Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Colorimetric Assays and Antioxidativity
2.2. Identification and Quantification of Major Constituents in Extracts
2.3. Analysis of Volatiles by SPME-GC-MS
3. Materials and Methods
3.1. Plant Material and Preparation of Plant Extracts
3.2. Chemicals
3.3. Colorimetric Analyses
3.4. Evaluation of Antioxidative Properties
3.5. Phytochemical Screening and Quantification
3.6. Analysis of Volatiles by SPME-GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Raal, A.; Jaama, M.; Utt, M.; Püssa, T.; Žvikas, V.; Jakštas, V.; Koshovyi, O.; Nguyen, K.V.; Nguyen, H.T. The Phytochemical Profile and Anticancer Activity of Anthemis Tinctoria and Angelica Sylvestris Used in Estonian Ethnomedicine. Plants 2022, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Ilina, T.; Kashpur, N.; Granica, S.; Bazylko, A.; Shinkovenko, I.; Kovalyova, A.; Goryacha, O.; Koshovyi, O. Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L. Plants 2019, 8, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saar-Reismaa, P.; Bragina, O.; Kuhtinskaja, M.; Reile, I.; Laanet, P.R.; Kulp, M.; Vaher, M. Extraction and Fractionation of Bioactives from Dipsacus fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals 2022, 15, 87. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokól-Lȩtowska, A.; Oszmiánski, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea Var. Kamtschatica sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [Green Version]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic Compounds and the Antioxidant Activity of the Bran, Flour and Whole Grain of Different Wheat Varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.E.; Meng, Y.; Peng, D.L.; Nie, Z.L.; Sun, H. Molecular Phylogeny of Galium L. of the Tribe Rubieae (Rubiaceae)—Emphasis on Chinese Species and Recognition of a New Genus Pseudogalium. Mol. Phylogenet. Evol. 2018, 126, 221–232. [Google Scholar] [CrossRef]
- Turcov, D.; Barna, A.S.; Trifan, A.; Blaga, A.C.; Tanasa, A.M.; Suteu, D. Antioxidants from Galium Verum as Ingredients for the Design of New Dermatocosmetic Products. Plants 2022, 11, 2454. [Google Scholar] [CrossRef]
- Hanganu, D.; Burtescu, R.F.; Petrescu, S.; Pripon Furtuna, F.R.; Chise, E.; Turcus, V.; Benedec, D.; Oniga, I.; Olah, N.K. Galium Species—Polyphenolic Content and Their Antioxidant Potential. Hop. Med. Plants 2018, 26, 84–93. [Google Scholar]
- Bradic, J.; Petkovic, A.; Tomovic, M. Phytochemical and Pharmacological Properties of Some Species of the Genus galium L. (Galium verum and Mollugo). Serb. J. Exp. Clin. Res. 2017, 1, 187–193. [Google Scholar] [CrossRef]
- Abdul, R.; Wang, M.R.; Zhong, C.J.; Liu, Y.Y.; Hou, W.; Xiong, H.R. An Updated Review on the Antimicrobial and Pharmacological Properties of Uncaria (Rubiaceae). J. Herb. Med. 2022, 34, 100573. [Google Scholar] [CrossRef]
