Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Detection of Leptospira
2.2. In Vitro Anti-Leptospiral Activity
2.3. The Anti-Hemolytic Activity of the Pseudopeptide
2.4. Sphingomyelinase Enzyme Assay
2.5. Protein Structure Validation and Binding Site Prediction
2.6. Molecular Docking Studies
2.6.1. Synthesized Pseudopeptides Interacting with 4HZI Protein
2.6.2. Synthesized Pseudopeptides Interacting with 2ZZ8 Protein
2.6.3. Synthesized Pseudopeptides Interacting with Citrate Synthase of Leptospira Interrogans
2.7. Molecular Dynamics Simulation
3. Material and Methods
3.1. Isolation and Identification of Leptospira Isolates
3.2. Synthesis of Pseudopeptide
3.3. Polymerase Chain Reaction (PCR)
3.4. In Vitro Anti-Leptospiral Activity
3.5. Hemolytic Activity
3.6. Cell Lines and Cultivation
3.7. Sphingomyelinase Enzyme Assay
3.8. In Silico Analysis
3.8.1. Protein Structure Preparation and Validation
3.8.2. Ligand Preparation
3.8.3. Molecular Docking and Visualization
3.8.4. Molecular Dynamics (MD) Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Buyuktimkin, B.; Saier, M.H.J. Comparative analyses of transport proteins encoded within the genomes of Leptospira species. Microb. Pathog. 2016, 98, 118–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouts, D.E. What Makes a Bacterial Species Pathogenic?: Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl. Trop. Dis. 2016, 10, e0004403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, L.M. Human leptospirosis: Seroreactivity and genetic susceptibility in the population of São Miguel Island (Azores, Portugal). PLoS ONE 2014, 9, e108534. [Google Scholar] [CrossRef]
- Reller, M.E. Unsuspected leptospirosis is a cause of acute febrile illness in Nicaragua. PLoS Negl. Trop. Dis 2014, 8, e2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haake, D.A.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar]
- Witchell, T.D. Post-translational modification of LipL32 during Leptospira interrogans infection. PLoS Negl. Trop. Dis. 2014, 8, e3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopi, C.; Sri, C.S.; Krupamai, G.; Magesh, A.; Dhanaraju, M.D. Recent Progress in the Treatment of Leptospirosis. SN Compr. Clin. Med. 2021, 3, 1018–1025. [Google Scholar] [CrossRef]
- Shivamallu, C.; Sharanaiah, U.; Kollur, S.P.; Mallesh, N.K.R.; Hosakere, R.D.; Balamurugan, V. Pseudopeptides as novel antileptospiral agents: Synthesis and spectral characterization. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2014, 118, 1152–1157. [Google Scholar] [CrossRef]
- Amutha, R.; Chaudhuri, P.; Garg, A.P.; Cheema, P.S.; Srivastava, S.K. Immunoreactive outer membrane proteins of Leptospira interrogans serovar Canicola strain Hond Utrecht IV. Indian J. Med. Res. 2006, 124, 569–574. [Google Scholar]
- Tian, Y.C. Leptospiral outer membrane protein induces extracellular matrix accumulation through a TGF-beta1/Smad-dependent pathway. J. Am. Soc. Nephrol. 2006, 17, 2792–2798. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.A. New model of self-resolving leptospirosis in mice infected with a strain of Leptospira interrogans serovar Autumnalis harboring LPS signaling only through TLR4. Emerg. Microbes Infect. 2017. 6, e36.
- Narkkul, U.; Thaipadungpanit, J.; Srilohasin, P.; Singkhaimuk, P.; Thongdee, M.; Chaiwattanarungruengpaisan, S.; Krairojananan, P.; Pan-ngum, W. Optimization of Culture Protocols to Isolate Leptospira spp. from Environmental Water, Field Investigation, and Identification of Factors Associated with the Presence of Leptospira spp. in the Environment. Trop. Med. Infect. Dis. 2020, 5, 94. [Google Scholar] [CrossRef]
- Balamurugan, K.; Sterneck, E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int. J. Biol. Sci. 2013, 9, 917. [Google Scholar] [CrossRef] [PubMed]
- Meenambigai, T.V.; Ravikumar, G.; Srithar, A.; Balakrishnan, G.; Saranya, C.; Muralimanohar, B. Simultaneous detection of LipL32 and LipL21 genes of pathogenic leptospira from serum samples of bovines by multiplex PCR. Vet. Sci. Dev. 2011, 1, e15. [Google Scholar] [CrossRef]
- Chandan, S. Potential antileptospiral constituents from Phyllanthus amarus. Pharmacogn. Mag. 2020, 16, 371. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Zou, X. Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions. J. Chem. Inf. Model. 2010, 50, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Vivian, J.P. Crystal structure of LipL32, the most abundant surface protein of pathogenic Leptospira spp. J. Mol. Biol. 2009, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Bienert, S. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Dassault Systèmes. BIOVIA Discovery Studio. Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment, Release 2017. Available online: http://accelrys.com/products/collaborative-science/biovia-discovery-studio/ (accessed on 27 October 2022).
- Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park,, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y.; et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.S. In-silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J. Biol. Sci. 2021, 28, 1040–1051. [Google Scholar] [CrossRef]
- Bordoli, E. Curricular design for competencies in basic education in Uruguay: Positions and current debates (2008–2019). Comp. Educ. 2021, 57, 67–82. [Google Scholar] [CrossRef]
- Dharmashekara, C. Virtual screening of potential phyto-candidates as therapeutic leads against SARS-CoV-2 infection. Environ. Chall. 2021, 4, 100136. [Google Scholar] [CrossRef]
- Shreevatsa, B. Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy. Molecules 2021, 26, 6863. [Google Scholar] [CrossRef]
- Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef] [Green Version]
- Radwan, M.A.A.; Alshubramy, M.A.; Abdel-Motaal, M.; Hemdan, B.A.; El-Kady, D.S. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivative. Bioorg. Chem. 2020, 96, 103516. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, R.G. Antibacterial activity of terpenoids isolated from Cnidoscolus quercifolius Pohl (Euphorbiaceae), a Brazilian medicinal plant from Caatinga biome. Eur. J. Integr. Med. 2018, 24, 30–34. [Google Scholar] [CrossRef]
- Umamaheswari, A.; Pradhan, D.; Hemanthkumar, M. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J. Chem. Biol. 2010, 3, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Wolkmer, P. Pre-treatment with curcumin modulates acetylcholinesterase activity and proinflammatory cytokines in rats infected with Trypanosoma evansi. Parasitol. Int. 2013, 62, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, A. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans. Infect. Immun. 2014, 82, 2542–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, A.; Goarant, C.; Picardeau, M. Leptospira: The dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 2009, 7, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Arulmoli, T.; Fun, H.-K. Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab. J. Chem. 2013, 6, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Yalin, W.; Lingbing, Z.; Hongliang, Y.; Jianmin, X.; Xiangyan, Z.; Xiaokui, G.; Utpal, P.; Jinhong, Q. High prevalence of pathogenic Leptospira in wild and domesticated animals in an endemic area of China. Asian Pac. J. Trop. Med. 2011, 4, 841–845. [Google Scholar] [CrossRef] [Green Version]
- Ismail, C.A.; Deris, Z.Z.; Bakar, R.A.; Ismail, N. In Vitro Anti-Leptospiral Activity of Phyllanthus amarus Extracts and Their Combinations with Antibiotics. Int. J. Environ. Res. Public Health 2021, 18, 6. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptide. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef]
Genotype/Strain | MIC(µg/mL) | MIC(µg/mL) |
---|---|---|
L. interrogans/pomona | 6.8/6.8 | 58.4/37.8 |
Isolate 1 | 6.8/6.8 | 58.4/37.8 |
Isolate 2 | 6.8/6.8 | 58.4/37.8 |
MIC(µg/mL) | 6.8 | 58.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmashekar, C.; Shreevatsa, B.; Jain, A.S.; Harendra, B.; Pradeep, S.; Vishwanath, P.M.; Singh, P.; V, B.; KK, V.; Patil, S.S.; et al. Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach. Molecules 2023, 28, 1106. https://doi.org/10.3390/molecules28031106
Dharmashekar C, Shreevatsa B, Jain AS, Harendra B, Pradeep S, Vishwanath PM, Singh P, V B, KK V, Patil SS, et al. Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach. Molecules. 2023; 28(3):1106. https://doi.org/10.3390/molecules28031106
Chicago/Turabian StyleDharmashekar, Chandan, Bhargav Shreevatsa, Anisha S. Jain, Bhavana Harendra, Sushma Pradeep, Prashanth M. Vishwanath, Pranav Singh, Balamurugan V, Vinod KK, Sharanagouda S. Patil, and et al. 2023. "Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach" Molecules 28, no. 3: 1106. https://doi.org/10.3390/molecules28031106
APA StyleDharmashekar, C., Shreevatsa, B., Jain, A. S., Harendra, B., Pradeep, S., Vishwanath, P. M., Singh, P., V, B., KK, V., Patil, S. S., Shati, A. A., Alfaifi, M. Y., Elbehairi, S. E. I., Amachawadi, R. G., Kollur, S. P., & Shivamallu, C. (2023). Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach. Molecules, 28(3), 1106. https://doi.org/10.3390/molecules28031106