Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates
Abstract
:1. Introduction
2. Legume Protein Isolate and Hydrolysate
3. In Vitro and In Vivo Studies on the Antioxidant, ACE-Inhibitory, and Anti-Inflammatory Peptides from Legume Protein Hydrolysate
3.1. In-Vitro Study of Antioxidant, ACE-Inhibitory, and Anti-Inflammatory Peptides
3.1.1. Antioxidant Peptide
3.1.2. ACE-Inhibitory Peptide
3.1.3. Anti-Inflammatory Peptide
3.2. In Vivo Study on Antioxidants, ACE-Inhibitory, and Anti-Inflammatory Peptides
3.2.1. Antioxidant Peptides
3.2.2. ACE-Inhibitory Peptides
Toxicity
Antihypertensive
- The Effect of the Peptide on Aorta Histological
- The Effect of the Peptide on Kidney: Functional and Histological
3.2.3. Anti-Inflammatory Peptides
4. Future Trends
5. Conclusions
Funding
Conflicts of Interest
References
- Tripathi, K.; Gore, P.G.; Singh, M.; Pamarthi, R.K.; Mehra, R.; VanGayacharan, C. Legume Genetic Resources: Status and Opportunities for Sustainability. In Legume Crops-Prospects, Production and Uses; Hasanuzzaman, M., Ed.; BoD–Books on Demand: London, UK, 2020. [Google Scholar] [CrossRef]
- Carbonaro, M.; Nucara, A. Legume Proteins and Peptides as Compounds in Nutraceuticals: A Structural Basis for Dietary Health Effects. Nutrients 2022, 14, 1188. [Google Scholar] [CrossRef] [PubMed]
- Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Alashi, A.M.; Aluko, R.E. Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Sci. Technol. 2018, 6, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, M.A.; Hashim, S.N.; Chay, S.Y.; Ebrahimpour, A.; Zarei, M.; Muhammad, K.; Saari, N. High angiotensin-I converting enzyme (ACE) inhibitory activity of Alcalase-digested green soybean (Glycine max) hydrolysates. Food Res. Int. 2018, 106, 589–597. [Google Scholar] [CrossRef]
- Sánchez-Chino, X.M.; Jiménez Martínez, C.; León-Espinosa, E.B.; Garduño-Siciliano, L.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Dávila-Ortiz, G. Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. J. Am. Coll. Nutr. 2019, 38, 162–170. [Google Scholar] [CrossRef]
- Matemu, A.; Nakamura, S.; Katayama, S. Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants 2021, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Liu, G.; Ren, J.; Deng, Q.; Xu, X.; Zhang, J. Current Progress in the Extraction, Functional Properties, Interaction with Polyphenols, and Application of Legume Protein. J. Agric. Food Chem. 2022, 70, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Oo, Z.Z.; Ko, T.L.; Than, S.S. Chemical and functional characterizations of chickpea protein concentrate. ASRJETS 2017, 38, 272–280. [Google Scholar]
- Rababah, T.; Albiss, B.A.; Al-U’datt, M.; Akkam, Y.; Abu Kayed, A. Effect of Ultrasound Treatment on the Physicochemical, Nutraceutical, and Functional Properties of Lupine Flour. J. Agric. Sci. Technol. 2021, 23, 825–838. [Google Scholar]
- Boukid, F. Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: A review. Int. J. Food Sci. 2021, 56, 5435–5444. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Z.; Ai, Z.; Zhang, Y.; Tan, C.P.; Liu, Y. Exploring the Antioxidant and Structural Properties of Black Bean Protein Hydrolysate and Its Peptide Fractions. Front. Nutr. 2022, 9, 884537. [Google Scholar] [CrossRef]
- Tong, X.; Cao, J.; Tian, T.; Lyu, B.; Miao, L.; Lian, Z.; Jiang, L. Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG. Food Hydrocoll. 2022, 122, 107084. [Google Scholar] [CrossRef]
- Putra, I.D.; Marsono, Y.; Indrati, R. Effect of simulated gastrointestinal digestion of bioactive peptide from pigeon pea (Cajanus cajan) tempe on angiotensin-I converting enzyme inhibitory activity. Nutr. Food Sci. 2020, 51, 244–254. [Google Scholar] [CrossRef]
- Langton, M.; Ehsanzamir, S.; Karkehabadi, S.; Feng, X.; Johansson, M.; Johansson, D.P. Gelation of faba bean proteins-Effect of extraction method, pH and NaCl. Food Hydrocoll. 2020, 103, 105622. [Google Scholar] [CrossRef]
- Sonklin, C.; Alashi, M.A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R.E. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J. Funct. Foods 2020, 64, 103635. [Google Scholar] [CrossRef]
- Karimi, A.; Gavlighi, H.A.; Sarteshnizi, R.A.; Udenigwe, C.C. Effect of maize germ protein hydrolysate addition on digestion, in vitro antioxidant activity and quality characteristics of bread. J. Cereal Sci. 2021, 97, 103148. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 2019, 7, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Alashi, A.M.; Aluko, R.E. Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. Food Sci. Technol. 2018, 97, 269–278. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Al-Ruwaih, N.; Arfat, Y.A. Effect of high-pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legum. Sci. 2019, 1, e10. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.G.D.S.; Granato Cason, V.; de Castro, R.J.S. Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. Int. J. Food Sci. 2019, 54, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Chunkao, S.; Youravong, W.; Yupanqui, C.T.; Alashi, A.M.; Aluko, R.E. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods. 2020, 9, 1406. [Google Scholar] [CrossRef]