- Kuhtinskaja, M.; Vaher, M. Extraction and Analysis of Bioactive Compounds from Dipsacus Fullonum and Galium Verum for Lyme Borreliosis Treatment. Biomed. J. Sci. Tech. Res. 2018, 11, 8614–8616. [Google Scholar] [CrossRef] [Green Version]
- Mitova, M.I.; Anchev, M.E.; Handjieva, N.V.; Popov, S.S. Iridoid Patterns in Galium L. and Some Phylogenetic Considerations. Z. Fur Naturforsch.-Sect. C. J. Biosci. 2002, 57, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Mocan, A.; Hanganu, D.; Benedec, D.; Gheldiu, A.; Crișan, G. Comparative Study of Polyphenolic Content, Antioxidant and Antimicrobial Activity of Four Galium Species (Rubiaceae). Dig. J. Nanomater. Biostruct. 2014, 9, 1085–1094. [Google Scholar]
- Kaškoniene, V.; Stankevičius, M.; Drevinskas, T.; Akuneca, I.; Kaškonas, P.; Bimbiraite-Surviliene, K.; Maruška, A.; Ragažinskiene, O.; Kornyšova, O.; Briedis, V.; et al. Evaluation of Phytochemical Composition of Fresh and Dried Raw Material of Introduced Chamerion angustifolium L. Using Chromatographic, Spectrophotometric and Chemometric Techniques. Phytochemistry 2015, 115, 184–193. [Google Scholar] [CrossRef]
- Young, I.S.; Woodside, J.V. Antioxidants in Health and Disease. J. Clin. Pathol. 2001, 54, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Kuhtinskaja, M.; Bragina, O.; Kulp, M.; Vaher, M. Anticancer Effect of the Iridoid Glycoside Fraction from Dipsacus fullonum L. Leaves. SAGE J. 2020, 15, 1–6. [Google Scholar] [CrossRef]
- Saar-Reismaa, P.; Koel, M.; Tarto, R.; Vaher, M. Extraction of Bioactive Compounds from Dipsacus fullonum Leaves Using Deep Eutectic Solvents. J. Chromatogr. A 2022, 1677, 463330. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Arts, I.C.W.; Hollmann, P.C.H. Polyphenols and Disease Risk in Epidemiologic Studies. Am. J. Clin. Nutr. 2005, 81, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Higdon, J.V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef]
- Yang, C.S.; Landau, J.M.; Huang, M.-T.; Newmark, H.L. Inhibition of Carcinogenesis by Dietary Polyphenolic Compounds. Annu. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A Review of Probable Mechanisms of Action and Potential Applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Adlercreutz, H.; Mazur, W. Phyto-Oestrogens and Western Diseases. Ann. Med. 1997, 29, 95–120. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, S.E.; Frederiksen, H.; Krogholm, K.S.; Poulsen, L. Dietary Proanthocyanidins: Occurrence, Dietary Intake, Bioavailability, and Protection against Cardiovascular Disease. Mol. Nutr. Food Res. 2005, 49, 159–174. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Dietary Flavonoids and Cancer Risk in the Zutphen Elderly Study. Nutr. Cancer 1994, 22, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, G.M.; Lim, G.P.; Yang, F.; Teter, B.; Begum, A.; Ma, Q.; Harris-White, M.E.; Frautschy, S.A. Prevention of Alzheimer’s Disease: Omega-3 Fatty Acid and Phenolic Anti-Oxidant Interventions. Neurobiol. Aging 2005, 26, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Tang, L.; He, J.W.; Li, J.; Wang, Y.Z. Ethnobotany, Phytochemistry and Pharmacological Properties of Eucommia Ulmoides: A Review. Am. J. Chin. Med. 2019, 47, 259–300. [Google Scholar] [CrossRef]
- Huang, W.; Ding, L.; Zhang, N.; Li, W.; Koike, K.; Qiu, F. Flavonoids from Eucommia Ulmoides and Their in Vitro Hepatoprotective Activities. Nat. Prod. Res. 2021, 35, 3584–3591. [Google Scholar] [CrossRef]
- Hertog, M.G.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Ruzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S. Flavonoid Intake and Long-Term Risk of Coronary Heart Disease and Cancer in the Seven Countries Study. Arch. Intern. Med. 1995, 155, 381–386. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361. [Google Scholar]
- Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef] [Green Version]
- Ilc, T.; Parage, C.; Boachon, B.; Navrot, N.; Werck-Reichhart, D. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. Front. Plant. Sci. 2016, 7, 509. [Google Scholar] [CrossRef]
- Taskova, R.; Evstatieva, L.; Handjieva, N.; Popov, S. Iridoid Patterns of Genus plantago L. and Their Systematic Significance. Z. Fur. Naturforsch.-Sect. C. J. Biosci. 2002, 57, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Dinda, B.; Debnath, S.; Hariyaga, Y. Naturally Occurring Iridoids. A Review, Part 1. Chem. Pharm. Bull. 2007, 55, 159–222. [Google Scholar] [CrossRef] [Green Version]
- Ghisalberti, E.L. Biological and Pharmacological Activity of Naturally Occurring Iridoids and Secoiridoids. Phytomedicine 1998, 5, 147–163. [Google Scholar] [CrossRef]
- Dinda, B.; Debnath, S.; Banik, R. Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4. Chem. Pharm. Bull. 2011, 59, 803–833. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.; Menichini, F.; Statti, G.; Menichini, F. Biological and Pharmacological Activities of Iridoids: Recent Developments. Mini-Reviews Med. Chem. 2008, 8, 399–420. [Google Scholar] [CrossRef]
- Viljoen, A.; Mncwangi, N.; Vermaak, I. Anti-Inflammatory Iridoids of Botanical Origin. Curr. Med. Chem. 2012, 19, 2104–2127. [Google Scholar] [CrossRef] [Green Version]
- Ramawat, K.G.; Merillon, J.M. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kar, S.; Gupta, P.; Gupta, J. Essential Oils: Biological Activity Beyond Aromatherapy. Nat. Prod. Sci. 2018, 24, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool Bioactive Properties and Potential Applicability in Drug Delivery Systems. Colloids Surfaces B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef]
