Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt
Abstract
:1. Introduction
2. Results and Discussion
2.1. The pH of Yogurt
2.2. Rheological Properties
2.3. Texture Properties and Water-Holding Capacity
2.4. SEM Analysis
2.5. Sensory Evaluation
2.6. Volatile Flavor Compounds
3. Materials and Methods
3.1. Materials
3.2. Yogurt Preparation
3.3. Measurement of pH
3.4. Rheological Properties
3.5. Texture Characteristics
3.6. Water-Holding Capacity
3.7. Microstructure
3.8. Sensory Evaluation
3.9. Determination of Volatile Flavor Compounds
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattice, K.D.; Marangoni, A.G. Physical properties of plant-based cheese products produced with zein. Food Hydrocoll. 2020, 105, 105746. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Zannini, E.; Arendt, E.K. Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends Food Sci. Technol. 2021, 110, 364–374. [Google Scholar] [CrossRef]
- Mazahreh, A.S.; Ershidat, O.T.M. The benefits of lactic acid bacteria in yogurt on the gastrointestinal function and health. Pak. J. Nutr. 2009, 8, 1404–1410. [Google Scholar]
- Santiago-García, P.A.; Mellado-Mojica, E.; León-Martínez, F.M.; Dzul-Cauich, J.G.; López, M.G.; García-Vieyra, M.I. Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt: Effects on physicochemical, rheological, and sensory properties. LWT Food Sci. Technol. 2021, 140, 110846. [Google Scholar] [CrossRef]
- Mary, P.R.; Mutturi, S.; Kapoor, M. Non-enzymatically hydrolyzed guar gum and orange peel fibre together stabilize the low-fat, set-type yogurt: A techno-functional study. Food Hydrocoll. 2022, 122, 107100. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Shpigelman, A. Utilizing high-pressure homogenization for the production of fermented plant-protein yogurt alternatives with low and high oil content using potato protein isolate as a model. Innov. Food Sci. Emerg. Technol. 2022, 75, 102909. [Google Scholar] [CrossRef]
- Chen, X.; He, Z.; He, L.; Li, C.; Tao, H.; Wang, X.; Liu, L.; Zeng, X.; Ran, G. Effects of perilla seed oil addition on the physicochemical properties, sensory, and volatile compounds of potato blueberry flavored yogurt and its shelf-life prediction. LWT Food Sci. Technol. 2023, 173, 114383. [Google Scholar] [CrossRef]
- Han, X.; Luo, R.; Ye, N.; Hu, Y.; Fu, C.; Gao, R.; Fu, S.; Gao, F. Research progress on natural beta-glucan in intestinal diseases. Int. J. Biol. Macromol. 2022, 219, 1244–1260. [Google Scholar] [CrossRef]
- Cui, Y.; Han, X.; Huang, X.; Xie, W.; Zhang, X.; Zhang, Z.; Yu, Q.; Tao, L.; Li, T.; Li, S. Effects of different sources of β-glucan on pasting, gelation, and digestive properties of pea starch. Food Hydrocoll. 2023, 135, 108172. [Google Scholar] [CrossRef]