- Gupta, N.; Bhagyawant, S.S. Angiotensin-I converting enzyme (ACE-I) inhibitory and anti-proliferative potential of chickpea seed protein hydrolysate. Ann. Plant Prot. Sci. 2018, 7, 2149–2153. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wu, C.; Sun-Waterhouse, D.; Zhao, T.; Waterhouse, G.I.; Zhao, M.; Su, G. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein Isolate: Their production conditions and in silico molecular docking with ACE. Food Chem. 2021, 345, 128855. [Google Scholar] [CrossRef] [PubMed]
- Ratnayani, K.; Suter, I.K.; Antara, N.S.; Putra, I.N.K. Effect of in vitro gastrointestinal digestion on the Angiotensin Converting Enzyme (ACE) inhibitory activity of pigeon pea protein isolate. Int. Food Res. J. 2019, 26, 1397–1404. [Google Scholar]
- Dang, Y.; Zhou, T.; Hao, L.; Cao, J.; Sun, Y.; Pan, D. In vitro and in vivo studies on the angiotensin-converting enzyme inhibitory activity peptides isolated from broccoli protein hydrolysate. Food Chem. 2019, 67, 6757–6764. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Malomo, S.A.; Alashi, A.M.; Nwachukwu, I.D.; Fagbemi, T.N.; Osundahunsi, O.F.; Aluko, R.E. Antioxidant and antihypertensive activities of wonderful cola (Buchholzia coriacea) seed protein and enzymatic protein hydrolysates. J. Food Bioact. 2018, 3, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, H.; Fu, X.; Li, S.; Wei, J. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. Food Sci. Technol. 2017, 75, 93–99. [Google Scholar] [CrossRef]
- Tawalbeh, D.; Ahmad, W.W.; Sarbon, N.M. Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Rev. Int. 2022, 1–23. [Google Scholar] [CrossRef]
- Wang, R.; Lu, X.; Sun, Q.; Gao, J.; Ma, L.; Huang, J. Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. Int. J. Mol. Sci. 2020, 21, 1059. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mora, P.; Frias, J.; Peñas, E.; Zieliński, H.; Giménez-Bastida, J.A.; Wiczkowski, W.; Martinez-Villaluenga, C. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. J. Funct. Foods. 2015, 18, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Márquez, O.G.M.; Juárez-Chairez, M.F.; Márquez-Flores, Y.K.; Jiménez-Martínez, C.; Osorio-Revilla, G. In vitro anti-inflammatory and antioxidant activity of chickpea (Cicer arietinum L.) proteins hydrolysate fractions. Biotecnia 2022, 24, 59–68. [Google Scholar]
- Daroit, D.J.; Brandelli, A. In vivo bioactivities of food protein-derived peptides–a current review. Curr. Opin. Food. 2021, 39, 120–129. [Google Scholar] [CrossRef]
- Valenzuela-García, P.; Bobadilla, N.A.; Ramírez-González, V.; León-Villanueva, A.; Lares-Asseff, I.A.; Valdez-Ortiz, A.; Medina-Godoy, S. Antihypertensive effect of protein hydrolysate from azufrado beans in spontaneously hypertensive rats. Cereal Chem. 2017, 94, 117–123. [Google Scholar] [CrossRef]
- Jebitta, S.R.; Durga Devi, P.R.; Deva Dharshini, L.; Theerdham, N.S.H.; Vignesh, K. A Comprehensive Review on Protein Isolates from Legumes. Int. J. Eng. Technol. 2021, 9, 2277–3878. [Google Scholar] [CrossRef]
- Nadzri, F.A.; Tawalbeh, D.; Sarbon, N.M. Physicochemical properties and antioxidant activity of enzymatic hydrolysed chickpea (Cicer arietinum L.) protein as influence by alcalase and papain enzyme. Biocatal. Agric. Biotechnol. 2021, 36, 102131. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Shivhare, U.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Int. Food Res. J. 2015, 76, 11–18. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Baraniak, B. Angiotensin I converting enzyme inhibitory peptides obtained after in vitro hydrolysis of pea (Pisum sativum var. Bajka) globulins. Biomed Res. Int. 2014, 2014, 438459. [Google Scholar] [CrossRef] [Green Version]
- Ngoh, Y.Y.; Gan, C.Y. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem. 2016, 190, 331–337. [Google Scholar] [CrossRef]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Materska, M.; Zielińska, E. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.). Acta Sci. Pol. Technol. Aliment. 2014, 13, 385–391. [Google Scholar] [CrossRef]
- Schlegel, K.; Lidzba, N.; Ueberham, E.; Eisner, P.; Schweiggert-Weisz, U. Fermentation of Lupin Protein Hydrolysates—Effects on Their Functional Properties, Sensory Profile and the Allergenic Potential of the Major Lupin Allergen Lup an 1. Foods 2021, 10, 281. [Google Scholar] [CrossRef]
- Jarpa-Parra, M. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. Int. J. Food Sci. 2018, 53, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Sarker, A.; Azad, M.A.K.; Shaheb, M.R.; Hoque, M.M. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. J. Food Meas. Charact. 2020, 14, 303–313. [Google Scholar] [CrossRef]
- Los, F.G.B.; Demiate, I.M.; Dornelles, R.C.P.; Lamsal, B. Enzymatic hydrolysis of Carioca bean (Phaseolus vulgaris L.) protein as an alternative to commercially rejected grains. Food Sci. Technol. 2020, 125, 109191. [Google Scholar] [CrossRef]
