Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensory Evaluation
2.2. Phenolic Characterization
2.3. Headspace Solid-Phase Microextraction (HS-SPME/GC-MS)
2.4. Antioxidant Capacity
3. Materials and Methods
3.1. Chemicals
3.2. Herbal and Juice Material
3.3. Herbal Extract Preparation
3.4. Functional Beverages Preparation
3.5. Sensory Evaluation
3.6. UPLC-MS/MS Chromatography
3.7. HS-SPME/GC-MS
3.8. ORAC Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
Appendix B
Appendix C
References
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods Commercial Trends, Research, and Health Implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The Link between the Consumer and the Innovations in Food Product Development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef]
- Nazir, M.; Arif, S.; Khan, R.; Nazir, W.; Khalid, N.; Maqsood, S. Opportunities and Challenges for Functional and Medicinal Beverages: Current and Future Trends. Trends Food Sci. Technol. 2019, 88, 513–526. [Google Scholar] [CrossRef]
- Valduga, A.T.; Gonçalves, I.L.; Magri, E.; Delalibera Finzer, J.R. Chemistry, Pharmacology and New Trends in Traditional Functional and Medicinal Beverages. Food Res. Int. 2019, 120, 478–503. [Google Scholar] [CrossRef] [PubMed]
- Aadil, R.M.; Roobab, U.; Sahar, A.; Rahman, U.U.; Khalil, A.A. Functionality of Bioactive Nutrients in Beverages. In Nutrients in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–276. ISBN 978-0-12-816842-4. [Google Scholar]
- Khalaf, A.T.; Wei, Y.; Alneamah, S.J.A.; Al-Shawi, S.G.; Kadir, S.Y.A.; Zainol, J.; Liu, X. What Is New in the Preventive and Therapeutic Role of Dairy Products as Nutraceuticals and Functional Foods? BioMed. Res. Int. 2021, 2021, 8823222. [Google Scholar] [CrossRef] [PubMed]
- Rodino, S.; Butu, M. Herbal Extracts—New Trends in Functional and Medicinal Beverages. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 73–108. ISBN 978-0-12-816397-9. [Google Scholar]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Maleš, I.; Pedisić, S.; Zorić, Z.; Elez-Garofulić, I.; Repajić, M.; You, L.; Vladimir-Knežević, S.; Butorac, D.; Dragović-Uzelac, V. The Medicinal and Aromatic Plants as Ingredients in Functional Beverage Production. J. Funct. Foods 2022, 96, 105210. [Google Scholar] [CrossRef]
- Massini, L.; Rico, D.; Martín-Diana, A.B.; Barry-Ryan, C. Quality Markers of Functional Tomato Juice with Added Apple Phenolic Antioxidants. Beverages 2016, 2, 4. [Google Scholar] [CrossRef]
- Atherton, M.L.A. Utilisation of Bioactive Compounds Derived from Waste in the Food Industry. In Utilisation of Bioactive Compounds from Agricultural and Food Waste; Vuong, Q.V., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 342–357. [Google Scholar]
- Shaw, E.; Charters, S. Functional Drinks Containing Herbal Extracts. In Chemistry and Technology of Soft Drinks and Fruit Juices; Ashurst, P.R., Ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2016; pp. 310–355. ISBN 978-1-4443-3381-7. [Google Scholar]
- Berketova, L.V.; Kryukova, E.V.; Goryacheva, E.D.; Ilyuchina, N.V.; Kolokolova, A.Y. Evaluation of Using Herbal Extracts in Enriched Beverages’ Production. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; IOP Publishing: Bristol, UK, 2021; Volume 640, p. 022068. [Google Scholar]
- Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages 2016, 2, 14. [Google Scholar] [CrossRef]
- Zorić, Z.; Pelaić, Z.; Pedisić, S.; Elez Garofulić, I.; Bursać Kovačević, D.; Dragović–Uzelac, V. Effect of Storage Conditions on Phenolic Content and Antioxidant Capacity of Spray Dried Sour Cherry Powder. LWT Food Sci. Technol. 2017, 79, 251–259. [Google Scholar] [CrossRef]
- Fenoglio, D.; Ferrario, M.; Andreone, A.; Guerrero, S. Development of an Orange-Tangerine Juice Treated by Assisted Pilot-Scale UV-C Light and Loaded with Yerba Mate: Microbiological, Physicochemical, and Dynamic Sensory Studies. Food Bioprocess Technol. 2022, 15, 915–932. [Google Scholar] [CrossRef]
- Thamilselvi, C.; Krishnakumar, T.; Amutha, S. Preparation and Quality Evaluation of Lime Based Herbal Blended RTS Beverage. Asian J. Dairy Food Res. 2015, 34, 54–58. [Google Scholar] [CrossRef]
- Hashemi, J.M.; Haridy, L.A.; Qashqari, R.J. The Effect of Moringa Oleifera Leaves Extract on Extending the Shelf Life and Quality of Freshly Sweet Orange Juice. J. Biochem. Technol. 2018, 9, 63. [Google Scholar]
- Sharma, S.K.; Yadav, V.K.; Rao, V.K.; Dixit, A.K. Enhancement of Health-Promoting Properties While Substituting Exogenous Citric Acid by Seabuckthorn (Hippophae Salicifolia) Pulp in Preparation of Sweet Orange (Citrus Sinensis) Ready-to-Serve Beverage. J. Food Process. Preserv. 2014, 38, 1427–1438. [Google Scholar] [CrossRef]
- Arabshahi-Delouee, S.; Urooj, A. Application of Phenolic Extracts from Selected Plants in Fruit Juice. Int. J. Food Prop. 2007, 10, 479–488. [Google Scholar] [CrossRef]
- Harsha, H.; Aarti, S. Quality Evaluation of Herbal Juice Developed from Traditional Indian Medicinal Plants Using Citrus Limetta as Base. J. Nutr. Food Sci. 2015, 5, 1000396. [Google Scholar]
- Saad, A.M.; Mohamed, A.S.; El-Saadony, M.T.; Sitohy, M.Z. Palatable Functional Cucumber Juices Supplemented with Polyphenols-Rich Herbal Extracts. LWT 2021, 148, 111668. [Google Scholar] [CrossRef]
- Van Duyn, M.A.S.; Pivonka, E. Overview of the Health Benefits of Fruit and Vegetable Consumption for the Dietetics Professional: Selected Literature. J. Am. Diet. Assoc. 2000, 100, 1511–1521. [Google Scholar] [CrossRef]
- Liu, R.H. Dietary Bioactive Compounds and Their Health Implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef]
- Sahar, A.; ur Rahman, U.; Ishaq, A.; Munir, M.S.; Aadil, R.M. Health-Promoting Perspectives of Fruit-Based Functional Energy Beverages. In Sports and Energy Drinks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 399–439. [Google Scholar]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill Education: New York, NY, USA, 1986. [Google Scholar]
- Eksi, G.; Kurbanoglu, S.; Ozkan, S.A. Fortification of Functional and Medicinal Beverages with Botanical Products and Their Analysis. In Engineering Tools in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 351–404. ISBN 978-0-12-815258-4. [Google Scholar]
- Franklin, L.M.; Mitchell, A.E. Review of the Sensory and Chemical Characteristics of Almond (Prunus Dulcis) Flavor. J. Agric. Food Chem. 2019, 67, 2743–2753. [Google Scholar] [CrossRef] [PubMed]
- Selahvarzi, A.; Ramezan, Y.; Sanjabi, M.R.; Mirsaeedghazi, H.; Azarikia, F.; Abedinia, A. Investigation of Antimicrobial Activity of Orange and Pomegranate Peels Extracts and Their Use as a Natural Preservative in a Functional Beverage. J. Food Meas. Charact. 2021, 15, 5683–5694. [Google Scholar] [CrossRef]
