2h |
Compound | RM | clog P | Compound | RM | clog P |
---|---|---|---|---|---|
1a | −0.57 | 3.08 | 2a | −0.95 | 3.64 |
1b | −0.50 | 3.87 | 2b | −0.87 | 4.36 |
1c | −0.52 | 2.73 | 2c | −0.83 | 3.53 |
1d | −0.46 | 3.52 | 2d | −0.80 | 4.24 |
1e | −0.50 | 3.80 | 2e | −0.87 | 4.36 |
1f | −0.24 | 4.59 | 2f | −0.91 | 5.07 |
1g | −0.21 | 4.51 | 2g | −0.60 | 4.82 |
1h | −0.05 | 5.30 | 2h | −0.48 | 5.54 |
Compound | milog P a | TPSA b | No of Atoms | No of O and N c | No of OH and NH d | No of Violations | No of Rotational Bonds e | Volume f | MW g |
---|---|---|---|---|---|---|---|---|---|
1a | 3.81 | 17.07 | 16 | 1 | 0 | 0 | 3 | 201.85 | 208.26 |
1b | 4.49 | 17.07 | 17 | 1 | 0 | 0 | 3 | 215.39 | 242.71 |
1c | 3.53 | 17.07 | 15 | 1 | 0 | 0 | 3 | 192.56 | 214.29 |
1d | 4.21 | 17.07 | 16 | 1 | 0 | 0 | 3 | 206.10 | 248.73 |
1e | 4.49 | 17.07 | 17 | 1 | 0 | 0 | 3 | 215.39 | 242.71 |
1f | 5.17 | 17.07 | 18 | 1 | 0 | 1 | 3 | 228.92 | 277.15 |
1g | 4.92 | 17.07 | 18 | 1 | 0 | 0 | 3 | 228.92 | 277.15 |
1h | 5.59 | 17.07 | 19 | 1 | 0 | 1 | 3 | 242.46 | 311.60 |
2a | 3.69 | 61.55 | 24 | 4 | 2 | 0 | 2 | 283.51 | 331.40 |
2b | 4.36 | 61.55 | 25 | 4 | 2 | 0 | 2 | 297.05 | 365.85 |
2c | 3.47 | 61.55 | 23 | 4 | 2 | 0 | 2 | 274.22 | 337.43 |
2d | 4.15 | 61.55 | 24 | 4 | 2 | 0 | 2 | 287.76 | 371.87 |
2e | 4.36 | 61.55 | 25 | 4 | 2 | 0 | 2 | 297.05 | 365.85 |
2f | 5.04 | 61.55 | 26 | 4 | 2 | 1 | 2 | 310.58 | 400.29 |
2g | 4.97 | 61.55 | 26 | 4 | 2 | 0 | 2 | 310.58 | 400.29 |
2h | 5.65 | 61.55 | 27 | 4 | 2 | 1 | 2 | 324.12 | 434.74 |
Compound | RA % 100 μM 20 min | RA % 100 μM 60 min | AAPH % Inhibition 100 μM | LOX % Inhibition 100 μM or IC50 (μM) |
---|---|---|---|---|
1a | 22 | no | 6 | 26 |
1b | no | 4 | 51 | 39 |
1c | 17 | no | no | 6 |
1d | no | no | 8 | 72.5 μM |
1e | no | no | 4 | 55.5 μM |
1f | no | no | 51 | 4 |
1g | 2 | 8 | 39 | 17 μM |
1h | no | no | 2 | no |
2a | 29 | 56 | 52 | 42 μM |
2b | no | 1 | 62 | 6 |
2c | 14 | 10 | 52 | 68.5 μM |
2d | no | no | 62 | 70 μM |
2e | 24 | 42 | 33 | 76 μM |
2f | no | no | no | 47.5 μM |
2g | 1 | no | 95 | 54 μM |
2h | no | no | 99 | 27 |
NDGA Trolox | 87 - | 93 - | - 92 | 93 (0.45 μM) - |
Compound | λmax # | ελmax $ |
---|---|---|
2a | 353 nm | 5385 |
2a + 2[GSH] * | 353 nm | 4200 |
2f | 358 nm | 1130 |
2f + 2[GSH] | 358 nm | 220 |
Compound | % Cell Viability | |||
---|---|---|---|---|
100 μΜ | 50 μΜ | 10 μΜ | 1 μΜ | |
1a | no | - | 55.1 | - |
1b | no | - | 28.1 | - |
1c | no | 61.7 | 100 | - |
1d | no | 53 | 72.8 | - |
1e | no | 89.9 | 100 | - |
1f | no | 57 | 100 | - |
1g | 2.1 | 32.7 | 100 | - |
1h | no | - | 25.4 | - |
2a | no | 85.6 | 100 | - |
2b | no | 26 | 75.1 | - |
2c | no | - | 16.1 | - |
2d | no | - | 50 | - |
2e | no | - | 22.9 | - |
2f | no | - | no | 73.4 |
2g | no | - | 56.7 | - |
2h | no | 89.9 | 100 | - |
Silibinin (negative control) | 14.9 | - | - | - |
Compound | % Cell Toxicity | ||
---|---|---|---|
100 μΜ | 50 μΜ | 10 μΜ | |
1a | 100 | 81.6 | 41.8 |
1b | 100 | 88.1 | 49.2 |
1c | 8.8 | no | |
1d | 100 | 83.2 | 47.4 |
1e | 36.8 | 6.8 | |
1f | 100 | 67.6 | 48.9 |
1g | 10.8 | no | no |
1h | 100 | 81.1 | 49.1 |
2a | 80.9 | 75 | 56.4 |
2b | 100 | 83.5 | 47.9 |
2c | 100 | 63.6 | 49.4 |
2d | 100 | 100 | 48.6 |
2e | 82.1 | 83.9 | 48 |
2f | 100 | 88.1 | 48.6 |
2g | 79.4 | 79.1 | |
2h | 100 | 76.9 | 49.1 |
Silibinin (positive control) | 96.4 |
Compound | Docking Score (kcal/mol) |
---|---|
1a | −8.1 |
1b | −8.3 |
1c | −7.5 |
1d | −7.3 |
1e | −8.5 |
1f | −8.0 |
1g | −8.9 |
1h | −8.3 |
2a | −9.8 |
2b | −9.4 |
2c | −9.3 |
2d | −9.3 |
2e | −9.4 |
2f | −9.8 |
2g | −9.7 |
2h | −9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myriagkou, M.; Papakonstantinou, E.; Deligiannidou, G.-E.; Patsilinakos, A.; Kontogiorgis, C.; Pontiki, E. Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies. Molecules 2023, 28, 3913. https://doi.org/10.3390/molecules28093913
Myriagkou M, Papakonstantinou E, Deligiannidou G-E, Patsilinakos A, Kontogiorgis C, Pontiki E. Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies. Molecules. 2023; 28(9):3913. https://doi.org/10.3390/molecules28093913
Chicago/Turabian StyleMyriagkou, Malama, Evangelia Papakonstantinou, Georgia-Eirini Deligiannidou, Alexandros Patsilinakos, Christos Kontogiorgis, and Eleni Pontiki. 2023. "Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies" Molecules 28, no. 9: 3913. https://doi.org/10.3390/molecules28093913
APA StyleMyriagkou, M., Papakonstantinou, E., Deligiannidou, G. -E., Patsilinakos, A., Kontogiorgis, C., & Pontiki, E. (2023). Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies. Molecules, 28(9), 3913. https://doi.org/10.3390/molecules28093913