- Rasli, H.; Sarbon, N.M. Optimization of enzymatic hydrolysis conditions and characterization of Shortfin scad (Decapterus macrosoma) skin gelatin hydrolysate using response surface methodology. Int. Food Res. J. 2018, 25, 1541–1549. [Google Scholar]
- El Hajj, S.; Irankunda, R.; Echavarría, J.A.C.; Arnoux, P.; Paris, C.; Stefan, L.; Canabady-Rochelle, L. Metal-chelating activity of soy and pea protein hydrolysates obtained after different enzymatic treatments from protein isolates. Food Chem. 2023, 405, 134788. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Azizi, M.H.; Ahmadi Gavlighi, H. Fractionation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci. Nutr. 2020, 8, 2395–2405. [Google Scholar] [CrossRef] [Green Version]
- Arámburo-Gálvez, J.G.; Arvizu-Flores, A.A.; Cárdenas-Torres, F.I.; Cabrera-Chávez, F.; Ramírez-Torres, G.I.; Flores-Mendoza, L.K.; Ontiveros, N. Prediction of ACE-I Inhibitory Peptides Derived from Chickpea (Cicer arietinum L.): In Silico Assessments Using Simulated Enzymatic Hydrolysis, Molecular Docking and ADMET Evaluation. Foods 2022, 11, 1576. [Google Scholar] [CrossRef]
- Garcés-Rimón, M.; Morales, D.; Miguel-Castro, M. Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022, 14, 5271. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Use of Alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef]
- Yu, J.; Mikiashvili, N.; Bonku, R.; Smith, I.N. Allergenicity, antioxidant activity and ACE-inhibitory activity of protease hydrolyzed peanut flour. Food Chem. 2021, 360, 129992. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Santhanam, R.K.; Wang, C.; Gao, X.; Chen, Y.; Chen, H. Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: Isolation, identification and molecular docking study. Eur. Food Res. Technol. 2019, 245, 677–689. [Google Scholar] [CrossRef]
- Pan, M.; Liu, K.; Yang, J.; Liu, S.; Wang, S.; Wang, S. Advances on food-derived peptidic antioxidants—A review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Sun, C.; Zhao, Y.; Xiong, L.; Sun, Q. Purification and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chem. 2014, 161, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, O.P.; Saldo, J.; Peiro, L.; Rovira, A.; Mor-Mur, M. Antioxidant and angiotensin I converting enzyme inhibitory functions from chicken collagen hydrolysates. J. Nutr. Sci. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dabbour, M.; He, R.; Mintah, B.; Ma, H. Antioxidant activities of sunflower protein hydrolysates treated with dual-frequency ultrasonic: Optimization study. J. Food Process Eng. 2019, 42, e13084. [Google Scholar] [CrossRef]
- Noman, A.; Qixing, J.; Xu, Y.; Ali, A.H.; Al-Bukhaiti, W.Q.; Abed, S.M.; Xia, W. Influence of degree of hydrolysis on chemical composition, functional properties, and antioxidant activities of chinese sturgeon (Acipenser sinensis) hydrolysates obtained by using alcalase 2.4 L. J. Aquat. Food Prod. Technol. 2019, 28, 583–597. [Google Scholar] [CrossRef]
- Soleimani, M.; Dehabadi, L.; Wilson, L.D.; Tabil, L.G. Antioxidants classification and applications in lubricants. In Lubrication Tribology, Lubricants, and Additives; Johnson, D.W., Ed.; BoD–Books on Demand: London, UK, 2018; pp. 23–42. [Google Scholar] [CrossRef] [Green Version]
- Phongthai, S.; Rawdkuen, S. Fractionation and characterization of antioxidant peptides from rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Cereal Chem. 2020, 97, 316–325. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Khammuang, S.; Sarnthima, R.; Sanachai, K. Purification and identification of novel antioxidant peptides from silkworm pupae (Bombyx mori) protein hydrolysate and molecular docking study. Biocatal. Agric. Biotechnol. 2022, 42, 102367. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, X.; Li, Y.; Wang, H.; Wang, Z.; Qi, B.; Jiang, L. Purification, and characterization of antioxidant peptides from alcalase-hydrolyzed soybean (Glycine max L.) hydrolysate and their cytoprotective effects in human intestinal Caco-2 cells. J. Agric. Food Chem. 2019, 67, 5772–5781. [Google Scholar] [CrossRef]
- Tadesse, S.A.; Emire, S.A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef]
- Atta, E.M.; Mohamed, N.H.; Silaev, A.A.A. Antioxidants: An overview on the natural and synthetic types. Eur. Chem. Bull. 2017, 6, 365–375. [Google Scholar] [CrossRef]
- Harvian, Z.A.; Ningrum, A.; Anggrahini, S.; Setyaningsih, W. In silico approach in evaluation of Jack Bean (Canavalia ensiformis) Canavalin protein as precursors of bioactive peptides with dual antioxidant and angiotensin I-converting enzyme inhibitor. Mater. Sci. Forum. 2019, 948, 85–94. [Google Scholar] [CrossRef]
- Zehadi, M.J.A.; Masamba, K.; Li, Y.; Chen, M.; Chen, X.; Sharif, H.R.; Zhong, F. Identification and purification of antioxidant peptides from lentils (Lens Culinaris) hydrolysates. J. Plant Sci. 2015, 3, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Intiquilla, A.; Jiménez-Aliaga, K.; Zavaleta, A.I.; Hernández-Ledesma, B. Production of antioxidant hydrolyzates from a Lupinus mutabilis (Tarwi) protein concentrate with alcalase: Optimization by response surface methodology. Nat. Prod. Commun. 2018, 13, 1934578. [Google Scholar] [CrossRef] [Green Version]