- Abd Rashed, A.; Rathi, D.-N.G. Bioactive Components of Salvia and Their Potential Antidiabetic Properties: A Review. Molecules 2021, 26, 3042. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal Plants of the Family Lamiaceae as Functional Foods–A Review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef]
- Raudone, L.; Zymone, K.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V.; Janulis, V. Phenological Changes in Triterpenic and Phenolic Composition of Thymus L. Species. Ind. Crops Prod. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Dent, M.; Kovačević, D.B.; Bosiljkov, T.; Dragović-Uzelac, V. Polyphenolic Composition and Antioxidant Capacity of Indigenous Wild Dalmatian Sage (Salvia officinalis L.). Croat. Chem. Acta 2017, 90, 451–460. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-Inflammatory and Antitumoral Properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef]
- Jakovljević, M.; Jokić, S.; Molnar, M.; Jašić, M.; Babić, J.; Jukić, H.; Banjari, I. Bioactive Profile of Various Salvia officinalis L. Preparations. Plants 2019, 8, 55. [Google Scholar] [CrossRef]
- Janiak, M.; Slavova-Kazakova, A.; Kancheva, V.; Ivanova, M.; Tsrunchev, T.; Karamać, M. Effects of γ-Irradiation of Wild Thyme (Thymus serpyllum L.) on the Phenolic Compounds Profile of Its Ethanolic Extract. Pol. J. Food Nutr. Sci. 2017, 67, 309–315. [Google Scholar] [CrossRef]
- Maleš, I.; Dragović-Uzelac, V.; Jerković, I.; Zorić, Z.; Pedisić, S.; Repajić, M.; Garofulić, I.E.; Dobrinčić, A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants 2022, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.S.; Cruz, A.G.; Walter, E.H.; Faria, J.A.; Celeghini, R.M.; Ferreira, M.M.; Granato, D.; Sant’Ana, A.D.S. Monitoring the Authenticity of Brazilian UHT Milk: A Chemometric Approach. Food Chem. 2011, 124, 692–695. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Mukherjee, S. Effects of Fruit Juice Blending Ratios on Kinnow Juice Preservation at Ambient Storage Condition. Afr. J. Food Sci. 2011, 5, 281–286. [Google Scholar]
- Ghoshal, G.; Kansal, S.K. The Emerging Trends in Functional and Medicinal Beverage Research and Its Health Implication. In Functional and Medicinal Beverages; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 41–71. ISBN 978-0-12-816397-9. [Google Scholar]
- Bhardwaj, R.L.; Pandey, S. Juice Blends—A Way of Utilization of under-Utilized Fruits, Vegetables, and Spices: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 563–570. [Google Scholar] [CrossRef]
- Ogundele, O.M.; Awolu, O.O.; Badejo, A.A.; Nwachukwu, I.D.; Fagbemi, T.N. Development of Functional Beverages from Blends of Hibiscus Sabdariffa Extract and Selected Fruit Juices for Optimal Antioxidant Properties. Food Sci. Nutr. 2016, 4, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Sarvarian, M.; Jafarpour, A.; Awuchi, C.G.; Adeleye, A.O.; Okpala, C.O.R. Changes in Physicochemical, Free Radical Activity, Total Phenolic and Sensory Properties of Orange (Citrus sinensis L.) Juice Fortified with Different Oleaster (Elaeagnus Angustifolia L.) Extracts. Molecules 2022, 27, 1530. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Pompa, S.; Martínez-Ávila, G.C.G.; Rojas-Molina, R.; Sánchez-Alejo, E.J. Natural Beverages and Sensory Quality Based on Phenolic Contents. In Antioxidants in Foods and Its Applications; IntechOpen Rijeka: Rijeka, Croatia, 2018. [Google Scholar]
- Ivanišová, E.; Frančáková, H.; Ritschlová, P.; Dráb, Š.; Solgajová, M.; Tokár, M. Biological Activity of Apple Juice Enriched by Herbal Extracts. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 69–73. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Buglass, A.J. Chemical Composition of Beverages and Drinks. In Handbook of Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- de Freitas, V.; Mateus, N. Protein/Polyphenol Interactions: Past and Present Contributions. Mechanisms of Astringency Perception. Curr. Org. Chem. 2012, 16, 724–746. [Google Scholar] [CrossRef]
- Lubaina, A.S.; Renjith, P.R.; Roshni, A.S. Identification and Quantification of Polyphenols from Pineapple Peel by High Performance Liquid Chromatography Analysis. Adv. Zool. Bot. 2020, 8, 431–438. [Google Scholar] [CrossRef]
- Ma, C.; Xiao, S.; Li, Z.; Wang, W.; Du, L. Characterization of Active Phenolic Components in the Ethanolic Extract of Ananas comosus L. Leaves Using High-Performance Liquid Chromatography with Diode Array Detection and Tandem Mass Spectrometry. J. Chromatogr. A 2007, 1165, 39–44. [Google Scholar] [CrossRef]
- Liew, S.S.; Ho, W.Y.; Yeap, S.K.; Sharifudin, S.A.B. Phytochemical Composition and in Vitro Antioxidant Activities of Citrus Sinensis Peel Extracts. PeerJ 2018, 6, e5331. [Google Scholar] [CrossRef] [PubMed]
- Bandonienė, D.; Murkovic, M. On-Line HPLC-DPPH Screening Method for Evaluation of Radical Scavenging Phenols Extracted from Apples (Malus domestica L.). J. Agric. Food Chem. 2002, 50, 2482–2487. [Google Scholar] [CrossRef] [PubMed]
- Boufadi, M.Y.; Keddari, S.; Moulai-Hacene, F.; Chaa, S. Chemical Composition, Antioxidant and Anti-Inflammatory Properties of Salvia officinalis Extract from Algeria. Pharmacogn. J. 2020, 13, 506–515. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Prundeanu, M.; Berger, D.; Deaconu, M.; Matei, C.; Oprea, O.; Vasile, E.; Negreanu-Pîrjol, T.; Muntean, D.; Danciu, C. Properties of Salvia officinalis L. and Thymus serpyllum L. Extracts Free and Embedded into Mesopores of Silica and Titania Nanomaterials. Nanomaterials 2020, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Marchica, A.; Cotrozzi, L.; Detti, R.; Lorenzini, G.; Pellegrini, E.; Petersen, M.; Nali, C. The Biosynthesis of Phenolic Compounds Is an Integrated Defence Mechanism to Prevent Ozone Injury in Salvia officinalis. Antioxidants 2020, 9, 1274. [Google Scholar] [CrossRef]
- López-Nicolás, R.; González-Bermúdez, C.A.; Ros-Berruezo, G.; Frontela-Saseta, C. Influence of in Vitro Gastrointestinal Digestion of Fruit Juices Enriched with Pine Bark Extract on Intestinal Microflora. Food Chem. 2014, 157, 14–19. [Google Scholar] [CrossRef]
- Silva, E.B.M.; Augusti, R.; Melo, J.O.; Takahashi, J.A.; Araújo, R.L. Physicochemical Characterization, Antioxidant Activity and Fingerprints of Industrialized “Detox” Mixed Beverages by Paper Spray Mass Spectrometry. Quím. Nova 2020, 43, 319–324. [Google Scholar] [CrossRef]
- Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of Total Antioxidant Capacity and Phenolic Composition of Some Apple Juices with Combined HPLC–CUPRAC Assay. Food Chem. 2010, 120, 1201–1209. [Google Scholar] [CrossRef]