- Liu, B.; Lin, Q.; Yang, T.; Zeng, L.; Shi, L.; Chen, Y.; Luo, F. Oat beta-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015, 6, 3454–3463. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Gani, A.; Masoodi, F.A.; Wani, S.M.; Ashwar, B.A. Structural, rheological and nutraceutical potential of β-glucan from barley and oat. Bioact. Carbohydr. Diet. Fibre 2017, 10, 10–16. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Qu, X.; Nazarenko, Y.; Yang, W.; Nie, Y.; Zhang, Y.; Li, B. Effect of Oat beta-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules 2021, 26, 4752. [Google Scholar] [CrossRef]
- Kong, X.; Xiao, Z.; Du, M.; Wang, K.; Yu, W.; Chen, Y.; Liu, Z.; Cheng, Y.; Gan, J. Physicochemical, Textural, and Sensorial Properties of Soy Yogurt as Affected by Addition of Low Acyl Gellan Gum. Gels 2022, 8, 453. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.K.S.; Morales-Contreras, B.E.; Wicker, L.; Nickerson, M.T. Effect of enzyme de-esterified pectin on the electrostatic complexation with pea protein isolate under different mixing conditions. Food Chem. 2020, 305, 125433. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.X.; Corke, H.; Gul, K.; Gan, R.Y.; Fang, Y. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1835–1876. [Google Scholar] [CrossRef]
- Guler-Akin, M.B.; Avkan, F.; Akin, M.S. A novel functional reduced fat ice cream produced with pea protein isolate instead of milk powder. J. Food Process. Preserv. 2021, 45, 15901. [Google Scholar] [CrossRef]
- Liao, W.; Fan, H.; Liu, P.; Wu, J. Identification of angiotensin converting enzyme 2 (ACE2) up-regulating peptides from pea protein hydrolysate. J. Funct. Foods 2019, 60, 103395. [Google Scholar] [CrossRef]
- Klost, M.; Drusch, S. Structure formation and rheological properties of pea protein-based gels. Food Hydrocoll. 2019, 94, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Klost, M.; Giménez-Ribes, G.; Drusch, S. Enzymatic hydrolysis of pea protein: Interactions and protein fractions involved in fermentation induced gels and their influence on rheological properties. Food Hydrocoll. 2020, 105, 105793. [Google Scholar] [CrossRef]
- Yang, M.; Li, N.; Tong, L.; Fan, B.; Wang, L.; Wang, F.; Liu, L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. LWT Food Sci. Technol. 2021, 152, 112390. [Google Scholar] [CrossRef]
- Li, N.; Yang, M.; Guo, Y.; Tong, L.-T.; Wang, Y.; Zhang, S.; Wang, L.; Fan, B.; Wang, F.; Liu, L. Physicochemical properties of different pea proteins in relation to their gelation ability to form lactic acid bacteria induced yogurt gel. LWT Food Sci. Technol. 2022, 161, 113381. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, C.; Kong, X.; Li, X.; Chen, Y.; Hua, Y. Effect of pea milk preparation on the quality of non-dairy yoghurts. Food Biosci. 2021, 44, 101416. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Kealy, T.; Mishra, V.K. Effects of beta-glucan addition to a probiotic containing yogurt. J. Food Sci. 2007, 72, C405–C411. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, Z.; Zhao, X.; Liu, H.; Hu, H.; Wang, M.; Guo, J. Effects of the oat β-glucan on the functional and structural properties of defatted walnut meal flour. Food Chem. Adv. 2022, 1, 100071. [Google Scholar] [CrossRef]