- Wali, A.; Mijiti, Y.; Yanhua, G.; Yili, A.; Aisa, H.A.; Kawuli, A. Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. Int. J. Pept. Res. Ther. 2021, 27, 219–227. [Google Scholar] [CrossRef]
- Kou, X.; Gao, J.; Xue, Z.; Zhang, Z.; Wang, H.; Wang, X. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT 2013, 50, 591–598. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Miao, M.; Jiang, B. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem. 2011, 128, 28–33. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Tang, L.; Sun, J.; Zhang, H.C.; Zhang, C.S.; Yu, L.N.; Bi, J.; Yang, Q.L. Evaluation of physicochemical and antioxidant properties of peanut protein hydrolysate. PLoS ONE 2012, 7, e37863. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Liang, R.; Yang, Y.; Sun, N.; Lin, S. Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. LWT 2020, 123, 109126. [Google Scholar] [CrossRef]
- Evangelho, J.A.D.; Berrios, J.D.J.; Pinto, V.Z.; Antunes, M.D.; Vanier, N.L.; Zavareze, E.D.R. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Sci. Technol. 2016, 36, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Malomo, S.A.; Niwachukwu, I.D.; Girgih, A.T.; Idowu, A.O.; Aluka, R.E.; Fagbemi, T.N. Antioxidant and renin-angiotensin system inhibitory properties of cashew nut and fluted-pumpkin protein hydrolysates. Pol. J. Food Nutr. Sci. 2020, 70, 275–289. [Google Scholar] [CrossRef]
- Li, T.; Shi, C.; Zhou, C.; Sun, X.; Ang, Y.; Dong, X.; Zhou, G. Purification and characterization of novel antioxidant peptides from duck breast protein hydrolysates. LWT 2020, 1259, 109215. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhang, Y.; Ruan, X.; Zhang, R. Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. J. Funct. Foods 2017, 28, 48–58. [Google Scholar] [CrossRef]
- Ishak, N.H.; Sarbon, N.M. Optimization of the enzymatic hydrolysis conditions of waste from shortfin scad (Decapterus Macrosoma) for the production of angiotensin I-converting enzyme (ACE) inhibitory peptide using response surface methodology. Int. Food Res. J. 2017, 24, 1735. [Google Scholar]
- Ghanbari, R.; Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Ismail, A.; Saari, N. Angiotensin-I converting enzyme (ACE) inhibitory and antioxidant activities of sea cucumber (Actinopyga lecanora) hydrolysates. Int. J. Mol. Sci. 2015, 16, 28870–28885. [Google Scholar] [CrossRef] [Green Version]
- Boschin, G.; Scigliuolo, G.M.; Resta, D.; Arnoldi, A. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem. 2014, 145, 34–40. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef]
- Nawaz, K.A.; David, S.M.; Murugesh, E.; Thandeeswaran, M.; Kiran, K.G.; Mahendran, R.; Angayarkanni, J. Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan). Phytomedicine. 2017, 36, 1–7. [Google Scholar] [CrossRef]
- Ciau-Solís, N.A.; Acevedo-Fernández, J.J.; Betancur-Ancona, D. In vitro renin–angiotensin system inhibition and in vivo antihypertensive activity of peptide fractions from lima bean (Phaseolus lunatus L.). J. Sci. Food Agric. 2018, 98, 781–786. [Google Scholar] [CrossRef]
- Shi, A.; Liu, H.; Liu, L.; Hu, H.; Wang, Q.; Adhikari, B. Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. PLoS ONE 2014, 9, e111188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puspitojati, E.; Indrati, R.; Cahyanto, M.N.; Marsono, Y. Formation of ACE-Inhibitory Peptides during Fermentation of Jack Bean Tempe Inoculated by Usar Hibiscus Tiliaceus Leaves Starter. In IOP Conference Series: Environmental Earth Science; IOP Publishing: Bangkok, Thailand, 2019; p. 012022. [Google Scholar] [CrossRef]
- Rudolph, S.; Lunow, D.; Kaiser, S.; Henle, T. Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins. Food Chem. 2017, 224, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 2019, 270, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Mundi, S.; Aluko, R.E. Inhibitory properties of kidney bean protein hydrolysate and its membrane fractions against renin, angiotensin converting enzyme, and free radicals. Nutr. Food Sci. 2014, 2, 1–12. [Google Scholar]
- Gupta, N.; Bhagyawant, S.S. Impact of hydrolysis on functional properties, antioxidant, ACE-I inhibitory and anti-proliferative activity of Cicer arietinum and Cicer reticulatum hydrolysates. Nutrire 2019, 44, 5. [Google Scholar] [CrossRef]
- Rivera-Jiménez, J.; Berraquero-García, C.; Pérez-Gálvez, R.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food Funct. 2022, 13, 12510–12540. [Google Scholar] [CrossRef]
- Dilshara, M.G.; Lee, K.T.; Jayasooriya, R.G.P.T.; Kang, C.H.; Park, S.R.; Choi, Y.H.; Kim, G.Y. Downregulation of NO and PGE2 in LPS-stimulated BV2 microglial cells by trans-isoferulic acid via suppression of PI3K/Akt-dependent NF-κB and activation of Nrf2-mediated HO-1. Int. Immunopharmacol. 2014, 18, 203–211. [Google Scholar] [CrossRef]
- Weissman, S.; Sinh, P.; Mehta, T.I.; Thaker, R.K.; Derman, A.; Heiberger, C.; Tabibian, J.H. Atherosclerotic cardiovascular disease in inflammatory bowel disease: The role of chronic inflammation. WJGP 2020, 11, 104. [Google Scholar] [CrossRef]