- van der Sluis, A.A.; Dekker, M.; Skrede, G.; Jongen, W.M. Activity and Concentration of Polyphenolic Antioxidants in Apple Juice. 2. Effect of Novel Production Methods. J. Agric. Food Chem. 2004, 52, 2840–2848. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical Compositional Characterization of Some Apple Cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Akyuz, E.; Şahin, H.; Islamoglu, F.; Kolayli, S.; Sandra, P. Evaluation of Phenolic Compounds in Tilia Rubra Subsp. Caucasica by HPLC-UV and HPLC-UV-MS/MS. Int. J. Food Prop. 2014, 17, 331–343. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Zorić, Z.; Pedisić, S.; Elez Garofulić, I.; Radman, S.; Palčić, I.; Dragović-Uzelac, V. Bioactive Compounds in Wild Nettle (Urtica dioica L.) Leaves and Stalks: Polyphenols and Pigments upon Seasonal and Habitat Variations. Foods 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of Salinity Stress on the Physiological Characteristics, Phenolic Compounds and Antioxidant Activity of Thymus vulgaris L. and Thymus Daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Szilvássy, B.; Rak, G.; Sárosi, S.; Novák, I.; Pluhár, Z.; Abrankó, L. Polyphenols in the Aqueous Extracts of Garden Thyme (Thymus Vulgaris) Chemotypes Cultivated in Hungary. Nat. Prod. Commun. 2013, 8, 1934578X1300800516. [Google Scholar] [CrossRef]
- Gligor, F.G.; Frum, A.; Vicaș, L.G.; Totan, M.; Roman-Filip, C.; Dobrea, C.M. Determination of a Mixture of Plantago lanceolata L. and Salvia officinalis L. by High-Performance Liquid Chromatography with Ultraviolet Detection (HPLC-UV). Anal. Lett. 2020, 53, 1391–1406. [Google Scholar] [CrossRef]
- Ferreres, F.; Sousa, C.; Valentão, P.; Andrade, P.B.; Seabra, R.M.; Gil-Izquierdo, A. New C-Deoxyhexosyl Flavones and Antioxidant Properties of Passiflora Edulis Leaf Extract. J. Agric. Food Chem. 2007, 55, 10187–10193. [Google Scholar] [CrossRef]
- Pacifico, S.; Gallicchio, M.; Lorenz, P.; Duckstein, S.M.; Potenza, N.; Galasso, S.; Marciano, S.; Fiorentino, A.; Stintzing, F.C.; Monaco, P. Neuroprotective Potential of Laurus Nobilis Antioxidant Polyphenol-Enriched Leaf Extracts. Chem. Res. Toxicol. 2014, 27, 611–626. [Google Scholar] [CrossRef]
- Stojanović, J.B.; Veljković, V.B. Extraction of Flavonoids from Garden (Salvia officinalis L.) and Glutinous (Salvia glutinosa L.) Sage by Ultrasonic and Classical Maceration. J. Serb. Chem. Soc. 2007, 72, 73–80. [Google Scholar]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Sathiya Deepika, M.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined Effect of a Natural Flavonoid Rutin from Citrus Sinensis and Conventional Antibiotic Gentamicin on Pseudomonas Aeruginosa Biofilm Formation. Food Control 2018, 90, 282–294. [Google Scholar] [CrossRef]
- Li, T.; Shen, P.; Liu, W.; Liu, C.; Liang, R.; Yan, N.; Chen, J. Major Polyphenolics in Pineapple Peels and Their Antioxidant Interactions. Int. J. Food Prop. 2014, 17, 1805–1817. [Google Scholar] [CrossRef]
- Omoba, O.S.; Obafaye, R.O.; Salawu, S.O.; Boligon, A.A.; Athayde, M.L. HPLC-DAD Phenolic Characterization and Antioxidant Activities of Ripe and Unripe Sweet Orange Peels. Antioxidants 2015, 4, 498–512. [Google Scholar] [CrossRef]
- Starowicz, M.; Achrem–Achremowicz, B.; Pisku\la, M.K.; Zieliński, H. Phenolic Compounds from Apples: Reviewing Their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity–a Review. Pol. J. Food Nutr. Sci. 2020, 70, 321–336. [Google Scholar] [CrossRef]
- Ben Hameda, A.; Gajdošová, D.; Havel, J. Analysis of Salvia officinalis Plant Extracts by Capillary Electrophoresis. J. Sep. Sci. 2006, 29, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Mrkonjić, Ž.; Rakić, D.; Olgun, E.O.; Canli, O.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Optimization of Antioxidants Recovery from Wild Thyme (Thymus serpyllum L.) by Ultrasound-Assisted Extraction: Multi-Response Approach. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100333. [Google Scholar] [CrossRef]
- Rue, E.A.; Rush, M.D.; van Breemen, R.B. Procyanidins: A Comprehensive Review Encompassing Structure Elucidation via Mass Spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Crozier, A. Antioxidant Actions and Phenolic and Vitamin C Contents of Common Mauritian Exotic Fruits. J. Sci. Food Agric. 2003, 83, 496–502. [Google Scholar] [CrossRef]
- Dixon, J.; Hewett, E.W. Factors Affecting Apple Aroma/Flavour Volatile Concentration: A Review. N. Z. J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Silva, P.; Medina, S.; Câmara, J.S. Differentiation of Fresh and Processed Fruit Juices Using Volatile Composition. Molecules 2019, 24, 974. [Google Scholar] [CrossRef]
- Maragò, E.; Michelozzi, M.; Calamai, L.; Camangi, F.; Sebastiani, L. Antioxidant Properties, Sensory Characteristics and Volatile Compounds Profile of Apple Juices from Ancient Tuscany (Italy) Apple Varieties. Eur. J. Hortic. Sci. 2016, 81, 255–263. [Google Scholar] [CrossRef]
- Shu, C.K.; Mookherjee, B.D.; Ho, C.T. Volatile Components of the Thermal Degradation of 2, 5-Dimethyl-4-Hydroxy-3 (2H)-Furanone. J. Agric. Food Chem. 1985, 33, 446–448. [Google Scholar] [CrossRef]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus Waste as Feedstock for Bio-Based Products Recovery: Review on Limonene Case Study and Energy Valorization. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cacho, P.R.; Rouseff, R.L. Fresh Squeezed Orange Juice Odor: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 681–695. [Google Scholar] [CrossRef] [PubMed]
- El Ajjouri, M.; Ghanmi, M.; Satrani, B.; Amarti, F.; Rahouti, M.; Aafi, A.; Ismaili, M.R.; Farah, A. Composition Chimique et Activité Antifongique Des Huiles Essentielles de Thymus Algeriensis Boiss. & Reut. et Thymus Ciliatus (Desf.) Benth. Contre Les Champignons de Pourriture Du Bois. Acta Bot. Gall. 2010, 157, 285–294. [Google Scholar]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Terentjeva, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Kačániová, M. Thymus serpyllum Essential Oil and Its Biological Activity as a Modern Food Preserver. Plants 2021, 10, 1416. [Google Scholar] [CrossRef] [PubMed]
- Wesołowska, A.; Grzeszczuk, M.; Jadczak, D.; Nawrotek, P.; Struk, M. Comparison of the Chemical Composition and Antimicrobial Activity of Thymus serpyllum Essential Oils. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 432–438. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Latif, S.; Sherazi, S.T.H.; Ahmad, A.; Worthington, J.; Sarker, S.D. Chemical Composition and Bioactivity Studies of the Essential Oils from Two Thymus Species from the Pakistani Flora. LWT Food Sci. Technol. 2013, 50, 185–192. [Google Scholar] [CrossRef]