- He, X.; Lv, Y.; Li, X.; Yi, S.; Zhao, H.; Li, J.; Xu, Y. Effect of oat β-glucan on gel properties and protein conformation of silver carp surimi. J. Sci. Food Agric. 2023; Online ahead of print. [Google Scholar]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Crispín-Isidro, G.; Lobato-Calleros, C.; Espinosa-Andrews, H.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT Food Sci. Technol. 2015, 62, 438–444. [Google Scholar] [CrossRef]
- Raikos, V.; Grant, S.B.; Hayes, H.; Ranawana, V. Use of beta-glucan from spent brewer’s yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception. J. Dairy Sci. 2018, 101, 5821–5831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, B.; Qi, Y.; Wu, D.; Liu, X.; Liu, C.; Gao, Y.; Shi, J.; Fang, L.; Min, W. Impact of Auricularia cornea var. Li polysaccharides on the physicochemical, textual, flavor, and antioxidant properties of set yogurt. Int. J. Biol. Macromol. 2022, 206, 148–158. [Google Scholar] [CrossRef]
- Aljewicz, M.; Majcher, M.; Nalepa, B. A Comprehensive Study of the Impacts of Oat beta-Glucan and Bacterial Curdlan on the Activity of Commercial Starter Culture in Yogurt. Molecules 2020, 25, 5411. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, C.; Chen, S.; Liu, D.; Ye, X.; Hu, Y. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chem. 2015, 179, 222–231. [Google Scholar] [CrossRef]
- Guggisberg, D.; Cuthbert-Steven, J.; Piccinali, P.; Bütikofer, U.; Eberhard, P. Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. Int. Dairy J. 2009, 19, 107–115. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Jiang, Y.; Qian, M.C.; Deng, Y.; Xie, J.; Li, J.; Wang, J.; Dong, C.; Yuan, H. Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. LWT Food Sci. Technol. 2022, 154, 112691. [Google Scholar] [CrossRef]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef]
- Wen, R.; Kong, B.; Yin, X.; Zhang, H.; Chen, Q. Characterisation of flavour profile of beef jerky inoculated with different autochthonous lactic acid bacteria using electronic nose and gas chromatography-ion mobility spectrometry. Meat Sci. 2022, 183, 108658. [Google Scholar] [CrossRef]
- Yuan, S.H.; Chang, S.K. Selected odor compounds in cooked soymilk as affected by soybean materials and direct steam injection. J. Food Sci. 2007, 72, S481–S486. [Google Scholar] [CrossRef]
- Ma, H.; Guan, C.-Y.; He, X.-L.; Zhang, G.-Z.; Din, A.L. Effects of lipoxygenase null genes of soybean in controlling beany-flavor of soymilk and soyflour. Agric. Sci. China 2002, 1, 965–971. [Google Scholar]
- MacLeod, G.; Ames, J. Soy flavor and its improvement. Crit. Rev. Food Sci. Nutr. 1988, 27, 219–400. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Yu, Y.; Yoo, S.; Martin, S.S. Effect of Soybean Varieties and Growing Locations on the Flavor of Soymilk. J. Food Sci. 2005, 70, C1–C11. [Google Scholar] [CrossRef]