- del Carmen Millán-Linares, M.; Millán, F.; Pedroche, J.; del Mar Yust, M. GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. JFF 2015, 18, 358–367. [Google Scholar] [CrossRef] [Green Version]
- de Medeiros, A.F.; de Queiroz, J.L.C.; Maciel, B.L.L.; de Araújo Morais, A.H. Hydrolyzed Proteins and Vegetable Pep-tides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients 2022, 14, 690. [Google Scholar] [CrossRef]
- Indrati, R. Bioactive Peptides from Legumes and Their Bioavailability. In Legumes Research; Jose, C., Jimenez-Lopez, A.C., Eds.; IntechOpen: London, UK, 2021; Volume 2. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Villanueva, A.; Pedroche, J.; Millan, F.; Martin, M.E.; Millan-Linares, M.C. Antioxidant and an-ti-inflammatory properties of bioavailable protein hydrolysates from lupin-derived agri-waste. Biomolecules 2021, 11, 1458. [Google Scholar] [CrossRef]
- López-Barrios, L.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem. 2016, 203, 417–424. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Álvarez-Sánchez, N.; del Carmen Millán-Linares, M.; del Mar Yust, M.; Pedroche, J.; Millán, F.; Car-rillo-Vico, A. Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Res. Int. 2019, 126, 108585. [Google Scholar] [CrossRef] [PubMed]
- González-Montoya, M.; Hernández-Ledesma, B.; Silván, J.M.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Peptides de-rived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells prolifera-tion and inflammation. Food Chem. 2018, 242, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.J.; Lima, S.L.; Alves, N.E.; Assis, A.; Moreira, M.E.; Toledo, R.C.; Martino, H.S. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. NMCD 2020, 30, 141–150. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Wang, Y.; Yang, Y.; Wang, Z.; Ju, X.; Yuan, J. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. JFF 2019, 55, 211–219. [Google Scholar] [CrossRef]
- Chay, S.Y.; Salleh, A.; Sulaiman, N.F.; Abidin, N.Z.; Hanafi, M.A.; Zarei, M.; Saari, N. Blood-pressure lowering efficacy of winged bean seed hydrolysate in spontaneously hypertensive rats, peptide characterization and a toxicity study in Sprague-Dawley rats. Food Funct. 2018, 9, 1657–1671. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open-Source Drug Discovery Consortium; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Niaz, K.; Abdollahi, M. Toxicity of biologically active peptides and future safety aspects: An update. Curr. Drug Discov. Technol. 2018, 15, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des. 2010, 16, 3185–3203. [Google Scholar] [CrossRef]
- Chen, F.; Ma, B.; Yang, Z.C.; Lin, G.; Yang, D. Extraordinary metabolic stability of peptides containing α-aminoox acids. Amino Acids. 2012, 43, 499–503. [Google Scholar] [CrossRef]
- Li, H.; Prairie, N.; Udenigwe, C.C.; Adebiyi, A.P.; Tappia, P.S.; Aukema, H.M.; Aluko, R.E. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J. Agric. Food Chem. 2011, 59, 9854–9860. [Google Scholar] [CrossRef]
- Girgih, A.T.; Nwachukwu, I.D.; Onuh, J.O.; Malomo, S.A.; Aluko, R.E. Antihypertensive properties of a pea protein hydrolysate during short-and long-term oral administration to spontaneously hypertensive rats. J. Food Sci. 2016, 81, H1281–H1287. [Google Scholar] [CrossRef]
- Song, Y.; Yu, J.; Song, J.; Wang, S.; Cao, T.; Liu, Z.; Wei, Y. The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats. J. Funct. Foods 2021, 79, 104411. [Google Scholar] [CrossRef]
- Aluko, R.E.; Girgih, A.T.; He, R.; Malomo, S.; Li, H.; Offengenden, M.; Wu, J. Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Res. Int. 2015, 77, 10–16. [Google Scholar] [CrossRef]
- Aondona, M.M.; Ikya, J.K.; Ukeyima, M.T.; Gborigo, T.W.J.; Aluko, R.E.; Girgih, A.T. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J. Food Biochem. 2021, 45, e13587. [Google Scholar] [CrossRef]
- Girgih, A.T.; Alashi, A.; He, R.; Malomo, S.; Aluko, R.E. Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur. J. Nutr. 2014, 53, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Villanueva, R.; Orellana, J.M.; Marina, M.L.; García, M.C. Isolation and characterization of angiotensin converting enzyme inhibitory peptides from peach seed hydrolysates: In vivo assessment of antihypertensive activity. J. Agric. Food Chem. 2019, 67, 10313–10320. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T.C. Aorta. In Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling, 1st ed.; Payan, Y., Ohayon, J., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 169–191. [Google Scholar] [CrossRef]
- Dale, M.A.; Xiong, W.; Carson, J.S.; Suh, M.K.; Karpisek, A.D.; Meisinger, T.M.; Baxter, B.T. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization. J. Immun. J. 2016, 196, 4536–4543. [Google Scholar] [CrossRef] [Green Version]
- Faiza, Z.; Sharman, T.; Thoracic Aorta Aneurysm. StatPearls [Internet], NCBI. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554567/ (accessed on 4 November 2022).