- Tornuk, F.; Cankurt, H.; Ozturk, I.; Sagdic, O.; Bayram, O.; Yetim, H. Efficacy of Various Plant Hydrosols as Natural Food Sanitizers in Reducing Escherichia Coli O157: H7 and Salmonella Typhimurium on Fresh Cut Carrots and Apples. Int. J. Food Microbiol. 2011, 148, 30–35. [Google Scholar] [CrossRef]
- Tabti, L.; Dib, M.E.A.; Djabou, N.; Benyelles, N.G.; Paolini, J.; Costa, J.; Muselli, A. Control of Fungal Pathogens of Citrus Sinensis L. by Essential Oil and Hydrosol of Thymus capitatus L. J. Appl. Bot. Food Qual. 2014, 87, 279–285. [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Saikia, D.; Chauhan, A.; Krishna, V.; Sundaresan, V. Chemical Composition and Antimicrobial Activity of the Essential Oils Isolated from the Herbage and Aqueous Distillates of Two Thymus Species. J. Essent. Oil Bear. Plants 2016, 19, 936–943. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G. 1, 8-Cineole-Caryophyllene Oxide Chemotype of Essential Oil of Thymus serpyllum L. Growing Wild in Vilnius (Lithuania). J. Essent. Oil Res. 2004, 16, 236–238. [Google Scholar] [CrossRef]
- Jug-Dujaković, M.; Ristić, M.; Pljevljakušić, D.; Dajić-Stevanović, Z.; Liber, Z.; Hančević, K.; Radić, T.; Šatović, Z. High Diversity of Indigenous Populations of Dalmatian Sage (Salvia officinalis L.) in Essential-Oil Composition. Chem. Biodivers. 2012, 9, 2309–2323. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, M.; Yangui, T.; Sayadi, S.; Dhouib, A. Disinfectant Properties of Essential Oils from Salvia officinalis L. Cultivated in Tunisia. Food Chem. Toxicol. 2009, 47, 2755–2760. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Sanchez-Ballester, N.M.; Blázquez, M.A. Encapsulated Limonene: A Pleasant Lemon-like Aroma with Promising Application in the Agri-Food Industry. A Review. Molecules 2020, 25, 2598. [Google Scholar] [CrossRef] [PubMed]
- Junior, M.R.M.; e Silva, T.A.R.; Franchi, G.C.; Nowill, A.; Pastore, G.M.; Hyslop, S. Antioxidant Potential of Aroma Compounds Obtained by Limonene Biotransformation of Orange Essential Oil. Food Chem. 2009, 116, 8–12. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of Innovation in Health and Disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
- Sun, X.; Cameron, R.G.; Plotto, A.; Zhong, T.; Ference, C.M.; Bai, J. The Effect of Controlled-Release Carvacrol on Safety and Quality of Blueberries Stored in Perforated Packaging. Foods 2021, 10, 1487. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.-N.; Yang, Y.-N.; Yang, Y.; Liang, M.; Zheng, F.-P.; Sun, B.-G. Free and Bound Aroma Compounds of Turnjujube (Hovenia Acerba Lindl.) during Low Temperature Storage. Foods 2020, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ren, X.; Liu, Y.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Extraction of Cinnamomum Camphora Chvar. Borneol Essential Oil Using Neutral Cellulase Assisted-Steam Distillation: Optimization of Extraction, and Analysis of Chemical Constituents. Ind. Crops Prod. 2019, 141, 111794. [Google Scholar] [CrossRef]
- Edris, A.; Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Stoyanova, A.; Slavchev, A. Chemical Composition, Antimicrobial Activities and Olfactive Evaluation of a Salvia officinalis L. (Sage) Essential Oil from Egypt. J. Essent. Oil Res. 2007, 19, 186–189. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Contreras, M.M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Radulescu, V.; Chiliment, S.; Oprea, E. Capillary Gas Chromatography–Mass Spectrometry of Volatile and Semi-Volatile Compounds of Salvia officinalis. J. Chromatogr. A 2004, 1027, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Tsiri, D.; Graikou, K.; Poblocka-Olech, L.; Krauze-Baranowska, M.; Spyropoulos, C.; Chinou, I. Chemosystematic Value of the Essential Oil Composition of Thuja Species Cultivated in Poland—Antimicrobial Activity. Molecules 2009, 14, 4707–4715. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Abdelgaleil, S.A.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective Antioxidant, Antimicrobial and Anticancer Activities of Essential Oils of Horticultural Aromatic Crops in Northern Egypt. BMC Complement. Altern. Med. 2018, 18, 214. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Park, H.; Lim, W.; Song, G. Therapeutic Potential of α, β-Thujone through Metabolic Reprogramming and Caspase-Dependent Apoptosis in Ovarian Cancer Cells. J. Cell. Physiol. 2021, 236, 1545–1558. [Google Scholar] [CrossRef]
- Shafi, P.M.; Nambiar, M.G.; Clery, R.A.; Sarma, Y.R.; Veena, S.S. Composition and Antifungal Activity of the Oil of Artemisia Nilagirica (Clarke) Pamp. J. Essent. Oil Res. 2004, 16, 377–379. [Google Scholar] [CrossRef]
- Varel, V.H. Carvacrol and Thymol Reduce Swine Waste Odor and Pathogens: Stability of Oils. Curr. Microbiol. 2002, 44, 38–43. [Google Scholar] [CrossRef]
- Madhuri, K.; Naik, P.R. Ameliorative Effect of Borneol, a Natural Bicyclic Monoterpene against Hyperglycemia, Hyperlipidemia and Oxidative Stress in Streptozotocin-Induced Diabetic Wistar Rats. Biomed. Pharmacother. 2017, 96, 336–347. [Google Scholar] [CrossRef]
- Liu, S.; Long, Y.; Yu, S.; Zhang, D.; Yang, Q.; Ci, Z.; Cui, M.; Zhang, Y.; Wan, J.; Li, D. Borneol in Cardio-Cerebrovascular Diseases: Pharmacological Actions, Mechanisms, and Therapeutics. Pharmacol. Res. 2021, 169, 105627. [Google Scholar] [CrossRef]
- Coelho, J.P.; Cristino, A.F.; Matos, P.G.; Rauter, A.P.; Nobre, B.P.; Mendes, R.L.; Barroso, J.G.; Mainar, A.; Urieta, J.S.; Fareleira, J.M. Extraction of Volatile Oil from Aromatic Plants with Supercritical Carbon Dioxide: Experiments and Modeling. Molecules 2012, 17, 10550–10573. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.-M.; Van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich Pathway for Fusel Alcohol Production: A Century of Research on Saccharomyces Cerevisiae Metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.C.; Oliveira, C.A.; Pires, J.F.; Pimentel, T.C.; Raices, R.S.L.; Nogueira, L.C. Physicochemical Characteristics and Sensory Acceptance of a Mixed Beverage Based on Organic Apple Juice and Cardamom Tea (Elettaria Cardamomum) with Allegation of Functional Properties. Food Sci. Technol. 2020, 40, 669–676. [Google Scholar] [CrossRef]
- Saad, A.M.; Mohamed, A.S.; Ramadan, M.F. Storage and Heat Processing Affect Flavors of Cucumber Juice Enriched with Plant Extracts. Int. J. Veg. Sci. 2021, 27, 277–287. [Google Scholar] [CrossRef]
- Kostyra, E.; Król, K.; Knysak, D.; Piotrowska, A.; Żakowska-Biemans, S.; Latocha, P. Characteristics of Volatile Compounds and Sensory Properties of Mixed Organic Juices Based on Kiwiberry Fruits. Appl. Sci. 2021, 11, 529. [Google Scholar] [CrossRef]
- Elwakeel, M.A.; Hussein, A.S. Evaluation of Quality Attributes, Antioxidant Activity and Volatile Compounds of Two Cactus Pear Juices Blended with Guava Juice. Egypt. J. Chem. 2021, 64, 2613–2622. [Google Scholar]
