Improved Phenolic Profile, Sensory Acceptability, and Storage Stability of Strawberry Decoction Beverages Added with Blueberry Decoctions
Abstract
:1. Introduction
2. Results
2.1. Polyphenol Profile by the UPLC-ESI-Q-ToF MS of Berry-Based Beverages
2.2. Consumer Acceptability Test of Berry-Based Beverages
2.3. Stability of Berry-Based Beverages during Storage under Commercial Conditions
2.3.1. pH, Titratable Acidity, and Total Soluble Solids
2.3.2. Color
2.3.3. Polyphenolic Compounds Content
2.4. Correlations between the Polyphenol Profile of Berry-Based Beverages and Their Degradation during Storage under Commercial Conditions
3. Discussion
4. Materials and Methods
4.1. Decoction Berries Preparation
4.2. Berry Beverages Preparation
4.3. Polyphenol Profile by UPLC-ESI-Q-ToF MS
4.4. Consumer Acceptability Evaluation
4.5. Stability Study
4.6. pH, Titratable Acidity, and Total Soluble Solids
4.7. Color Measurement and Browning Index
4.8. Quantification of Polyphenolic Compounds
4.8.1. Total Monomeric Anthocyanins
4.8.2. Total Phenolic Compounds
4.8.3. Total Proanthocyanidins
4.9. Model of Degradation Kinetics
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Rodriguez-Pereira, E.P.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef] [PubMed]
- Bobinaitė, R.; Viskelis, P.; Bobinas, Č.; Mieželienė, A.; Alenčikienė, G.; Venskutonis, P.R. Raspberry marc extracts increase antioxidative potential, ellagic acid, ellagitannin and anthocyanin concentrations in fruit purees. LWT-Food Sci. Technol. 2016, 66, 460–467. [Google Scholar] [CrossRef]
- Agronometrics USDA Market News. Available online: https://www.agronometrics.com (accessed on 20 January 2023).
- Liu, Y.; Liu, Y.; Tao, C.; Liu, M.; Pan, Y.; Lv, Z. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. J. Food Meas. Charact. 2018, 12, 1744–1753. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Singh, R.P. Chemical deterioration and physical instability of foods and beverages. In Food and Beverage Stability and Shelf Life; Kilcast, D., Subramaninam, P., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 29–56. [Google Scholar]
- Reynoso-Camacho, R.; Sotelo-González, A.M.; Patiño-Ortiz, P.; Rocha-Guzmán, N.E.; Pérez-Ramírez, I.F. Berry by-products obtained from a decoction process are a rich source of low-and high-molecular weight extractable and non-extractable polyphenols. Food Bioprod. Process. 2021, 127, 371–387. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, B.W.; Qin, J.W.; He, F.; Duan, C.Q. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chem. 2020, 326, 126960. [Google Scholar] [CrossRef]
- Martins, C.P.; Cavalcanti, R.N.; Cardozo, T.S.; Couto, S.M.; Guimarães, J.T.; Balthazar, C.F.; Rocha, R.S.; Pimentel, T.C.; Freitas, M.Q.; Raíces, R.S.L.; et al. Effects of microwave heating on the chemical composition and bioactivity of orange juice-milk beverages. Food Chem. 2021, 345, 128746. [Google Scholar] [CrossRef]
- Galvão, L.M.V.; Sousa, M.D.M.; Nascimento, A.M.D.C.B.; Souza, B.V.C.D.; Nunes, L.C.C. Evaluation of shelf life of isotonic beverage enriched with cajuína. Food Sci. Technol. 2020, 42, e25520. [Google Scholar] [CrossRef]
- Attchelouwa, C.K.; Aka-Gbézo, S.; N’guessan, F.K.; Kouakou, C.A.; Djè, M.K. Biochemical and microbiological changes during the Ivorian sorghum beer deterioration at different storage temperatures. Beverages 2017, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Dorris, M.R.; Voss, D.M.; Bollom, M.A.; Krawiec-Thayer, M.P.; Bolling, B.W. Browning index of anthocyanin-rich fruit juice depends on pH and anthocyanin loss more than the gain of soluble polymeric pigments. J. Food Sci. 2018, 83, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; Hosu, A.; David, L.; Cimpoiu, C. Total phenolics, anthocyanins, antioxidant and pro-oxidant activity of some red fruits teas. Acta Chim. Slov. 2015, 63, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oszmiański, J.; Wojdyło, A. Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur. Food Res. Technol. 2009, 228, 623–631. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.C.; Daoust, L.; Boutkrabt, L.; Pilon, G.; Varin, T.; Dudonné, S.; Levy, É.; Marette, A.; Roy, D.; Desjardins, Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci. Rep. 2020, 10, 2217. [Google Scholar] [CrossRef] [Green Version]
- Sójka, M.; Janowski, M.; Grzelak-Błaszczyk, K. Stability and transformations of raspberry (Rubus idaeus L.) ellagitannins in aqueous solutions. Eur. Food Res. Technol. 2019, 245, 1113–1122. [Google Scholar] [CrossRef] [Green Version]
- Menevseoglu, A.; Dıblan, S.; Türkyılmaz, M.; Özkan, M. Degradation kinetics of bioactive compounds and antioxidant activity in strawberry juice concentrate stored at high and low temperatures. J. Food Meas. Charact. 2020, 14, 2611–2622. [Google Scholar] [CrossRef]
- Durães, G.C.S.; Pires, B.A.M.; Lins, T.C.L. Kombucha based synbiotic beverage using Yacon (Smallanthus sonchifolius) as a fermentation substrate: Development and sensorial analysis. Food Res. 2021, 5, 66–71. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Color By Spectra Academic License. Available online: https://techlicenseexpress.com/products/colorbyspectra (accessed on 20 January 2023).