- Ciotlaus, I.; Pojar-Fenesan, M.; Balea, A. Analysis of Volatile Organic Compounds from the Aerial Parts of Medicinal Plant, Galium Verum. Rev. Chim. 2020, 71, 136–144. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Ronga, D.; Avato, P. Identification of the Volatile Components of Galium verum L. and Cruciata Leavipes Opiz from the Western Italian Alps. Molecules 2020, 25, 2333. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Özek, T.; Kırımer, N.; Deliorman, D.; Ergun, F. Composition of the Essential Oils of Galium aparine L. and Galium odoratum (L.) Scop. from Turkey. J. Essent. Oil Res. 2011, 16, 305–307. [Google Scholar] [CrossRef]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Aleksandrov, A.N. Essential Oil from Galium Verum Flowers. Chem. Nat. Compd. 2009, 45, 587–588. [Google Scholar] [CrossRef]
- Kokosa, J.M.; Przyjazny, A. Green Microextraction Methodologies for Sample Preparations. Green. Anal. Chem. 2022, 3, 100023. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The Ten Principles of Green Sample Preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacl, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef]
- Manzione, M.G.; Martorell, M.; Sharopov, F.; Bhat, N.G.; Kumar, N.V.A.; Fokou, P.V.T.; Pezzani, R. Phytochemical and Pharmacological Properties of Asperuloside, a Systematic Review. Eur. J. Pharmacol. 2020, 883, 173344. [Google Scholar] [CrossRef]
- De, M.; De, A.K.; Sen, P.; Banerjee, A.B. Antimicrobial Properties of Star Anise (Illicium Verum Hook F). Phyther. Res. 2002, 16, 94–95. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal Activity of the Essential Oil of Illicium Verum Fruit and Its Main Component Trans-Anethole. Molecules 2010, 15, 7558–7569. [Google Scholar] [CrossRef]
- Sabulal, B.; Dan, M.; John, A.J.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-Rich Rhizome Oil of Zingiber Nimmonii from South India: Chemical Characterization and Antimicrobial Activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [CrossRef]
- Jõul, P.; Kuhtinskaja, M.; Vaher, M.; Koel, M. Green Chemistry and Reconsidering Simple Analytical Methods. Chem. Today 2017, 35, 49–51. [Google Scholar]
- Aid, T.; Kaljurand, M.; Vaher, M. Colorimetric Determination of Total Phenolic Contents in Ionic Liquid Extracts by Paper Microzones and Digital Camera. Anal. Methods 2015, 7, 3193–3199. [Google Scholar] [CrossRef]
- Saar-Reismaa, P.; Kotkas, K.; Rosenberg, V.; Kulp, M.; Kuhtinskaja, M.; Vaher, M. Analysis of Total Phenols, Sugars, and Mineral Elements in Colored Tubers of Solanum tuberosum L. Foods 2020, 9, 1862. [Google Scholar] [CrossRef]