- Ferreira, V. Revisiting Psychophysical Work on the Quantitative and Qualitative Odour Properties of Simple Odour Mixtures: A Flavour Chemistry View. Part 1: Intensity and Detectability. A Review. Flavour Fragr. J. 2012, 27, 124–140. [Google Scholar] [CrossRef]
- Le Thanh, M.; Thibeaudeau, P.; Thibaut, M.A.; Voilley, A. Interactions between Volatile and Non-Volatile Compounds in the Presence of Water. Food Chem. 1992, 43, 129–135. [Google Scholar] [CrossRef]
- Ito, Y.; Kubota, K. Sensory Evaluation of the Synergism among Odorants Present in Concentrations below Their Odor Threshold in a Chinese Jasmine Green Tea Infusion. Mol. Nutr. Food Res. 2005, 49, 61–68. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C. Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Hanasaki, Y.; Ogawa, S.; Fukui, S. The Correlation between Active Oxygens Scavenging and Antioxidative Effects of Flavonoids. Free Radic. Biol. Med. 1994, 16, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef] [PubMed]
- Rokayya, S.; Li, C.-J.; Zhao, Y.; Li, Y.; Sun, C.-H. Cabbage (Brassica oleracea L. Var. Capitata) Phytochemicals with Antioxidant and Anti-Inflammatory Potential. Asian Pac. J. Cancer Prev. 2013, 14, 6657–6662. [Google Scholar] [CrossRef] [PubMed]
- García-Alonso, J.; Ros, G.; Periago, M.J. Antiproliferative and Cytoprotective Activities of a Phenolic-Rich Juice in HepG2 Cells. Food Res. Int. 2006, 39, 982–991. [Google Scholar] [CrossRef]
- Sousa, W.R.; da Rocha, C.; Cardoso, C.L.; Silva, D.H.S.; Zanoni, M.V.B. Determination of the Relative Contribution of Phenolic Antioxidants in Orange Juice by Voltammetric Methods. J. Food Compos. Anal. 2004, 17, 619–633. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.R.; Sharma, P.K. Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Peyrat-Maillard, M.N.; Cuvelier, M.-E.; Berset, C. Antioxidant Activity of Phenolic Compounds in 2, 2′-Azobis (2-Amidinopropane) Dihydrochloride (AAPH)-Induced Oxidation: Synergistic and Antagonistic Effects. J. Am. Oil Chem. Soc. 2003, 80, 1007. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the Synergistic Antioxidant Effects of Some Flavonoid and Phenolic Compounds. Res. J. Pharmacogn. 2014, 1, 35–40. [Google Scholar]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Frontela-Saseta, C.; López-Nicolás, R.; González-Bermúdez, C.A.; Peso-Echarri, P.; Ros-Berruezo, G.; Martínez-Graciá, C.; Canali, R.; Virgili, F. Evaluation of Antioxidant Activity and Antiproliferative Effect of Fruit Juices Enriched with Pycnogenol® in Colon Carcinoma Cells. The Effect of in Vitro Gastrointestinal Digestion. Phytother. Res. 2011, 25, 1870–1875. [Google Scholar] [CrossRef]
- Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Zawada, K.; Wawer, I. Aronia Dietary Drinks Fortified with Selected Herbal Extracts Preserved by Thermal Pasteurization and High Pressure Carbon Dioxide. LWT Food Sci. Technol. 2017, 85, 423–426. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L. Oxygen Radical Absorbance Capacity (ORAC): New Horizons in Relating Dietary Antioxidants/Bioactives and Health Benefits. J. Funct. Foods 2015, 18, 797–810. [Google Scholar] [CrossRef]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. The Quantitative Descriptive Analysis (QDA®) Method (Tragon Corp.). In Sensory Evaluation Techniques, 2nd ed.; Boca Raton, F.L., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 193–194. [Google Scholar]
COLOR | ODOR | FLAVOR | AROMA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | WT | JUICE | SWEET | SOUR | BITTER | S | WT | JUICE | HARMONIOUS | OFF | S | WT | JUICE | ||
Juice | p < 0.001 * | p = 0.513 | p = 0.411 | p = 0.002 * | p < 0.001 * | p < 0.001 * | p < 0.001 * | p = 0.513 | p = 1.000 | p = 0.411 | p = 0.070 | p = 0.125 | p = 0.800 | p = 1.000 | p = 0.411 |
Apple | 6.51 ± 0.24 b | 2.08 ± 0.42 a | 2.57 ± 0.49 a | 4.60 ± 0.21 b | 6.56 ± 0.12 a | 1.73 ± 0.03 b | 0.54 ± 0.07 c | 2.38 ± 0.49 c | 2.63 ± 0.50 a | 6.14 ± 0.20 a | 7.95 ± 0.09 b | 0.00 ± 0.00 a | 2.51 ± 0.54 a | 2.65 ± 0.50 a,b | 5.98 ± 0.17 a |
Pineapple | 7.72 ± 0.09 a | 1.29 ± 0.28 a | 1.81 ± 0.40 a | 6.21 ± 0.21 a | 4.90 ± 0.11 b | 1.94 ± 0.06 b | 1.22 ± 0.13 b | 1.84 ± 0.41 a | 2.65 ± 0.52 a | 6.24 ± 0.20 a | 8.70 ± 0.18 a | 0.00 ± 0.00 a | 1.95 ± 0.41 a | 2.56 ± 0.49 a | 6.06 ± 0.20 a |
Orange | 6.86 ± 0.09 b | 1.35 ± 0.31 a | 2.27 ± 0.47 a | 6.08 ± 0.23 a | 3.90 ± 0.07 c | 3.29 ± 0.06 a | 1.98 ± 0.14 a | 2.19 ± 0.48 b | 2.60 ± 0.51 a | 6.38 ± 0.25 a | 8.25 ± 0.11 a,b | 0.02 ± 0.01 a | 2.13 ± 0.46 a | 2.83 ± 0.53 b | 6.11 ± 0.24 a |
Extract | p = 0.800 | p < 0.001 * | p < 0.001 * | p = 0.749 | p = 0.513 | p = 0.513 | p = 1.000 | p < 0.001 * | p < 0.001 * | p = 0.135 | p = 0.411 | p = 0.125 | p < 0.001 * | p < 0.001 * | p = 0.030 * |
S | 7.11 ± 0.17 a | 2.97 ± 0.29 a | 0.00 ± 0.00 b | 5.75 ± 0.26 a | 5.29 ± 0.30 a | 2.16 ± 0.16 a | 1.44 ± 0.21 a | 4.19 ± 0.33 a | 0.00 ± 0.00 b | 6.22 ± 0.21 a,b | 8.21 ± 0.17 a | 0.02 ± 0.01 a | 4.44 ± 0.29 a | 0.00 ± 0.00 b | 5.94 ± 0.17 a,b |
WT | 6.99 ± 0.23 a | 0.00 ± 0.00 b | 3.47 ± 0.38 a | 5.68 ± 0.34 a | 5.10 ± 0.26 a | 2.43 ± 0.17 b | 1.11 ± 0.18 a | 0.00 ± 0.00 c | 3.79 ± 0.33 a | 6.71 ± 0.23 a | 8.46 ± 0.16 a | 0.00 ± 0.00 a | 0.00 ± 0.00 c | 4.08 ± 0.30 a | 6.48 ± 0.23 a |
WTS | 6.98 ± 0.18 a | 1.75 ± 0.17 a | 3.17 ± 0.25 a | 5.46 ± 0.21 a | 4.98 ± 0.29 a | 2.37 ± 0.19 b | 1.19 ± 0.15 a | 2.22 ± 0.14 b | 4.10 ± 0.25 a | 5.83 ± 0.16 b | 8.24 ± 0.12 a | 0.00 ± 0.00 a | 2.15 ± 0.13 b | 3.95 ± 0.24 a | 5.75 ± 0.17 b |
Concentration | p = 0.451 | p = 0.055 | p = 0.015 * | p < 0.001 * | p = 0.513 | p = 0.411 | p = 0.056 | p = 0.056 | p = 0.002 * | p < 0.001 * | p = 0.430 | p = 0.125 | p = 0.211 | p = 0.003 * | p < 0.001 * |
5 | 6.89 ± 0.27 a | 0.94 ± 0.21 a | 1.41 ± 0.26 b | 6.60 ± 0.21 a | 5.44 ± 0.30 a | 2.40 ± 0.17 a | 0.78 ± 0.11 b | 1.41 ± 0.28 a | 1.65 ± 0.30 b | 7.14 ± 0.17 a | 8.24 ± 0.13 a | 0.02 ± 0.01 a | 1.60 ± 0.34 a | 1.83 ± 0.32 b | 6.86 ± 0.15 a |
10 | 6.97 ± 0.13 a | 1.62 ± 0.34 a | 2.27 ± 0.40 a,b | 5.51 ± 0.20 b | 5.06 ± 0.28 a | 2.29 ± 0.18 a | 1.21 ± 0.16 a,b | 2.22 ± 0.45 b | 2.67 ± 0.46 a,b | 6.11 ± 0.13 b | 8.46 ± 0.13 a | 0.00 ± 0.00 a | 2.21 ± 0.46 a | 2.67 ± 0.46 a,b | 6.03 ± 0.12 b |
15 | 7.22 ± 0.15 a | 2.16 ± 0.42 a | 2.96 ± 0.59 a | 4.78 ± 0.22 c | 4.86 ± 0.25 a | 2.27 ± 0.18 a | 1.76 ± 0.19 a | 2.78 ± 0.55 c | 3.57 ± 0.62 a | 5.51 ± 0.13 c | 8.21 ± 0.18 a | 0.00 ± 0.00 a | 2.78 ± 0.57 a | 3.54 ± 0.61 a | 5.27 ± 0.14 c |
Grand mean | 7.03 ± 0.11 | 1.57 ± 0.20 | 2.21 ± 0.26 | 5.63 ± 0.15 | 5.12 ± 0.16 | 2.32 ± 0.10 | 1.25 ± 0.10 | 2.14 ± 0.26 | 2.63 ± 0.29 | 6.25 ± 0.12 | 8.30 ± 0.09 | 0.01 ± 0.00 | 2.20 ± 0.27 | 2.68 ± 0.29 | 6.05 ± 0.12 |