- Lee, J.; Durst, R.; Wrolstad, R. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Zielinski, A.A.; Haminiuk, C.W. Evaluation of the phenolics and in vitro antioxidant activity of different botanical herbals seed for tea infusions in Brazil. Curr. Res. Nutr. Food Sci. 2018, 15, 345–352. [Google Scholar] [CrossRef]
- Pérez-Ramírez, I.F.; Castaño-Tostado, E.; Ramírez-de León, J.A.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage. Food Chem. 2015, 172, 885–892. [Google Scholar] [CrossRef] [PubMed]
Compounds | Rt (min) | Molecular Formula | Expected Mass (Da) | Observed Mass (Da) | Mass Error (ppm) | Berry-Based Beverages | ||
---|---|---|---|---|---|---|---|---|
Strawberry | Blueberry | Strawberry–Blueberry | ||||||
Anthocyanins | ||||||||
Delphinidin hexoside | 3.50 | C21H21O12 | 465.1033 | 465.1017 | −2.3598 | ND | 10.35 ± 0.15 a | 4.65 ± 0.84 b |
Delphinidin arabinoside | 3.89 | C20H19O11 | 435.0927 | 435.0900 | −4.9877 | 0.01 ± 0.00 c | 4.93 ± 0.05 a | 2.27 ± 0.40 b |
Cyanidin hexoside | 3.94 | C21H21O11 | 449.1084 | 449.1089 | 2.4493 | 0.24 ± 0.06 c | 6.88 ± 0.09 a | 3.38 ± 0.51 b |
Petunidin hexoside | 4.14 | C22H23O12 | 479.1190 | 479.1221 | 7.7516 | 0.01 ± 0.00 c | 16.59 ± 0.16 a | 7.54 ± 1.53 b |
Cyanidin arabinoside | 4.27 | C20H19O10 | 419.0978 | 419.0969 | −0.9809 | ND | 1.23 ± 0.17 a | 0.49 ± 0.15 b |
Pelargonidin hexoside | 4.46 | C21H21O10 | 433.1135 | 433.1134 | 1.0703 | 16.65 ± 3.72 a | 3.83 ± 4.38 a | 11.86 ± 0.44 a |
Malvidin hexoside | 4.61 | C23H25ClO12 | 493.1346 | 493.1347 | 1.3407 | 0.03 ± 0.00 c | 41.03 ± 0.10 a | 19.66 ± 3.48 b |
Peonidin hexoside | 4.86 | C22H23O11 | 463.1240 | 463.1235 | 0.0040 | 0.01 ± 0.00 c | 15.78 ± 0.88 a | 7.58 ± 2.02 b |
Pelargonidin rutinoside | 5.07 | C27H31O14 | 579.1714 | 579.1697 | −1.9569 | 0.25 ± 0.00 a | ND | 0.14 ± 0.00 b |
Total | 17.07 ± 3.61 c | 100.62 ± 3.45 a | 57.50 ± 9.26 b | |||||
Flavanols | ||||||||
Procyanidin dimer B2 | 3.45 | C30H26O12 | 578.1424 | 577.1360 | 1.4800 | 0.48 ± 0.20 a | 0.12 ± 0.08 a | 0.24 ± 0.10 a |
(-)-Epicatechin | 3.77 | C15H14O6 | 290.0790 | 289.0709 | −3.0812 | 0.56 ± 0.07 a | 0.02 ± 0.00 a | 0.22 ± 0.00 a |
Total | 1.04 ± 0.27 a | 0.13 ± 0.06 b | 0.36 ± 0.05 b | |||||
Flavonols | ||||||||
(Iso)-rhamnetin hexoside | 4.18 | C22H22O12 | 478.1111 | 477.1052 | 2.8182 | ND | 0.33 ± 0.05 a | 0.11 ± 0.02 b |
Myricetin hexoside | 5.19 | C21H20O13 | 480.0904 | 479.0840 | 1.9089 | ND | 0.45 ± 0.03 a | 0.16 ± 0.09 b |