- Öztürk, H.İ.; Aydın, S.; Sözeri, D.; Demirci, T.; Sert, D.; Akın, N. Fortification of set-type yoghurts with Elaeagnus angustifolia L. flours: Effects on physicochemical, textural, and microstructural characteristics. LWT Food Sci. Technol. 2018, 90, 620–626. [Google Scholar] [CrossRef]
Pea Protein Yogurt | Firmness/g | Springiness/mm | Cohesiveness | Chewability/g | Water-Holding Capacity/% |
---|---|---|---|---|---|
3% oil | 147.06 ± 4.94 b | 98.44 ± 0.18 ab | 0.45 ± 0.10 d | 64.52 ± 1.79 b | 77.29 ± 1.61 bc |
1% oil | 121.80 ± 1.80 d | 98.78 ± 0.55 ab | 0.48 ± 0.10 a | 58.57 ± 1.49 c | 62.60 ± 5.83 d |
1% oil + 0.25% β-glucan | 133.58 ± 1.76 c | 99.09 ± 0.26 a | 0.47 ± 0.10 ab | 61.90 ± 0.68 b | 68.28 ± 7.45 c |
1% oil + 0.5% β-glucan | 138.28 ± 3.41 c | 99.10 ± 0.12 a | 0.46 ± 0.10 bc | 65.11 ± 2.30 b | 82.15 ± 1.01 ab |
1% oil + 1% β-glucan | 160.32 ± 4.64 a | 99.10 ± 0.14 a | 0.46 ± 0.10 bc | 70.78 ± 1.69 a | 87.11 ± 0.41 a |
Pea Protein Yogurt | Color | Flavor | Taste | Texture | Total Points |
---|---|---|---|---|---|
3% oil | 16.82 ± 0.12 a | 9.58 ± 0.22 c | 11.21 ± 0.82 c | 30.58 ± 0.24 c | 70.73 ± 2.97 b |
1% oil | 6.22 ± 0.24 e | 8.56 ± 0.15 d | 10.18 ± 0.37 d | 15.32 ± 0.11 e | 41.42 ± 1.41 d |
1% oil + 0.25% β-glucan | 10.46 ± 0.85 d | 10.70 ± 0.35 b | 11.59 ± 0.27 bc | 25.16 ± 0.31 d | 55.31 ± 4.60 c |
1% oil + 0.5% β-glucan | 12.80 ± 0.13 c | 11.29 ± 0.46 b | 12.32 ± 0.56 b | 33.21 ± 0.23 b | 68.54 ± 2.21 b |
1% oil + 1% β-glucan | 14.46 ± 0.17 b | 15.19 ± 0.51 a | 15.89 ± 0.43 a | 38.77 ± 0.36 a | 82.77 ± 1.67 a |
Volatile Flavor Compounds | Before Fermentation | After Fermentation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
3% Oil | 1% Oil | 1% Oil + 0.25% β-Glucan | 1% Oil + 0.5% β-Glucan | 1% Oil + 1% β-Glucan | 3% Oil | 1% Oil | 1% Oil + 0.25% β-Glucan | 1% Oil + 0.5% β-Glucan | 1% Oil + 1% β-Glucan | |
(E)-2-Hexenal | 1.23 | 1.09 | 1.06 | 1.01 | 1.24 | 1.75 | 1.33 | 1.36 | 1.3 | 1.4 |
2-Heptenal | 3.58 | 2.52 | 2.49 | 2.24 | 3.39 | 7.64 | 5.45 | 6.52 | 6.06 | 6.26 |
2-Methyl-Butanal | 8.42 | 8.57 | 8.99 | 9.14 | 8.77 | 3.05 | 2.08 | 1.37 | 1.73 | 1.96 |
Isovaleraldehyde | 7.04 | 6.72 | 6.6 | 6.82 | 6.63 | 1.08 | 0.82 | 0.75 | 0.77 | 0.89 |
Benzaldehyde | 1.91 | 2.24 | 2.28 | 2.24 | 2.07 | 1.77 | 1.43 | 1.02 | 1.19 | 1.23 |
Butyraldehyde | 1.21 | 1.54 | 1.09 | 1.40 | 1.33 | 1.51 | 1.68 | 0.96 | 1.26 | 1.74 |
Heptaldehyde | 0.33 | 0.58 | 0.45 | 0.53 | 0.63 | 0.17 | 0.15 | 0.16 | 0.17 | 0.15 |
Hexaldehyde | 29.82 | 29.22 | 29.17 | 29.7 | 29.17 | 7.68 | 12 | 20.65 | 17.36 | 13.49 |
Pentanal | 16.44 | 15.25 | 14.58 | 14.25 | 14.01 | 2.51 | 2.74 | 4.09 | 3.47 | 3.23 |
Phenylacetaldehyde | 0.34 | 0.30 | 0.38 | 0.27 | 0.33 | 0.27 | 0.17 | 0.22 | 0.20 | 0.19 |
n-Hexanol | 4.66 | 6.76 | 7.44 | 7.01 | 7.2 | 24.09 | 26.22 | 24.67 | 24.57 | 24.48 |
n-Pentanol | 1.27 | 1.3 | 1.52 | 1.14 | 1.16 | 5.28 | 4.71 | 4.09 | 3.95 | 4.08 |
1-Pentene-3-Ol | 0.66 | 0.55 | 0.64 | 0.59 | 0.61 | 1.28 | 0.98 | 0.82 | 0.93 | 1.01 |