Compound | RT (Min) | Precursor Ion (m/z) | Fragment Ions (m/z) | Tentative Identification | AJ | PJ | OJ | AS | AWT | AWTS | PS | PWT | PWTS | OS | OWT | OWTS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxycinnamic acids | |||||||||||||||||
26 | 9.034 | 359.1 | 161 | Rosmarinic acid ** | p = 0.045 * | 0.27 ± 0.00 a | 0.05 ± 0.00 a | 0.14 ± 0.00 a | 17.40 ± 0.31 d | 15.28 ± 0.27 c,d | 14.93 ± 0.27 c,d | 12.08 ± 0.22 b | 16.38 ± 0.29 d | 13.93 ± 0.25 c,d | 14.93 ± 0.27 c,d | 24.52 ± 0.44 e | 16.94 ± 0.30 d |
10 | 5.173 | 353 | 191 | Chlorogenic acid ** | p = 0.013 * | 24.08 ± 0.18 i | 1.01 ± 0.01 a | 2.72 ± 0.02 b | 20.14 ± 0.15 g | 26.83 ± 0.20 j | 23.15 ± 0.17 h | 0.85 ± 0.01 a | 6.66 ± 0.05 d | 5.17 ± 0.04 c | 2.76 ± 0.02 b | 10.32 ± 0.08 f | 7.57 ± 0.06 e |
20 | 7.616 | 193 | 134 | Ferulic acid ** | p = 0.013 * | 0.34 ± 0.00 a | 0.51 ± 0.00 b | 1.73 ± 0.01 g | 1.49 ± 0.01 f | 0.89 ± 0.01 c | 1.06 ± 0.01 d | 1.50 ± 0.01 f | 1.31 ± 0.01 e | 0.93 ± 0.01 c | 2.64 ± 0.02 j | 2.12 ± 0.02 h | 2.56 ± 0.02 i |
11 | 5.575 | 179 | 135 | Caffeic acid ** | p = 0.045 * | 3.92 ± 0.04 c | 1.28 ± 0.01 b | 0.46 ± 0.00 a | 25.72 ± 0.23 j | 11.70 ± 0.11 e | 17.17 ± 0.16 g | 18.74 ± 0.17 h | 9.67 ± 0.11 d | 11.62 ± 0.11 e | 23.31 ± 0.21 i | 11.43 ± 0.10 e | 13.24 ± 0.12 f |
15 | 7.178 | 163 | 119 | p-Coumaric acid ** | p = 0.013 * | 3.97 ± 0.07 f,g | 1.31 ± 0.02 b | 0.54 ± 0.01 a | 3.83 ± 0.07 f,g | 4.35 ± 0.08 h | 4.15 ± 0.07 g,h | 1.98 ± 0.04 c | 2.87 ± 0.05 e | 2.52 ± 0.04 d | 1.17 ± 0.02 b | 1.96 ± 0.03 c | 1.75 ± 0.03 c |
Hydroxybenzoic acids | |||||||||||||||||
29 | 11.312 | 169 | 125 | Gallic acid ** | p = 0.045 * | 0.55 ± 0.01 a,b,c | 0.57 ± 0.01 b,c | 0.78 ± 0.01 e | 0.57 ± 0.01 c | 0.56 ± 0.01 a,b,c,d | 0.59 ± 0.01 d | 0.53 ± 0.01 a,b,c | 0.54 ± 0.01 a,b,c | 0.54 ± 0.01 a,b,c | 0.53 ± 0.01 a,b,c | 0.53 ± 0.01 a,b,c | 0.54 ± 0.01 a,b,c |
6 | 2.783 | 317 | 155 | 3,4-Dihydrobenzoic acid hexoside | p = 0.013 * | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.00 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
9 | 4.441 | 197 | 182 | Syringic acid ** | p = 0.013 * | 0.30 ± 0.00 a | 3.04 ± 0.04 e | 0.79 ± 0.01 b | 1.24 ± 0.02 c | 4.15 ± 0.06 f,g | 3.93 ± 0.05 f | 4.23 ± 0.06 f,g | 8.55 ± 0.12 i | 8.20 ± 0.11 h | 1.33 ± 0.02 c | 4.39 ± 0.06 g | 2.53 ± 0.03 d |
7 | 3.597 | 153 | 109 | Protocatechuic acid ** | p = 0.013 * | 0.36 ± 0.01 c | 0.16 ± 0.00 a | 0.28 ± 0.01 b | 0.6 ± 0.01 e | 0.95 ± 0.02 h,i | 0.71 ± 0.01 f | 0.57 ± 0.01 e | 1.21 ± 0.02 j | 0.82 ± 0.02 g,h | 0.45 ± 0.01 d | 0.89 ± 0.02 g,h,i | 0.58 ± 0.01 e |
8 | 4.417 | 137 | 93 | p-Hydroxybenzoic acid | p = 0.013 * | 0.43 ± 0.01 a | 0.71 ± 0.01 b | 0.46 ± 0.01 a | 1.12 ± 0.02 c | 2.82 ± 0.04 h | 2.15 ± 0.03 g | 1.24 ± 0.02 d | 2.72 ± 0.04 h | 1.80 ± 0.02 f | 1.26 ± 0.02 d | 2.14 ± 0.03 g | 1.54 ± 0.02 e |
Flavones | |||||||||||||||||
12 | 6.287 | 449 | 329 | Luteolin-6-C-hexoside | p = 0.013 * | 0.00 ± 0.00 a,b | 0.01 ± 0.00 c | 0.02 ± 0.00 e | 0.00 ± 0.00 a,b | 0.01 ± 0.00 d | 0.01 ± 0.00 c | 0.00 ± 0.00 b,c | 0.01 ± 0.00 d | 0.01 ± 0.00 c | 0.02 ± 0.00 f | 0.03 ± 0.00 g | 0.02 ± 0.00 g |
18 | 7.24 | 287 | 153 | Luteolin ** | p = 0.013 * | 0.16 ± 0.00 a | 0.21 ± 0.01 a | 0.52 ± 0.01 b | 2.44 ± 0.06 g | 1.95 ± 0.05 f | 1.45 ± 0.04 d | 1.86 ± 0.05 f | 1.14 ± 0.03 c | 1.50 ± 0.04 d,e | 1.38 ± 0.03 d,e | 1.44 ± 0.03 d,e | 1.40 ± 0.03 d,e |
28 | 11.285 | 271 | 153 | Apigenin ** | p = 0.045 * | 0.06 ± 0.00 b | 0.02± 0.00 a | 0.03 ± 0.00 a | 0.09 ± 0.00 b | 0.27 ± 0.01 e | 0.07 ± 0.00 b | 0.11 ± 0.00 c | 0.15 ± 0.00 d | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.13 ± 0.00 c | 0.07 ± 0.00 b |
1 | 0.805 | 579 | 459 | Apigenin-6-C-(O-deoxyhexosyl)-hexoside | p = 0.045 * | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.0 ± 0.00 d | 0.0 ± 0.00 d | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.0 ± 0.00 e | 0.01 ± 0.00 e | 0.01 ± 0.00 g | 0.01 ± 0.00 f | 0.01 ± 0.00 f | 0.00 ± 0.00 b |
Flavonols | |||||||||||||||||
21 | 8.082 | 611 | 303 | Rutin ** | p = 0.045 * | 1.4 ± 0.03 a | 0.19 ± 0.00 a | 101.17 ± 0.25 f | 1.49 ± 0.00 a | 5.25 ± 0.11 a,b,c | 5.26 ± 0.01 a,b,c | 1.01 ± 0.00 a | 7.77 ± 0.16 a,b,c | 5.20 ± 0.01 a,b,c | 93.26 ± 1.90 e | 81.80 ± 0.21 d | 107.58 ± 2.20 g |
14 | 7.075 | 465 | 303.1 | Quercetin-3-glucoside ** | p = 0.045 * | 3.71 ± 0.07 b | 0.34 ± 0.01 a | 4.54 ± 0.09 c | 4.74 ± 0.09 c,d | 5.54 ± 0.11 d | 5.41 ± 0.11 d | 3.70 ± 0.07 b | 7.06 ± 0.14 e | 5.68 ± 0.11 d | 5.21 ± 0.10 d | 9.82 ± 0.19 f | 7.05 ± 0.14 e |
25 | 8.986 | 449 | 303 | Quercetin-3-rhamnoside | p = 0.013 * | 2.96 ± 0.04 c | 0.09 ± 0.00 a | 1.77 ± 0.03 b | 3.31 ± 0.05 d | 7.94 ± 0.12 h | 4.97 ± 0.07 f | 0.19 ± 0.00 a | 4.46 ± 0.07 e | 2.65 ± 0.04 c | 1.76 ± 0.03 b | 5.97 ± 0.09 g | 4.28 ± 0.06 e |
23 | 8.49 | 435 | 303 | Quercetin-3-pentoside | p = 0.013 * | 3.37 ± 0.07 f | 0.04 ± 0.00 a | 0.06 ± 0.00 a | 3.01 ± 0.06 d,e | 3.10 ± 0.06 d,e | 2.83 ± 0.06 d | 0.06 ± 0.00 a | 0.51 ± 0.01 b,c | 0.29 ± 0.01 b | 0.05 ± 0.00 a | 0.58 ± 0.01 c | 0.40 ± 0.01 b,c |
16 | 7.178 | 595 | 287 | Kaempferol-3-rutinoside | p = 0.045 * | 0.10 ± 0.00 a | 0.29 ± 0.00 a | 3.20 ± 0.0 b | 11.26 ± 0.02 j | 4.10 ± 0.06 d | 5.50 ± 0.01 f | 9.80 ± 0.01 i | 3.76 ± 0.05 c | 5.30 ± 0.01 f | 9.40 ± 0.14 h | 4.69 ± 0.01 e | 6.22 ± 0.09 g |
17 | 7.208 | 449 | 287 | Kaempferol-3-O-hexoside | p = 0.013 * | 0.70 ± 0.02 a | 0.22 ± 0.00 a | 9.70 ± 0.15 b,c | 34.24 ± 0.52 h | 8.31 ± 0.13 b,c | 14.78 ± 0.23 e | 25.92 ± 0.39 g | 8.13 ± 0.12 b | 12.19 ± 0.19 d | 26.98 ± 0.41 g | 17.99 ± 0.27 f | 12.01 ± 0.18 d |
4 | 1.364 | 433 | 287 | Kaempferol-3-O-deoxyhexoside | p = 0.013 * | 0.01 ± 0.00 c,d,e | 0.02 ± 0.00 h | 0.02 ± 0.00 f | 0.00 ± 0.00 a,b | 0.00 ± 0.00 a,b,c | 0.01 ± 0.00 d,e | 0.02 ± 0.00 g | 0.03 ± 0.00 i | 0.03 ± 0.00 h | 0.01 ± 0.00 b,c | 0.01 ± 0.00 b,c,d | 0.01 ± 0.00 b,c,d |
22 | 8.355 | 419 | 287 | Kaempferol-3-O-pentoside | p = 0.013 * | 0.17 ± 0.00 c,d | 0.07 ± 0.00 a | 0.13 ± 0.00 b,c,d | 0.16 ± 0.00 c,d | 0.56 ± 0.01 g | 0.33 ± 0.00 f | 0.12 ± 0.00 b,c | 0.26 ± 0.01 e | 0.19 ± 0.00 d | 0.14 ± 0.00 b,c,d | 0.32 ± 0.01 f | 0.25 ± 0.01 e |
13 | 6.785 | 319 | 273 | Myricetin ** | p = 0.013 * | 0.44 ± 0.00 b | 0.22 ± 0.00 a | 1.69 ± 0.01 h | 1.99 ± 0.01 i | 0.72 ± 0.01 c | 1.01 ± 0.01 e | 1.28 ± 0.01 g | 1.17 ± 0.01 f | 0.80 ± 0.00 d | 1.69 ± 0.01 h | 2.04 ± 0.01 j | 2.40 ± 0.01 k |
19 | 7.575 | 479 | 317 | Isorhamnetin-3-hexoside | p = 0.013 * | 1.02 ± 0.03 b,c | 1.12 ± 0.03 b,c | 0.50 ± 0.01 a | 1.75 ± 0.04 e | 1.58 ± 0.04 d,e | 0.93 ± 0.02 b | 1.63 ± 0.04 d,e | 1.50 ± 0.04 d,e | 1.39 ± 0.04 d | 1.54 ± 0.04 d,e | 1.04 ± 0.04 b,c | 0.87 ± 0.03 b |
Flavan-3-ols | |||||||||||||||||