- Sawada, H.; Kukida, M.; Chen, X.; Howatt, D.A.; Moorleghen, J.J.; Balakrishnan, A.; Lu, H.S. Angiotensin I Infusion Reveals Differential Effects of Angiotensin-Converting Enzyme in Aortic Resident Cells on Aneurysm Formation. Circulation 2020, 84, 825–829. [Google Scholar] [CrossRef]
- Masuda, O.; Nakamura, Y.; Takano, T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J. Nutr. 1996, 126, 3063–3068. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, M.; Prahastuti, S.; Wargasetia, T.L.; Nugraha, K.; Soemardji, A.A.; Rahmawati, S.F.; Hasan, K. Green peas protein hydrolyzed by bromelain in simple procedure to improve kidney function in cisplatin-induced rats. J. Rep. Pharm. Sci. 2019, 8, 68. [Google Scholar] [CrossRef]
- Shaw, J.; Shetty, P.; Burns, K.; Knoll, G. The therapeutic potential of C-peptide in kidney disease: A protocol for a systematic review and meta-analysis. Syst. Rev. 2014, 3, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Jiang, K.; Zhang, X.; Chung, E.J. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng. Transl. Med. 2020, 5, e10173. [Google Scholar] [CrossRef]
- Ogawa, N.; Komura, H.; Kuwasako, K.; Kitamura, K.; Kato, J. Plasma levels of natriuretic peptides and development of chronic kidney disease. BMC Nephrol. 2015, 16, 171. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, M.; Prahastuti, S.; Riany, D.U.; Soemardji, A.A.; Suliska, N.; Garmana, A.N.; Hasan, K. Kidney therapeutic potential of peptides derived from the bromelain hydrolysis of green peas protein. IJBMS 2019, 22, 1016. [Google Scholar] [CrossRef] [PubMed]
- Hussein, F.A.; Chay, S.Y.; Ghanisma, S.B.M.; Zarei, M.; Auwal, S.M.; Hamid, A.A.; Saari, N. Toxicity study and blood pressure–lowering efficacy of whey protein concentrate hydrolysate in rat models, plus peptide characterization. J. Dairy Sci. 2020, 103, 2053–2064. [Google Scholar] [CrossRef]
- Santos-Araújo, C.; Leite-Moreira, A.; Pestana, M. Clinical value of natriuretic peptides in chronic kidney disease. Nefrologia 2015, 35, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Rubio, L.A.; Pérez, A.; Ruiz, R.; Guzmán, M.Á.; Aranda-Olmedo, I.; Clemente, A. Characterization of pea (Pisum sativum) seed protein fractions. J. Sci. Food Agric. 2014, 94, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Aukema, H.M.; Gauthier, J.; Roy, M.; Jia, Y.; Li, H.; Aluko, R.E. Distinctive effects of plant protein sources on renal disease progression and associated cardiac hypertrophy in experimental kidney disease. Mol. Nutr. Food Res. 2011, 55, 1044–1051. [Google Scholar] [CrossRef]
- Wallig, M.A.; Bolon, B.; Haschek, W.M.; Rousseaux, C.G. Fundamentals of Toxicologic Pathology; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Hernández-Ledesma, B.; Fernández-Tomé, S.; Amigo, L. Bioactive peptides against inflammatory intestinal disorders and obesity. In Bioactive Food Components Activity in Mechanistic Approach; Cazarin, C.B.B., Bicas, J.L., Pastore, G.M., Junior, M.R.M., Eds.; Academic Press: San Diego, CA, USA, 2022; pp. 155–183. [Google Scholar]
- Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. BBA 2012, 1820, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
Legumes | Enzyme | Antioxidant Activities of Hydrolysate | Amino acid Sequences with MW | Antioxidant Activities of Sequences | IC50 of Sequences | Reference |
---|---|---|---|---|---|---|
Chickpea | Alcalase | DPPH | “Asn-Arg-Tyr-His-Glu (717.37Da)” | 45.33% | * NR | [69] |
HRSA | * NR | 60.09% | * NR | |||
SRSA | * NR | 79.81% | * NR | |||
Fe2+ chelating activity | * NR | 60.09% | * NR | |||
Alcalase + Flavorzyme | DPPH | “Arg-Gln-Ser-His-Phe-Ala-Asn-Ala-Gln- Pro (1155 Da)” | 41.3% | * NR | [68] | |