2-Methylpropanol | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.17 | 0.16 | 0.10 | 0.14 | 0.09 |
2-Methylpropanol | 3.84 | 3.02 | 3.48 | 3.15 | 3.19 | 5.85 | 4.16 | 3.81 | 3.9 | 4.63 |
Ethanol | 2.07 | 1.79 | 2.09 | 1.97 | 2.00 | 3.64 | 2.95 | 2.36 | 2.65 | 2.98 |
Isopropanol | 1.77 | 1.28 | 1.31 | 1.22 | 1.14 | 2.65 | 2.02 | 1.38 | 1.69 | 1.58 |
2,3-Butanedione | 1.42 | 1.26 | 1.47 | 1.41 | 1.33 | 5.62 | 5.29 | 5.36 | 6.00 | 6.45 |
2-Heptanone | 2.66 | 3.06 | 2.77 | 3.14 | 3.07 | 3.65 | 3.54 | 2.57 | 3.04 | 3.53 |
3-Hydroxy-2-Butanone | 0.09 | 0.10 | 0.17 | 0.17 | 0.14 | 1.22 | 1.62 | 1.76 | 2.00 | 2.34 |
Acetone | 3.11 | 2.42 | 2.65 | 2.36 | 2.50 | 5.24 | 4.28 | 3.12 | 3.59 | 4.25 |
Cyclohexanone | 0.25 | 0.25 | 0.23 | 0.25 | 0.26 | 0.33 | 0.30 | 0.25 | 0.27 | 0.33 |
2-n-Butylfuran | 0.16 | 0.14 | 0.16 | 0.15 | 0.16 | 0.21 | 0.20 | 0.21 | 0.17 | 0.19 |
2-Pentylfuran | 2.27 | 3.59 | 4.05 | 3.78 | 4.13 | 4.10 | 6.02 | 5.58 | 5.25 | 5.86 |
Ethanol | 0.40 | 0.30 | 0.32 | 0.30 | 0.30 | 2.47 | 2.25 | 2.09 | 2.38 | 2.91 |
Ethyl Isovalerate | 0.29 | 0.31 | 0.28 | 0.33 | 0.38 | 0.35 | 0.28 | 0.27 | 0.27 | 0.39 |
Ethyl Acetate | 4.68 | 5.8 | 4.27 | 5.34 | 4.8 | 6.43 | 5.55 | 6.09 | 5.69 | 6.38 |
Indicator | Total Points | Marking Criteria |
---|---|---|
Color | 20 | Uniform color, overall creamy white: 12–20 |
Uniform color, creamy yellow color: 4–11 | ||
Uneven color, colored spots, abnormal colors: 0–3 | ||
Flavor | 20 | Natural fermented flavor, no beany flavor, and grass-like flavor: 12–20 |
Mild or intense fermented flavor, slight beany flavor and grass-like flavor: 4–11 | ||
Strong beany flavor and grass-like flavor: 0–3 | ||
Taste | 20 | Suitable sour and sweet taste lubricated: 12–20 |
Moderately sweet and sour, slightly astringent: 4–1 | ||
Too sour or too sweet, strongly astringent: 0–3 | ||
Texture | 40 | Smooth surface, no whey separation: 31–40 |
Smooth surface, small amount of whey separation: 21–30 | ||
The surface is not smooth, a small amount of whey separation: 5–20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Li, N.; Chen, L.; Guo, Y.; Huang, Y.; Tong, L.; Wang, L.; Fan, B.; Wang, F.; Liu, L. Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt. Molecules 2023, 28, 3067. https://doi.org/10.3390/molecules28073067
Zhao P, Li N, Chen L, Guo Y, Huang Y, Tong L, Wang L, Fan B, Wang F, Liu L. Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt. Molecules. 2023; 28(7):3067. https://doi.org/10.3390/molecules28073067
Chicago/Turabian StyleZhao, Peiyao, Nana Li, Lingyun Chen, Yahong Guo, Yatao Huang, Litao Tong, Lili Wang, Bei Fan, Fengzhong Wang, and Liya Liu. 2023. "Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt" Molecules 28, no. 7: 3067. https://doi.org/10.3390/molecules28073067
APA StyleZhao, P., Li, N., Chen, L., Guo, Y., Huang, Y., Tong, L., Wang, L., Fan, B., Wang, F., & Liu, L. (2023). Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt. Molecules, 28(7), 3067. https://doi.org/10.3390/molecules28073067