3 | 1.244 | 291 | 139 | Catechin ** | p = 0.045 * | 0.38 ± 0.00 c | 0.23 ± 0.00 a | 0.49 ± 0.00 e | 0.48 ± 0.00 e | 0.62 ± 0.01 f | 0.63 ± 0.01 f | 0.44 ± 0.00 d | 0.25 ± 0.00 a | 0.32 ± 0.00 b | 0.61 ± 0.01 f | 0.47 ± 0.00 e | 0.48 ± 0.00 e |
5 | 1.801 | 291 | 123 | Epicatechin | p = 0.013 * | 0.90 ± 0.01 h | 0.16 ± 0.00 a | 0.50 ± 0.01 d,e | 0.30 ± 0.00 b | 0.52 ± 0.01 e | 0.47 ± 0.01 d | 0.26 ± 0.00 b | 0.40 ± 0.01 c | 0.24 ± 0.00 b | 0.57 ± 0.01 f | 0.68 ± 0.01 g | 0.38 ± 0.01 c |
27 | 9.884 | 459 | 139 | Epigalocatechin gallate ** | p = 0.013 * | 0.02 ± 0.00 a,b,c | 0.02 ± 0.00 a,b | 0.29 ± 0.00 g | 0.03 ± 0.00 b,c,d | 0.03 ± 0.00 b,c,d | 0.03 ± 0.00 a,b,c | 0.01 ± 0.00 a | 0.24 ± 0.00 e | 0.04 ± 0.00 c,d | 0.32 ± 0.00 h | 0.27 ± 0.00 f | 0.34 ± 0.00 i |
24 | 8.78 | 442.9 | 139 | Epicatechin gallate ** | p = 0.013 * | 0.10 ± 0.00 b,c | 0.14 ± 0.00 f | 0.07 ± 0.00 a | 0.14 ± 0.00 f | 0.16 ± 0.00 g | 0.12 ± 0.00 d | 0.13 ± 0.00 e | 0.18 ± 0.00 h | 0.16 ± 0.00 g | 0.14 ± 0.00 f | 0.10 ± 0.00 c | 0.09 ± 0.00 b |
Proanthocyanidins | |||||||||||||||||
2 | 1.172 | 865 | 575 | Procyanidin trimer ** | p < 0.013 * | 1.57 ± 0.02 j | 1.59 ± 0.02 j | 0.40 ± 0.01 e,f | 0.18 ± 0.00 a,b,c | 0.14 ± 0.00 a,b,c | 1.31 ± 0.02 i | 0.51 ± 0.01 g | 0.21 ± 0.00 a,b,c,d | 1.18 ± 0.02 h | 0.28 ± 0.00 c,d,e | 0.23 ± 0.00 b,c,d | 0.33 ± 0.01 d,e,f |
No. | Compound | RI | AJ | PJ | OJ | AS | AWT | AWTS | PS | PWT | PWTS | OS | OWT | OWTS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aliphatic alcohols | ||||||||||||||
1. | Ethanol | ˂900 | 61.73 | - | 0.14 | 0.88 | 2.99 | 2.12 | 1.64 | 4.18 | - | - | 0.84 | 0.47 |
2. | 3-Methylbutan-1-ol | ˂900 | 4.62 | - | - | - | 0.53 | 0.08 | 0.13 | 0.25 | 0.76 | - | - | - |
3. | 2-Methylpropan-1-ol | ˂900 | 6.53 | - | - | - | - | - | - | - | - | - | - | - |
4. | Butan-2,3-diol | ˂900 | - | 15.25 | - | 0.41 | 0.96 | 0.26 | 0.17 | 0.25 | 0.40 | 0.05 | 0.03 | - |
5. | 2-Furanmethanol | ˂900 | 3.13 | - | - | - | - | - | - | - | - | - | - | - |
6. | (Z)-Hex-3-en-1-ol | ˂900 | - | - | - | - | 0.32 | 0.13 | - | 0.32 | - | - | - | - |
7. | Oct-1-en-3-ol | 984 | - | - | - | 0.29 | 7.19 | 2.95 | 0.23 | 3.12 | 2.57 | 0.05 | 0.25 | 0.17 |
8. | Octan-3-ol | 998 | - | - | - | 0.26 | 1.32 | - | - | 0.46 | - | - | - | - |
9. | Octan-1-ol | 1076 | - | - | 0.12 | - | - | - | - | - | - | 0.14 | 0.13 | 0.11 |
Aldehydes | ||||||||||||||
10. | Furfural | ˂900 | 0.95 | 1.71 | - | - | - | - | - | - | - | - | - | - |
11. | Octanal | 1007 | - | - | 0.05 | - | - | - | - | - | - | 0.05 | 0.07 | 0.05 |
12. | Decanal | 1210 | - | - | 0.25 | - | - | - | - | - | - | 0.27 | 0.31 | 0.30 |
Alkanes | ||||||||||||||
13. | Pentadecane | 1500 | - | - | - | 0.32 | 0.26 | - | - | - | - | - | - | - |
Esters | ||||||||||||||
14. | γ-Butyrolactone | 923 | - | 1,16 | - | - | - | - | - | - | - | - | - | - |
15. | γ-Caprolactone | 1062 | - | 9.06 | - | - | - | - | - | - | - | - | - | - |
Ketones | ||||||||||||||
16. | Propan-2-one | ˂900 | 13.64 | 61.82 | - | - | - | - | - | - | - | - | - | - |
17. | Acetoin | ˂900 | - | - | - | - | 1.10 | 0.09 | 0.41 | 0.65 | 1.82 | - | - | - |
18. | Octan-3-one | 991 | - | - | - | - | 0.96 | 0.39 | - | 0.40 | - | - | 0.03 | - |
Monoterpenes | ||||||||||||||
19. | α-Thujene | 937 | - | - | - | - | - | - | - | 0.18 | - | - | - | - |
20. | α-Pinene | 945 | - | - | 0.20 | - | - | - | - | - | - | 0.17 | 0.20 | 0.20 |
21. | Sabinene | 982 | - | - | - | - | - | - | - | 1.82 | - | - | - | - |
22. | β-Myrcene | 996 | - | - | 1.76 | - | - | - | - | 0.44 | - | 1.27 | 1.53 | 1.49 |
23. | α-Phellandrene | 1011 | - | - | 0.08 | - | 0.21 | 0.11 | - | 0.14 | - | 0.07 | 0.10 | 0.07 |
24. | δ-Car-3-ene | 1017 | - | - | 0.15 | - | - | - | - | - | - | 0.12 | 0.15 | 0.14 |
25. | α-Terpinene | 1023 | - | - | 0.09 | - | 0.31 | 0.18 | - | 0.32 | - | 0.07 | 0.09 | 0.08 |
26. | p-Cymene | 1032 | - | - | - | 0.93 | 0.71 | 0.97 | 2.17 | 1.82 | 0.63 | 0.12 | 0.05 | 0.08 |
27. | Limonene | 1037 | - | - | 92.24 | - | 0.49 | 0.09 | 0.28 | - | - | 77.19 | 85.45 | 84.41 |
28. | β-Phellandrene | 1037 | - | - | - | - | - | 0.06 | - | 0.37 | - | - | - | - |
29. | 1,8-Cineole | 1039 | - | - | - | 13.28 | 1.48 | 9.03 | 11.35 | 0.69 | 8.02 | 2.28 | - | 0.95 |
30. | (Z)-β-Ocymene | 1044 | - | - | - | - | - | - | 0.91 | 12.18 | - | - | - | - |
31. | (E)-β-Ocymene | 1055 | - | - | 0.06 | - | - | 0.20 | 3.43 | 0.39 | - | 0.04 | 0.05 | 0.05 |
32. | γ-Terpinene | 1066 | - | - | 0.18 | 0.14 | 0.62 | 0.31 | 0.37 | 2.29 | - | 0.14 | 0.17 | 0.17 |
33. | α-Terpinolene | 1093 | - | - | 1.72 | - | - | - | 4.32 | - | - | 0.10 | 0.12 | 0.13 |
34. | Linalool | 1103 | - | - | - | 1.06 | 7.92 | 3.71 | 0.96 | 6.83 | 3.15 | 2.04 | 2.17 | 1.93 |
35. | β-Thujone | 1112 | - | - | - | 34.72 | 1.91 | 21.93 | 30.63 | 0.97 | 17.74 | 4.78 | 0.08 | 1.54 |
36. | α-Thujone | 1123 | - | - | - | 18.19 | 0.91 | 10.79 | 15.51 | 0.47 | 8.31 | 2.19 | - | 0.69 |
37. | trans-Sabinol | 1147 | - | - | - | 0.25 | - | - | - | 0.11 | - | - | - | - |
38. | Camphor | 1152 | - | - | - | 16.38 | 5.72 | 13.10 | 14.77 | 2.83 | 12.97 | 3.17 | 0.28 | 1.12 |
39. | Borneol | 1172 | - | - | - | 3.28 | 10.19 | 5.97 | 3.02 | 5.30 | 5.94 | 0.61 | 0.52 | 0.47 |
40. | 4-Terpineol | 1182 | - | - | 0.68 | 1.92 | 15.28 | 7.46 | 1.74 | 8.74 | 7.14 | 1.16 | 1.62 | 1.34 |
41. | α-Terpineol | 1195 | - | - | 0.46 | 0.32 | 1.64 | 0.91 | 0.27 | 0.91 | 0.94 | 0.65 | 0.65 | 0.55 |
42. | cis-Dihydrocarvone | 1200 | - | - | - | - | 0.13 | 0.06 | - | 0.14 | - | - | 0.05 | - |
43. | trans-Dihydrocarvone | 1209 | - | - | - | - | 0.24 | - | - | 0.15 | - | - | - | - |
44. | Carvone | 1250 | - | - | 0.06 | - | - | - | - | - | - | 0.07 | - | 0.07 |
45. | Geraniol | 1260 | - | - | - | - | 7.63 | 3.06 | - | 6.40 | 2.63 | - | 0.56 | |
46. | Thymol | 1297 | - | - | - | - | 6.56 | 2.54 | - | 5.31 | 3.01 | - | 0.46 | 0.27 |
47. | Carvacrol | 1307 | - | - | - | - | 11.74 | 4.91 | - | 9.09 | 5.43 | - | 0.90 | 0.51 |
48. | Eugenol | 1363 | - | - | - | - | 0.48 | 0.10 | - | 0.33 | - | - | 0.03 | - |
49. | Nerol | 1234 | - | - | - | - | 0.68 | 0.27 | - | 0.40 | - | - | 0.08 | 0.08 |
50. | p-Cymene-2,5-dione (Thymoquinone) | 1256 | - | - | - | - | - | - | - | 8.94 | - | - | - | - |
51. | Carvacryl methyl ether | 1236 | - | - | - | - | - | - | - | 0.83 | - | - | - | - |
52. | Methyl thymyl ether | 1241 | - | - | - | - | - | - | - | 1.54 | - | - | - | - |
Benzene derivatives | ||||||||||||||
53. | 4-Vinylphenol | 1225 | - | - | - | - | 0.72 | 0.34 | - | 0.33 | 0.51 | - | - | - |
54. | 2-Phenylethanol | 1118 | 0.40 | - | - | - | 0.31 | - | - | - | - | - | - | - |
55. | Thujol | 1141 | - | - | - | 0.45 | - | - | - | - | - | - | - | - |
56. | p-Cymen-8-ol | 1190 | - | - | - | 0.15 | 0.69 | 0.44 | 0.35 | 0.37 | 0.44 | - | - | - |
Sesquiterpenes | ||||||||||||||