- Naguib, Y.M.A. A Fluorometric Method for Measurement of Oxygen Radical-Scavenging Activity of Water-Soluble Antioxidants. Anal. Biochem. 2000, 284, 93–98. [Google Scholar] [CrossRef]
Plant Species | Extraction Solvent | Antioxidant Activity, mg TE/g 1 | Total Polyphenolic Content, mg GAE/g 2 | Total Flavonoid Content, mg QE/g 3 | Total Iridoid Content, mg AE/g 4 |
---|---|---|---|---|---|
Galium verum blossoms | 50% acetone | 9.3 ± 1.2 | 27.2 ± 1.5 | 7.3 ± 0.5 | 40.8 ± 2.9 |
50% ethanol | 7.2 ± 1.4 | 20.7 ± 1.4 | 5.6 ± 0.5 | 36.6 ± 2.2 | |
80% ethanol | 4.3 ± 0.7 | 14.8 ± 3.4 | 4.6 ± 1.4 | 27.2 ± 5.6 | |
Galium verum herb | 50% acetone | 5.5 ± 1.4 | 18.3 ± 2.3 | 2.8 ± 0.3 | 19.1 ± 3.0 |
50% ethanol | 5.1 ± 1.4 | 16.8 ± 2.0 | 2.6 ± 0.1 | 22.7 ± 1.6 | |
80% ethanol | 3.5 ± 1.5 | 11.5 ± 0.6 | 2.6 ± 0.7 | 17.4 ± 2.6 | |
Galium aparine herb | 50% acetone | 3.7 ± 0.5 | 16.0 ± 1.3 | 2.1 ± 0.2 | 13.9 ± 1.2 |
50% ethanol | 4.3 ± 0.9 | 16.8 ± 1.3 | 2.1 ± 0.03 | 20.3 ± 0.4 | |
80% ethanol | 3.8 ± 1.8 | 12.5 ± 0.7 | 2.6 ± 0.1 | 15.2 ± 0.2 | |
Galium mollugo herb | 50% acetone | 7.6 ± 0.3 | 25.1 ± 0.8 | 2.9 ± 0.2 | 20.6 ± 0.7 |
50% ethanol | 7.1 ± 0.7 | 23.1 ± 0.5 | 3.0 ± 0.3 | 21.8 ± 0.9 | |
80% ethanol | 5.5 ± 1.4 | 17.6 ± 0.5 | 3.0 ± 0.2 | 19.8 ± 3.0 |
No. | Rt, min | Tentative Identification 1 | Compound Class 2 | Molecular ion [M − H]− (and MS/MS Fragments) | Appears in the HPLC-DAD-MS/MS Fingerprinting Analysis Chromatograms | |||
---|---|---|---|---|---|---|---|---|
Galium verum Blossoms | Galium verum Herb | Galium aparine Herb | Galium mollugo Herb | |||||
1 | 3.92 | Deacetylasperulosidic acid | Iridoid glycoside | 389.4 (183.2) | + | + | + | + |
2 | 4.21 | Unidentified | Iridoid glycoside | 389.5 | + | - | - | - |
3 | 5.58 | Deacetylalpinoside | Iridoid glycoside | 373.4 (211.1, 747.6) | - | - | - | + |
4 | 5.81 | Unidentified | Iridoid glycoside | 431.5 | - | + | - | - |
5 | 6.13 | Unidentified | Iridoid glycoside | 707.7 | - | - | + | - |
6 | 6.66 | Neochlorogenic acid | Polyphenol | 353.5 (191.5) | - | + | + | + |
7 | 7.40 | Asperulosidic acid | Iridoid glycoside | 431.5 (165.3) | + | + | + | + |
8 | 7.91 | Quercetin-3-rutinoside-7-glucoside | Flavonoid | 771.6 (609.6, 463.4, 301.3) | + | - | - | - |
9 | 8.09 | Chlorogenic acid | Polyphenol | 353.3 (191.0) | + | + | + | + |
10 | 8.43 | Cryptochlorogenic acid | Polyphenol | 353.4 (191.0, 179.0, 173.3, 135.8) | - | - | + | + |
11 | 8.61 | Asperuloside | Iridoid glycoside | 413.4 (191.1, 147.2) | + | + | + | + |
12 | 8.82 | Isorhamnetin-3-O-rutinoside-7-O-glucoside | Flavonoid | 785.6 (623.6, 315.4) | + | - | - | - |
13 | 9.29 | Unidentified | Iridoid glycoside | 353.6 | - | - | + | - |
14 | 11.15 | Rutin | Flavonoid | 609.5 (463.2, 300.9, 271.9, 255.8, 179.5) | + | + | + | + |