HRSA | * NR | 74.6% | * NR | |||
ABTS | * NR | 0.967 mmoL/L | * NR | |||
Reducing power | * NR | 0.247 | * NR | |||
Alcalase | DPPH 79% | “Asp-His-Gly (327 Da)” | 51.66% | * NR | [70] | |
“Val-Gly-Asp-Ile (402 Da)” | 67.32% | * NR | ||||
Reducing power 1.6 | * NR | * NR | * NR | |||
Fe2+ chelating activity 50.45% | * NR | * NR | * NR | |||
Neutrase | DPPH | “Leu-Thr-Glu-IIe-IIe-Pro”. | * NR | 0.24 mg/mL | [67] | |
HRSA | * NR | * NR | 0.57 mg/mL | |||
Lentil | Pepsin + trypsin | DPPH | “Ala-Leu-Gly-Pro-Val-Met (587.31 Da) | 63% | * NR | [65] |
HRSA | * NR | 40% | * NR | |||
Alcalse | DPPH 25.3% | * NR | * NR | * NR | [19] | |
Soy | Proteinase | DPPH 5.30 mg/ml | * NR | * NR | * NR | [17] |
FRAP 1.17 | * NR | * NR | * NR | |||
Peanut | Alcalase | Reducing power | “Thr-Pro-Ala (286 kDa)” | 2.0 | * NR | [53] |
“Ile/Leu-Pro-Ser (315 kDa)” | 2.0 | * NR | ||||
“Ser-Pro (202 kDa)” | 1.8 | * NR | ||||
Papain | DPPH 74.88% | * NR | * NR | * NR | [71] | |
HRSA 82.06% | * NR | * NR | * NR | |||
Reducing power 0.671 | * NR | * NR | * NR | |||
Pea | Alcalase | DPPH F1-2(37.94%) | <3 kDa: F1-2 | [72] | ||
HRSA F1-2(28.43%) | “Tyr-Ser-Ser-Pro-Ile-His-Ile-Trp” | * NR | * NR | |||
“Ala-Asp-Leu-Tyr-Asn-Pro-Arg” | * NR | * NR | ||||
“His-Tyr-Asp-Ser-Glu-Ala-Ile-Leu-Phe” | * NR | * NR | ||||
Lupin | Alcalase | ABTS 2.7 μmoL Trolox eq./mg | * NR | * NR | * NR | [66] |
ORAC 3.8 μmoL Trolox eq./mg | NR | * NR | * NR | |||
Black bean | Pepsin | DPPH 45.15% | * NR | * NR | * NR | [73] |
Alcalase | ABTS 63.56% | * NR | * NR | * NR | ||
Pinto beans | Protamex | ABTS 53.3% | <3 kDa: | 42.2% | * NR | [38] |
FRAP 3.71 mM | “Pro-Pro-His-Met-Leu-Pro (690.35 Da)” | 0.81 mM | * NR | |||
“Pro-Pro-Met-His-Leu-Pro (690.35 Da)” | * NR | * NR | ||||
“Pro-Leu-Pro-Pro-His-Met-Leu-Pro (900.49 Da)” | * NR | * NR | ||||
“Pro-Leu-Pro-Leu-His-Met-Leu-Pro (916.52 Da)” | * NR | * NR | ||||
“Ala-Cys-Ser-Asn-His-Ser-Pro-Leu-Gly-Trp-Arg-Gly-His (1420.64 Da)” | * NR | * NR | ||||
“Leu-Ser-Ser-Leu-Glu-Met-Gly-Ser-Leu-Gly-Ala-“Leu-Phe-Val-Cys-Met (1656.79 Da)” | * NR | * NR | ||||
Mung bean | Pancreatin | DPPH | “Leu-Leu-Gly-Ile-Leu” | 81.27% | [21] | |
“Pro-Ala-Ile-Asp-Leu” | 46.63% | |||||
HRSA | “Leu-Leu-Gly-Ile-Leu” | 0.37 mM | ||||
“Pro-Ala-Ile-Asp-Leu”. | 0.09 mM | |||||
SRSA | “Pro-Ala-Ile-Asp-Leu. and Ala-Ile-Val- Ile–Leu” | * NR | 0.07 mM | |||
FRAP | “Leu-Leu-Leu-Leu-Gly” | 0.05 mM/mg | * NR | |||
Dark red kidney | Pepsin | DPPH 81.41% | * NR | * NR | * NR | [42] |
Legumes | Enzyme | ACE-Inhibitory Activity of Hydrolysate (%)/IC50 | Potential Sequences with MW | ACE-Inhibitory Activity of Sequences (%)/IC50 | Reference |
---|---|---|---|---|---|
Soybean | Alcalase | * NR | <3 kDa. | [23] | |
“Ile-Tyr” | 93.30%/0.53 μM | ||||
“Ile-Val-Val-Phe” | 74.25%/0.27 mM | ||||
“Leu-Val-Phe” | 66.18%/0.36 mM | ||||
“Trp-Met-Phe” | 52.77%/0.55 mM | ||||
“Leu-Phe-Leu-Leu” | 41.87%/0.72 mM | ||||
“Phe-Phe” | 41.85%/0.73 mM | ||||
Alcalase | 0.014 mg/mL | “Pro-Ser-Leu-Aeg-Ser-Tyr-Leu-Ala-Glu (1035.16 Da)” | 99.31%/532 μM | [4] | |
“Glu-Ala-Gln-Arg-Leu-Leu-Phe (876.02 Da)” | 94.19%/878 μM | ||||
“Arg-Gly-Gln-Val-Leu-Ser (658.75 Da)”. | 90.40%/993 μM | ||||
“Phe-Ile-Thr-Ala-Phe-Arg (753.90 Da)” | 101.51%/1342 μM | ||||
“Pro-Asp-Arg-Ser-Ile-His-Gly-Arg-Gln-Leu-Ala-Glu (1378.51 Da)”. | 92.92%/1552 μM | ||||
Soy | Chymotrypsin + Thermolysin | 35 mg/mL | “Leu-Trp” | 1.1 µ/mol L | [85] |
“Val-Trp” | 3.5 µ/mol L | ||||
“Leu-Tyr” | 5.2 µ/mol L | ||||
“Val-Ty” | 9.4 µ/mol L | ||||
Proteinase | 20.31% | * NR | * NR | [17] | |
Pea | Chymotrypsin + Thermolysin | 33.5 mg/mL | “Leu-Trp” | 1.1 µ/mol L | [83] |
“Val-Trp” | 3.5 µ/mol L | ||||
“Leu-Tyr” | 5.2 µ/mol L | ||||
“Val-Tyr” | 9.4 µ/mol L | ||||