57. | trans-β-Caryophyllene | 1423 | - | - | - | - | - | - | - | 0.77 | - | - | 0.06 | - |
58. | Eremophilene | 1496 | - | - | 1.00 | - | - | - | - | - | - | 0.94 | 0.96 | 0.94 |
59. | δ-Cadinene | 1528 | - | - | 0.11 | - | - | - | - | - | - | 0.10 | 0.11 | 0.10 |
No. | Compond | RI | AJ | PJ | OJ | AS | AWT | AWTS | PS | PWT | PWTS | OS | OWT | OWTS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aliphatic alcohols | ||||||||||||||
1. | Ethanol | ˂900 | 47.95 | - | - | 1.97 | 5.40 | - | 5.46 | 2.73 | 15.36 | 0.46 | 0.97 | 0.46 |
2. | 3-Methylbutan-1-ol | ˂900 | 3.90 | - | - | - | 1.07 | - | 0.08 | 0.10 | 1.74 | - | - | - |
3. | 2-Methylpropan-1-ol | ˂900 | 18.53 | - | - | - | - | - | - | - | - | - | - | - |
4. | Butan-2,3-diol | ˂900 | - | 4.76 | - | 0.23 | 0.32 | 0.30 | - | - | - | - | - | - |
5. | 2-Furanmethanol | ˂900 | 2.06 | - | - | - | - | - | - | - | - | - | - | - |
6. | (Z)-Hex-3-en-1-ol | ˂900 | - | - | - | - | 0.49 | 0.25 | - | - | - | - | - | - |
7. | Oct-1-en-3-ol | 984 | - | - | - | 0.31 | 5.54 | 3.18 | - | 3.15 | 2.14 | - | 0.28 | 0.16 |
8. | Octan-3-ol | 998 | - | - | - | 0.12 | 1.03 | - | - | - | - | - | - | - |
Aldehydes | ||||||||||||||
9. | Furfural | ˂900 | 2.91 | 3.63 | - | - | - | - | - | - | - | - | - | - |
10. | Octanal | 1007 | - | - | 0.11 | - | - | - | - | - | - | 0.12 | - | - |
11. | Decanal | 1210 | - | - | 0.40 | - | - | - | - | - | - | 0.51 | 0.53 | 0.42 |
12. | 3-Methylbutanal | ˂900 | - | 80.11 | - | - | - | - | - | - | - | - | - | - |
Ketones | ||||||||||||||
13. | Propan-2-one | ˂900 | 14.04 | - | - | - | - | - | - | - | - | - | - | - |
14. | Acetoin | ˂900 | - | - | - | - | 1.85 | - | 0.34 | 0.64 | 3.23 | - | - | - |
15. | Octan-3-one | 991 | - | - | - | - | 0.60 | - | - | 0.45 | - | - | - | - |
Monoterpenes | ||||||||||||||
16. | α-Pinene | 945 | - | - | 0.23 | - | - | - | - | - | 0.13 | 0.16 | 0.18 | |
17. | β-Myrcene | 996 | - | - | 1.31 | - | - | - | - | 0.32 | - | 0.81 | 0.98 | 1.04 |
18. | α-Phellandrene | 1011 | - | - | 0.09 | - | - | - | - | - | - | 0.07 | 0.11 | 0.09 |
19. | δ-Car-3-ene | 1017 | - | - | 0.13 | - | - | - | - | - | - | 0.09 | 0.11 | 0.11 |
20. | α-Terpinene | 1023 | - | - | 0.07 | - | - | - | - | - | - | - | 0.09 | 0.06 |
21. | p-Cymene | 1032 | - | - | - | 1.24 | - | 0.72 | 1.30 | 0.45 | - | 0.18 | 0.06 | 0.11 |
22. | Limonene | 1037 | - | - | 91.12 | - | - | - | - | - | - | 72.50 | 81.43 | 82.30 |
23. | 1,8-Cineole | 1039 | - | - | - | 13.06 | 0.50 | 7.98 | 12.16 | - | 4.86 | 3.01 | - | 1.72 |
24. | (Z)-β-Ocymene | 1044 | - | - | - | - | - | - | - | 1.43 | - | - | - | - |
25. | (E)-β-Ocymene | 1055 | - | - | 0.04 | - | - | - | - | - | - | - | 0.07 | - |
26. | γ-Terpinene | 1066 | - | - | 0.13 | - | - | - | 0.35 | 0.71 | - | 0.11 | 0.12 | 0.16 |
27. | α-Terpinolene | 1093 | - | - | 0.13 | - | - | - | 1.52 | 5.46 | - | 0.08 | 0.18 | 0.15 |
28. | Linalool | 1103 | - | - | 1.46 | 1.13 | 7.15 | 4.40 | 1.12 | - | 3.06 | 2.45 | 2.70 | 1.79 |
29. | β-Thujone | 1112 | - | - | - | 35.68 | 1.16 | 20.11 | 31.65 | 0.64 | 10.83 | 5.63 | - | 1.50 |
30. | α-Thujone | 1123 | - | - | - | 18.06 | - | 9.30 | 15.17 | - | 4.39 | 2.52 | 0.12 | 0.68 |
31. | Camphor | 1152 | - | - | - | 17.38 | 3.96 | 13.42 | 16.95 | 2.60 | 10.05 | 3.67 | 0.34 | 1.12 |
32. | Borneol | 1172 | - | - | - | 3.05 | 7.09 | 5.96 | 3.54 | 5.32 | 5.57 | 0.68 | 0.48 | 0.39 |
33. | 4-Terpineol | 1182 | - | - | 0.71 | 2.67 | 15.89 | 9.78 | 2.55 | 10.95 | 7.94 | 1.58 | 2.23 | 1.37 |
34. | α-Terpineol | 1195 | - | - | 0.65 | 0.50 | 2.21 | 1.43 | 0.48 | 1.45 | 1.25 | 1.05 | 1.10 | 0.74 |
35. | Carvone | 1250 | - | - | - | - | - | - | - | - | - | 0.11 | - | 0.04 |
36. | Geraniol | 1260 | - | - | - | - | 9.24 | - | - | 9.81 | 4.22 | - | 0.82 | 0.29 |
37. | Thymol | 1297 | - | - | - | - | 9.03 | 4.27 | - | 9.80 | 3.88 | - | 0.67 | 0.28 |
38. | Carvacrol | 1307 | - | - | - | - | 17.83 | 9.67 | - | 18.97 | 9.14 | - | 1.48 | 0.67 |
39. | Eugenol | 1363 | - | - | - | - | 0.83 | 0.30 | - | 0.67 | - | - | - | - |
40. | Nerol | 1234 | - | - | - | - | - | - | - | - | - | - | 0.11 | - |
41. | p-Cymene-2,5-dione (Thymoquinone) | 1256 | - | - | - | - | - | - | - | 13.78 | 5.45 | - | 0.20 | - |
42. | Methyl thymyl ether | 1241 | - | - | - | - | - | - | - | 0.84 | - | - | - | - |
Benzene derivatives | ||||||||||||||
43. | 4-Vinylphenol | 1225 | - | - | - | - | 0.17 | - | - | - | - | - | - | - |
44. | Benzenmethanol | 1041 | - | - | - | - | 0.33 | - | - | - | - | - | - | - |
45. | Thujol | 1141 | - | - | - | 0.45 | - | - | - | - | - | - | - | - |
46. | p-Cymen-8-ol | 1190 | - | - | - | - | 0.81 | 0.25 | - | 0.63 | - | - | 0.10 | - |
Sesquiterpenes | ||||||||||||||
47. | Ledene | 1498 | - | - | 1.08 | - | - | - | - | - | - | - | - | - |
48. | Eremophilene | 1496 | - | - | - | - | - | - | - | - | - | 1.42 | 1.48 | 1.25 |
49. | Δ-cadinene | - | - | 0.12 | - | - | - | - | - | - | 0.17 | 0.17 | 0.16 |
AJ | PJ | OJ | AS | AWT | AWTS | PS | PWT | PWTS | OS | OWT | OWTS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ORAC (µM TE) * p = 0.001 | 3120.81 ± 162.79 b | 3082.01 ± 449.90 b | 8060.73 ± 283.92 a,b | 9981.77 ± 644.10 a,b | 7818.99 ± 44.93 a,b | 7397.93 ± 85.56 a,b | 12,633.20 ± 193.52 a | 7765.70 ± 369.78 a,b | 8951.84 ± 261.46 a,b | 22,925.39 ± 358.43 a | 9623.34 ± 184.14 a,b | 5670.34 ± 65.88 a,b |
Juice | Extract | Label |
---|---|---|
Apple | sage | AS |
wild thyme | AWT | |
wild thyme:sage (3:1, v/v) | AWTS | |
Pineapple | sage | PS |
wild thyme | PWT | |
wild thyme:sage (3:1, v/v) | PWTS | |
Orange | sage | OS |
wild thyme | OWT | |
wild thyme:sage (3:1, v/v) | OWTS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleš, I.; Dobrinčić, A.; Zorić, Z.; Vladimir-Knežević, S.; Elez Garofulić, I.; Repajić, M.; Skroza, D.; Jerković, I.; Dragović-Uzelac, V. Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages. Molecules 2023, 28, 3656. https://doi.org/10.3390/molecules28093656
Maleš I, Dobrinčić A, Zorić Z, Vladimir-Knežević S, Elez Garofulić I, Repajić M, Skroza D, Jerković I, Dragović-Uzelac V. Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages. Molecules. 2023; 28(9):3656. https://doi.org/10.3390/molecules28093656
Chicago/Turabian StyleMaleš, Ivanka, Ana Dobrinčić, Zoran Zorić, Sanda Vladimir-Knežević, Ivona Elez Garofulić, Maja Repajić, Danijela Skroza, Igor Jerković, and Verica Dragović-Uzelac. 2023. "Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages" Molecules 28, no. 9: 3656. https://doi.org/10.3390/molecules28093656
APA StyleMaleš, I., Dobrinčić, A., Zorić, Z., Vladimir-Knežević, S., Elez Garofulić, I., Repajić, M., Skroza, D., Jerković, I., & Dragović-Uzelac, V. (2023). Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages. Molecules, 28(9), 3656. https://doi.org/10.3390/molecules28093656