15 | 11.71 | Quercetin glycoside | Flavonoid | 463.6 (301.7, 300.5, 179.7, 151.7) | - | - | + | - |
16 | 11.73 | Kaempferol-O-glucoside | Flavonoid | 447.5 (285.1, 151.7) | + | + | - | + |
17 | 12.25 | Isorhamnetin-3-O-rutinoside | Flavonoid | 623.5 (315.1, 271.7, 255.8) | + | + | + | - |
18 | 12.51 | Diosmetin isomer | Flavonoid | 299.3 (285.1) | - | - | - | + |
19 | 12.69 | Diosmetin isomer | Flavonoid | 299.2 (285.0) | - | - | - | + |
20 | 12.82 | Dicaffeoylquinic acid isomer | Polyphenol | 515.6 (353.5) | + | + | + | - |
21 | 13.01 | Unidentified | Flavonoid | 593.9 | - | + | - | - |
22 | 13.22 | Unidentified | Polyphenol | 516.0 | + | + | - | - |
23 | 13.47 | Diosmetin isomer | Flavonoid | 299.6 (284.1) | - | - | - | + |
24 | 14.75 | Quercetin-3-O-hexose-deoxyhexose | Flavonoid | 609.6 (463.4, 301.5) | - | + | - | - |
25 | 15.26 | Unidentified | Flavonoid | 623.6 | + | - | - | - |
26 | 16.45 | Quercetin | Flavonoid | 301.3 (151.0) | + | + | + | + |
27 | 18.72 | Kaempferol | Flavonoid | 285.3 | - | - | - | + |
28 | 24.04 | Bicalutamide 3 | 429.4 | + | + | + | + |
No. | Rt, min | Standard Compound for Quantification1 | Galium verum Blossoms | Galium verum Herb | Galium aparine Herb | Galium mollugo Herb | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% Acetone | 50% Ethanol | 80% Ethanol | 50% Acetone | 50% Ethanol | 80% Ethanol | 50% Acetone | 50% Ethanol | 80% Ethanol | 50% Acetone | 50% Ethanol | 80% Ethanol | |||
1 | 3.92 | Asperuloside | 98.23 ± 12.47 | 215.77 ± 54.79 | 121.72 ± 22.48 | 37.37 ± 7.31 | 149.21 ± 2.67 | 114.80 ± 19.59 | 32.85 ± 7.72 | 178.51 ± 15.60 | 139.27 ± 4.56 | 57.76 ± 4.18 | 315.10 ± 12.92 | 179.19 ± 46.84 |
2 | 4.21 | Asperuloside | 59.33 ± 14.45 | 130.00 ± 13.30 | 63.34 ± 7.88 | |||||||||
3 | 5.58 | Asperuloside | 410.33 ± 28.02 | 468.27 ± 39.70 | 332.44 ± 89.06 | |||||||||
4 | 5.81 | Asperuloside | 93.56 ± 12.91 | 87.41 ± 7.95 | 76.55 ± 10.46 | |||||||||
5 | 6.13 | Asperuloside | 50.06 ± 16.65 | 50.63 ± 13.57 | 21.28 ± 1.33 | |||||||||
6 | 6.66 | Neochlorogenic acid | 29.49 ± 0.26 | 30.53 ± 1.03 | 27.03 ± 2.37 | 90.26 ± 30.73 | 90.94 ± 14.86 | 45.26 ± 4.22 | 91.41 ± 1.78 | 103.56 ± 18.86 | 69.90 ± 17.19 | |||
7 | 7.40 | Asperuloside | 201.38 ± 23.62 | 156.67 ± 32.07 | 118.95 ± 19.98 | 131.48 ± 7.04 | 123.32 ± 3.57 | 115.63 ± 11.42 | 419.44 ± 161.57 | 484.60 ± 108.34 | 246.15 ± 32.36 | 368.33 ± 27.33 | 395.70 ± 28.44 | 250.35 ± 65.31 |
8 | 7.91 | Rutin | 124.69 ± 3.20 | 93.48 ± 14.49 | 55.06 ± 17.29 | |||||||||
9 | 8.09 | Chlorogenic acid | 443.70 ± 19.92 | 347.34 ± 63.75 | 230.88 ± 54.20 | 321.72 ± 39.31 | 287.14 ± 17.18 | 236.94 ± 25.60 | 282.20 ± 41.70 | 300.18 ± 33.30 | 292.14 ± 14.03 | 706.44 ± 11.04 | 710.44 ± 3.96 | 505.57 ± 151.53 |
10 | 8.43 | Neochlorogenic acid | 109.02 ± 9.54 | 110.66 ± 6.01 | 109.23 ± 5.37 | 50.77 ± 3.05 | 53.86 ± 1.76 | 33.84 ± 11.44 | ||||||