Quercetin rutinoside | 5.69 | C27H30O16 | 610.1534 | 609.1487 | 4.1921 | ND | 1.24 ± 0.05 a | 0.64 ± 0.03 b |
Quercetin hexoside | 5.80 | C21H20O12 | 464.0955 | 463.0902 | 4.3627 | 0.04 ± 0.00 b | 6.96 ± 0.18 a | 3.87 ± 0.81 ab |
Quercetin dihexoside | 5.84 | C27H30O17 | 478.0747 | 477.0678 | 0.7692 | 0.93 ± 0.46 a | 0.16 ± 0.00 a | 0.40 ± 0.17 a |
Quercetin xyloside | 6.16 | C20H18O11 | 434.0849 | 433.0788 | 2.6821 | ND | 0.41 ± 0.06 a | 0.13 ± 0.09 a |
Quercetin rhamnoside | 6.40 | C21H20O11 | 448.1006 | 447.0941 | 1.7316 | ND | 2.64 ± 0.01 a | 1.50 ± 0.39 a |
Total | 0.95 ± 0.48 c | 12.12 ± 0.26 a | 6.81 ± 1.53 b | |||||
Hydroxycinnamic acids | ||||||||
Coumaric acid hexoside | 4.02 | C15H18O8 | 326.1002 | 325.0923 | −1.9174 | 1.32 ± 0.03 a | ND | 0.47 ± 0.05 b |
Ellagic acid | 5.60 | C14H6O8 | 302.0063 | 300.9979 | −3.7856 | 1.78 ± 1.30 a | 0.17 ± 0.21 a | 0.61 ± 0.61 a |
Total | 3.10 ± 1.27 a | 0.18 ± 0.21 a | 1.08 ± 0.57 a | |||||
Ellagitannins | ||||||||
Bis-HHDP-hexose | 1.65 | C34H24O22 | 784.0759 | 783.0718 | 4.0607 | 1.72 ± 1.14 a | 0.32 ± 0.00 a | 0.62 ± 0.61 a |
Castalin | 3.55 | C27H20O18 | 632.0650 | 631.0602 | 3.9080 | 0.18 ± 0.11 a | ND | 0.11 ± 0.00 a |
Total | 1.91 ± 1.25 a | 0.32 ± 0.00 a | 0.68 ± 0.69 a |
Sensory Characteristics | Beverages | ||
---|---|---|---|
Strawberry | Blueberry | Strawberry–Blueberry | |
Color | |||
Mean ± SD | 7.24 ± 1.71 a | 7.82 ± 1.02 a | 7.80 ± 0.81 a |
Skewness | −0.98 | −0.45 | −0.58 |
Kurtosis | −0.03 | −0.88 | 1.50 |
Aroma | |||
Mean ± SD | 6.56 ± 1.75 a | 6.62 ± 1.41 a | 6.48 ± 1.54 a |
Skewness | −0.21 | −0.55 | −0.07 |
Kurtosis | −0.79 | −0.52 | −1.14 |
Flavor | |||
Mean ± SD | 7.08 ± 1.87 a | 6.74 ± 1.54 a | 7.28 ± 1.28 a |
Skewness | −0.74 | −0.63 | −0.80 |
Kurtosis | −0.53 | −0.03 | 0.66 |
Overall acceptability | |||
Mean ± SD | 7.14 ± 1.59 a | 7.02 ± 1.22 a | 7.32 ± 1.15 a |
Skewness | −0.59 | −0.60 | −0.42 |
Kurtosis | −0.63 | 0.35 | 0.38 |
Beverage | T | Total Phenols | Total Anthocyanins | Total Proanthocyanidins | ||||||
---|---|---|---|---|---|---|---|---|---|---|
K 1 | t1/2 2 | R | K 3 | t1/2 2 | R | K 4 | t1/2 2 | R | ||
Strawberry | 4 °C | 1.7 × 10−3 ± 0.0 f | 396.4 ± 16.0 a | 0.82 | 1.0 × 10−2 ± 0.0 f | 68.9 ± 0.4 c | 0.72 | 2.1 × 10−2 ± 0.0 e | 32.2 ± 0.4 c | 0.92 |
25 °C | 4.8 × 10−3 ± 0.0 e | 143.0 ± 6.2 c | 0.92 | 1.0 × 10−1 ± 0.0 c | 6.9 ± 0.1 de | 0.93 | 5.3 × 10−2 ± 0.0 d | 13.1 ± 0.7 d | 0.88 | |
34 °C | 1.7 × 10−2 ± 0.0 c | 38.8 ± 2.7 e | 0.94 | 1.7 × 10−1 ± 0.0 a | 4.0 ± 0.0 e | 0.94 | 1.3 × 10−1 ± 0.0 a | 5.1 ± 0.7 d | 0.95 | |