Pepsin + Pancreatin + Amylase | 0.72 mg/mL | Fraction (F8)-(F8B) | 0.0014 mg/mL 0.073 mg/mL | [37] | |
“Gly-Gly-Ser-Gly-Asn-Tyr” | * NR | ||||
“Asp-Leu-Lys-Leu-Pro” | * NR | ||||
“Gly-Ser-Ser-Asp-Asn-Arg” | * NR | ||||
“Met-Arg-Asp-Leu-Lys” | * NR | ||||
“His-Asn-Thr-Pro-Ser-Arg’ | * NR | ||||
Pigeon pea | Pepsin + Pancreatin | 77.82% | * NR | * NR | [3] |
Pancreatin | 74% | * NR | |||
Bean | Pepsin + Pancreatin + Amylase | * NR | 3.5–7 kDa “Ile-Asn-Glu-Gly-Ser-Leu-Leu-Pro-His” | 0.20 μg/mL * NR | [80] |
“Phe-Val-Val-Ala-Glu-Gln-Ala-Gly-Asn-Glu-Glu-Gln-Phe-Glu” | * NR | ||||
Lima bean | Pepsin–Pancreatin | * NR | >3 KDa | 60.15%/172.62 μg/mL | [82] |
Chickpea | Alcalase | 52.22 µg/mL | * NR | * NR | [22] |
Lupin | Pepsin | 226 µg/mL | * NR | * NR | [79] |
Mung bean | Alcalase | 50.20%/20.37 μg/mL | <3 kDa | 71.22%/4.66 μg/mL | [86] |
Bromelain | 0.69 mg/mL | Fraction (F4) < 1 kDa | 0.50 mg/mL | [15] | |
“Tyr-Ala-Asp-Leu-Val-Glu” | ND * | ||||
“Lue-Arg-Leu-Glu-Ser-Phe” | 5.39 µM | ||||
“Pro-Gly-Ser-Gly-Cys-Ala-Gly-Thr-Asp-Leu” | 57.86 µM | ||||
“Leu-Pro-Arg-Leu” | 1912 µM | ||||
Kidney Bean | Alcalase | 80% | <1 kDa + 3–5 kDa 1–3 + 3–5 kDa | 77% 79.5% | [87] |
Legumes | Enzyme | MW of Peptides | ACE-Inhibitory Peptide (%)/IC50 | Dose of Sample mg/Kg | Short Term (24 h) (Sample/SBP/ Time/Day) in SHR | Long Term (Sample/SBP/ Time or Day) in SHR | Potential Sequences | ACE-Inhibitory Sequences (%)/IC50 | Reference |
---|---|---|---|---|---|---|---|---|---|
Pea | Thermoase | 5 kDa | 0.10 mg/mL | 100 | HTPPI/−25 mmHg/6 h. | 1% HTPPI/−17 mmHg/3rd wk. | * NR | * NR | [109] |
100 | PPH-5/−36 mmHg/2 or 4 h. | 1% PPH-5/−26 mmHg/3rd wk. | * NR | * NR | |||||
Thermolysin | <3 kDa | 19% | 100 | PPH/−19 mmHg/4 h. | PPH/−29 mmHg/6 week. | * NR | * NR | [107] | |
Thermolysin | 3 kDa | NR | 100 | PPH-3/−9 mmHg/2. | * NR | * NR | * NR | [108] | |
877 Da | NR | 30 | IFENLQN/−37 mmHg. | * NR | Ile-Phe-Glu-Asn-Leu-Gln-Asn. | 87.54% | |||
999 Da | NR | 30 | FEGTVFENG/−25 mmHg. | * NR | “Phe-Glu-Gly-Tyr-Val-Phe-Glu-Asn-Gly” | 76.77% | |||
Azufrado Beans | Alcalase | 3 kDa | 3.68 µg/mL or 53.43% | 500 | BP3/−41 mmHg/3 h. | BP3/−24 mmHg/45 days. | “Lys-Phe-Pro-Try-Val-Lys” | [33] | |
“Gly-Ala-Asp-Phe-Aeg-Lys-Lys” | |||||||||
“Pro-Gln-Ser-Pro-Cys-Lys-Arg-Val-Asn-Arg-His-Ser” | |||||||||
Mung bean | Bromelain | <1 kDa | 0.69 mg/mL | 20 | MPH/−19 mmHg/24 h. | * NR | * NR | [15] | |
42.90 mg/mL | 20 | F4-P10 YADLVE/−27 mmHg/24 h. | * NR | “Tyr-Ala-Asp-Lue-Val-Glu.” | * NR | ||||
lima bean | Pepsin–Pancreatin | >3 kDa | 60.15% or 172.62 µg/mL | 15 | * NR | >3 kDa/51%/3 week | * NR | * NR | [82] |
Peanut | Alcalase + N120P | <1 kDa (PP-II) | 85.77 or 0.091 mg/mL | 100 500 1000 | P8/145 mmHg/3 h P8/136 mmHg/3 h P8/134 mmHg/3 h | Over 160 mmHg/1 week | Lys-Leu-Tyr-Met-Arg-Pro. (P8). | 0.0052 mg/mL | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawalbeh, D.; Al-U’datt, M.H.; Wan Ahmad, W.A.N.; Ahmad, F.; Sarbon, N.M. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules 2023, 28, 2423. https://doi.org/10.3390/molecules28062423
Tawalbeh D, Al-U’datt MH, Wan Ahmad WAN, Ahmad F, Sarbon NM. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules. 2023; 28(6):2423. https://doi.org/10.3390/molecules28062423
Chicago/Turabian StyleTawalbeh, Deia, Muhammad H. Al-U’datt, Wan Amir Nizam Wan Ahmad, Fisal Ahmad, and Norizah Mhd Sarbon. 2023. "Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates" Molecules 28, no. 6: 2423. https://doi.org/10.3390/molecules28062423
APA StyleTawalbeh, D., Al-U’datt, M. H., Wan Ahmad, W. A. N., Ahmad, F., & Sarbon, N. M. (2023). Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules, 28(6), 2423. https://doi.org/10.3390/molecules28062423