11 | 8.61 | Asperuloside | 793.33 ± 17.20 | 574.46 ± 100.55 | 565.42 ± 101.40 | 510.92 ± 51.41 | 448.61 ± 41.94 | 476.40 ± 56.23 | 296.24 ± 115.73 | 232.80 ± 62.47 | 394.40 ± 19.17 | 632.79 ± 27.94 | 555.91 ± 45.10 | 548.86 ± 167.57 |
12 | 8.82 | Rutin | 44.01 ± 2.65 | 32.25 ± 8.96 | 20.63 ± 8.99 | |||||||||
13 | 9.29 | Asperuloside | 54.03 ± 5.98 | 47.85 ± 0.85 | 44.54 ± 3.60 | |||||||||
14 | 11.15 | Rutin | 618.22 ± 9.44 | 456.93 ± 35.66 | 383.91 ± 91.16 | 118.41 ± 16.04 | 104.94 ± 7.00 | 92.46 ± 16.69 | 299.96 ± 8.95 | 290.76 ± 17.52 | 253.78 ± 11.26 | 59.10 ± 2.24 | 63.68 ± 3.88 | 59.75 ± 10.64 |
15 | 11.71 | Rutin | 4.75 ± 0.47 | 5.22 ± 1.24 | 4.56 ± 1.02 | |||||||||
16 | 11.73 | Rutin | 347.04 ± 1.91 | 252.78 ± 30.68 | 219.79 ± 47.19 | 108.91 ± 15.60 | 96.25 ± 9.46 | 78.25 ± 10.16 | 56.50 ± 3.46 | 59.89 ± 1.78 | 54.01 ± 15.42 | |||
17 | 12.25 | Rutin | 110.30 ± 3.33 | 87.59 ± 14.55 | 66.13 ± 15.24 | 22.77 ± 2.81 | 21.78 ± 1.97 | 17.02 ± 2.88 | 87.01 ± 9.20 | 88.90 ± 2.76 | 75.26 ± 6.96 | |||
18 | 12.51 | Rutin | 241.83 ± 2.73 | 249.46 ± 10.03 | 191.77 ± 50.62 | |||||||||
19 | 12.69 | Rutin | 465.66 ± 11.13 | 675.07 ± 358.40 | 377.44 ± 66.10 | |||||||||
20 | 12.82 | Neochlorogenic acid | 87.55 ± 9.43 | 66.12 ± 11.13 | 52.34 ± 12.29 | 61.22 ± 9.30 | 50.37 ± 7.63 | 44.14 ± 5.26 | 19.20 ± 3.56 | 18.96 ± 3.58 | 19.85 ± 1.81 | |||
21 | 13.01 | Rutin | 5.72 ± 1.40 | 4.95 ± 1.23 | 2.84 ± 1.23 | |||||||||
22 | 13.22 | Neochlorogenic acid | 482.16 ± 32.26 | 334.60 ± 31.88 | 301.17 ± 78.84 | 27.88 ± 3.44 | 24.29 ± 3.05 | 18.01 ± 3.62 | ||||||
23 | 13.47 | Rutin | 73.50 ± 3.40 | 75.99 ± 5.10 | 66.31 ± 16.64 | |||||||||
24 | 14.75 | Quercetin | 9.54 ± 0.46 | 9.07 ± 0.20 | 8.82 ± 0.47 | |||||||||
25 | 15.26 | Quercetin | 11.19 ± 0.22 | 9.81 ± 0.53 | 8.88 ± 0.87 | |||||||||
26 | 16.45 | Quercetin | 10.11 ± 0.37 | 9.36 ± 0.50 | 7.83 ± 0.74 | 8.88 ± 0.57 | 8.49 ± 0.61 | 9.76 ± 0.33 | 4.47 ± 1.54 | 6.08 ± 0.71 | 3.02 ± 0.29 | 6.42 ± 0.22 | 6.81 ± 0.45 | 6.05 ± 0.19 |
27 | 18.72 | Quercetin | 10.66 ± 0.48 | 11.37 ± 0.60 | 8.49 ± 0.58 |
Compound | Rt, min | Galium verum Blossoms, % | Galium verum Herb, % | Galium aparine Herb, % | Galium mollugo Herb, % |
---|---|---|---|---|---|
β-Methylbutanal | 3.72 | - | - | 1.7 | <1.0 |
2-Methyl-4-hydroxy-cyclobutanone | 3.84 | - | - | 2.2 | - |
α-Methylpropanoic acid | 5.37 | - | - | 2.0 | - |
Hexanal | 6.44 | 1.2 | 1.9 | 2.4 | 1.1 |
β-Methylbutyric acid | 7.43 | <1.0 | - | 7.5 | 2.8 |
α-Methylbutyric acid | 7.72 | <1.0 | <1.0 | 3.1 | - |
(E)-2-Hexenal | 7.85 | - | - | - | 2.7 |
2,5,5-Trimethyl-1,3,6-heptatriene | 9.98 | 1.8 | <1.0 | - | - |
β-Terpinen | 11.38 | - | 4.0 | - | - |
Hexanoic acid | 11.41 | <1.0 | - | - | 3.4 |