Blueberry | 4 °C | 9.3 × 10−3 ± 0.0 d | 74.2 ± 5.1 d | 0.84 | 3.3 × 10−3 ± 0.0 g | 210.0 ± 0.0 a | 0.80 | 7.0 × 10−3 ± 0.0 e | 98.9 ± 7.9 b | 0.91 |
25 °C | 1.7 × 10−2 ± 0.0 c | 39.5 ± 1.7 e | 0.97 | 7.6 × 10−2 ± 0.0 e | 9.0 ± 0.0 d | 0.96 | 7.6 × 10−2 ± 0.0 c | 9.0 ± 0.4 d | 0.84 | |
34 °C | 2.6 × 10−2 ± 0.0 a | 26.5 ± 1.0 c | 0.91 | 1.3 × 10−1 ± 0.0 b | 5.1 ± 0.4 de | 0.96 | 6.4 × 10−2 ± 0.0 cd | 10.7 ± 0.6 d | 0.95 | |
Strawberry–Blueberry | 4 °C | 3.6 × 10−3 ± 0.0 e | 190.2 ± 11.0 b | 0.82 | 5.4 × 10−3 ± 0.0 fg | 128.5 ± 6.7 b | 0.93 | 6.1 × 10−3 ± 0.0 e | 114.1 ± 10.5 a | 0.95 |
25 °C | 2.4 × 10−2 ± 0.0 a | 28.0 ± 0.6 e | 0.83 | 8.9 × 10−2 ± 0.0 d | 7.7 ± 0.1 de | 0.96 | 5.1 × 10−2 ± 0.0 d | 13.6 ± 0.3 d | 0.91 | |
34 °C | 2.0 × 10−2 ± 0.0 b | 33.7 ± 1.2 e | 0.92 | 1.7 × 10−1 ± 0.0 a | 3.9 ± 0.1 e | 0.94 | 1.1 × 10−1 ± 0.0 b | 6.2 ± 0.4 d | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotelo-González, A.M.; Pérez-Ramírez, I.F.; Soto-Infante, J.H.; de Jesús Gómez-Velázquez, H.D.; Vázquez-Barrios, M.E.; Escobar-Ortíz, A.; Reynoso-Camacho, R. Improved Phenolic Profile, Sensory Acceptability, and Storage Stability of Strawberry Decoction Beverages Added with Blueberry Decoctions. Molecules 2023, 28, 2496. https://doi.org/10.3390/molecules28062496
Sotelo-González AM, Pérez-Ramírez IF, Soto-Infante JH, de Jesús Gómez-Velázquez HD, Vázquez-Barrios ME, Escobar-Ortíz A, Reynoso-Camacho R. Improved Phenolic Profile, Sensory Acceptability, and Storage Stability of Strawberry Decoction Beverages Added with Blueberry Decoctions. Molecules. 2023; 28(6):2496. https://doi.org/10.3390/molecules28062496
Chicago/Turabian StyleSotelo-González, Ana María, Iza Fernanda Pérez-Ramírez, Julissa Haydee Soto-Infante, Haiku Daniel de Jesús Gómez-Velázquez, Ma. Estela Vázquez-Barrios, Alexandro Escobar-Ortíz, and Rosalía Reynoso-Camacho. 2023. "Improved Phenolic Profile, Sensory Acceptability, and Storage Stability of Strawberry Decoction Beverages Added with Blueberry Decoctions" Molecules 28, no. 6: 2496. https://doi.org/10.3390/molecules28062496
APA StyleSotelo-González, A. M., Pérez-Ramírez, I. F., Soto-Infante, J. H., de Jesús Gómez-Velázquez, H. D., Vázquez-Barrios, M. E., Escobar-Ortíz, A., & Reynoso-Camacho, R. (2023). Improved Phenolic Profile, Sensory Acceptability, and Storage Stability of Strawberry Decoction Beverages Added with Blueberry Decoctions. Molecules, 28(6), 2496. https://doi.org/10.3390/molecules28062496