β-Pinene | 11.49 | - | 7.7 | - | - |
4-Terpinenyl acetate | 12.22 | 1.3 | - | - | - |
d-Limonene | 13.04 | - | 1.0 | - | - |
Eucalyptol | 13.12 | 3.4 | 4.8 | - | - |
Salicylaldehyde | 13.47 | 4.3 | <1.0 | 2.1 | 1.4 |
Artemisia ketone | 13.96 | 15.2 | <1.0 | - | 1.6 |
Artemisia alcohol | 14.66 | 4.5 | <1.0 | - | - |
2-Methylene-hexanal | 14.83 | - | 1.2 | - | - |
Linalool | 15.10 | - | 2.0 | - | - |
Nonanal | 15.21 | 2.9 | <1.0 | 4.1 | 5.6 |
δ-Thujone | 15.67 | 7.2 | <1.0 | - | 1.2 |
Camphor | 16.50 | 2.2 | 11.1 | - | - |
p-Menthone | 16.75 | <1.0 | 7.0 | 4.4 | <1.0 |
Artemisyl acetate | 17.17 | 13.5 | <1.0 | - | 2.4 |
α-Terpineol | 17.80 | - | 1.1 | - | - |
Methyl salicylate | 17.94 | 1.0 | <1.0 | - | - |
Estragole | 17.99 | - | 2.3 | - | - |
Thymol methyl ether | 18.96 | 5.5 | <1.0 | 3.8 | 9.2 |
Carvone | 19.29 | <1.0 | 4.4 | - | 1.1 |
Anethole | 20.40 | 1.1 | 4.8 | 31.4 | 11.9 |
Thymol | 20.49 | <1.0 | - | 8.4 | 6.1 |
Isomenthyl acetate | 20.59 | - | 1 | - | - |
2,3,5,8-Tetramethyl-decane | 20.67 | - | 1.1 | - | - |
2-Ethyl-4,5-dimethyl-phenol | 20.77 | - | - | <1.0 | 1.5 |
Copaene | 22.84 | - | 2.9 | - | - |
β-Bourbonene | 23.11 | <1.0 | <1.0 | <1.0 | 1.0 |
Helminthogermacrene | 23.25 | 1.3 | 1.2 | - | <1.0 |
Bornyl isobutyrate | 23.79 | 1.5 | - | - | - |
β-Caryophyllene | 24.00 | 3.6 | 3.1 | 3.0 | 10.0 |
Calarene | 24.30 | - | 1.4 | - | - |
α-Caryophyllene | 24.82 | <1.0 | 1.0 | <1.0 | - |
γ-Muurolene | 25.32 | <1.0 | 1.0 | - | - |
α-Curcumene | 25.40 | <1.0 | 3.1 | - | - |
β-Cubebene | 25.49 | 10.6 | <1.0 | - | - |
Germacrene D | 25.50 | <1.0 | 1.6 | - | 13.4 |
β-Acorenol | 25.64 | <1.0 | 1.2 | <1.0 | 2.6 |
Aciphyllene | 25.82 | - | 1.1 | - | - |
Isobisabolene | 26.04 | 5.3 | 1.0 | <1.0 | 2.8 |
Bornyl pentanoate | 26.24 | 1 | - | - | - |
Dihydroactinidiolide | 26.67 | - | 2.5 | 8.5 | 10.2 |
Caryophyllene oxide | 27.90 | - | 1.5 | - | 2.0 |
Hexahydropseudoionone | 33.22 | - | <1.0 | 8.1 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laanet, P.-R.; Saar-Reismaa, P.; Jõul, P.; Bragina, O.; Vaher, M. Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules 2023, 28, 2867. https://doi.org/10.3390/molecules28062867
Laanet P-R, Saar-Reismaa P, Jõul P, Bragina O, Vaher M. Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules. 2023; 28(6):2867. https://doi.org/10.3390/molecules28062867
Chicago/Turabian StyleLaanet, Pille-Riin, Piret Saar-Reismaa, Piia Jõul, Olga Bragina, and Merike Vaher. 2023. "Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species" Molecules 28, no. 6: 2867. https://doi.org/10.3390/molecules28062867
APA StyleLaanet, P. -R., Saar-Reismaa, P., Jõul, P., Bragina, O., & Vaher, M. (2023). Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules, 28(6), 2867. https://doi.org/10.3390/molecules28062867