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Abstract: Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare
complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected
tropical zoonotic disease worldwide. The adaptation to various environmental conditions has
made Leptospira acquire a large genome (~4.6 Mb) and a complex outer membrane, making it
unique among bacteria that mimic the symptoms of jaundice and hemorrhage. Sph2 is another
important virulence factor that enhances hemolytic sphingomyelinase—capable of moving inside
mitochondria—which increases the ROS level and decreases the mitochondrial membrane potential,
thereby leading to cell apoptosis. In the present study, 25 suspected bovine serum samples were
subjected to the Microscopic Agglutination Test (MAT) across the Mysuru region. Different samples,
such as urine, serum, and aborted materials from the confirmed MAT-positive animals, were used for
isolation and genomic detection by conventional PCR targeting virulence gene, Lipl32, using specific
primers. Further, in vitro and in silico studies were performed on isolated cultures to assess the anti-
leptospiral, anti-hemolytic, and sphingomyelinase enzyme inhibition using novel pseudopeptides.
The microdilution technique (MDT) and dark field microscope (DFM) assays revealed that at a
concentration of 62.5 µg/mL, the pseudopeptide inhibited 100% of the growth of Leptospira spp.,
suggesting its efficiency in the treatment of leptospirosis. The flow cytometry analyses show the
potency of the pseudopeptide against sphingomyelinase enzymes using human umbilical vein
endothelial cells (HUVECs). Thus, the present study demonstrated the efficacy of the pseudopeptide
in the inhibition of the growth of Leptospira, and therefore, this can be used as an alternative drug for
the treatment of leptospirosis.

Keywords: Leptospira; Microscopic Agglutination Test (MAT); pseudopeptide; sphingomyelin
enzymes; molecular docking
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1. Introduction

Leptospirosis, a zoonotic disease, is among several bacterial infections caused by
Leptospira interrogans, belonging to the genus Leptospira, which comprises over 22 species
under the pathogenic and saprophytic categories [1]. Recently, it has been reported that
leptospiral outbreaks have increased due to human activities such as tourism within
wildlife areas and army expeditions for training and other combat purposes. Globally,
about 350,000–500,000 fatalities occur due to leptospirosis alone, and it is still underrated
due to inadequate awareness and diagnosis. Therefore, leptospirosis-caused infections are
still one of the leading zoonotic diseases, resulting in millions of morbidities worldwide [2].
It has a greater incidence in developing countries; however, is of great concern to developed
countries as well due to its higher rates of incidence [3].

Leptospira is a gram-negative bacterium with rats, dogs, and cattle as its primary
hosts. These primary hosts are mostly asymptomatic, with notable pathogenesis observed
upon infection in humans—ranging from mild to severe symptoms [4]. They often enter
the human body systems through the consumption of fecal-contaminated food and water,
mainly during disasters, such as during natural calamities (floods and/or earthquakes).
The disease causes mild symptoms ranging from common colds and myalgia to severe
symptoms such as jaundice, hepatitis, hemorrhage, bleeding of the gastrointestinal tract,
conjunctiva suffusion, myocarditis, uveitis, and others [5]. Prolonged illness and suffering
ultimately lead to mortality. At the onset, the symptoms are often mild and go unnoticed,
but are followed by an overwhelming relapse, causing drastic damage to the infected
person in a short period [6]. More often, the symptoms of leptospirosis overlap with other
common diseases such as jaundice, influenza, dengue, and Weil’s disease, and therefore,
symptomatic diagnosis is inaccurate [7]; moreover, timely diagnosis is extremely difficult,
ultimately leading to infection for an extended time. In turn, this delay in detection
causes chronic conditions with damage to the kidney, liver, and meningitis, ultimately
leading to death. Most often, benzylpenicillin and doxycycline are the standard drugs
used for treatment, but they are associated with adverse effects such as anaphylaxis.
Some of the Leptospira spp. also develop drug resistance, causing challenges in treating
them efficiently [8,9]. These pathogens are also known as hemolyse erythrocytes due
to the presence of unique sphingomyelinase activity. The sphingomyelinase enzymes
catalyze the hydrolysis of sphingomyelin into phosphorylcholine and ceramide. Depending
upon optimum pH, their enzymatic activity can be either alkaline, acidic, or neutral.
Both sphingomyelinase and the hemolytic activity were expressed from a single gene,
which were further designated as sphA. The members of sphingomyelinase exhibit a
similar sequential structure found in both S. aureus and Bacillus subtilis. The members
of sphingomyelinase enzymes play a crucial role in cytotoxicity towards lymphocytes
and macrophages as they are an integral part of leptospirosis. These adverse effects have
raised the need for an antibiotic alternative therapy for the treatment of leptospirosis.
The present study focuses on the anti-leptospirosis activity of pseudopeptides, which are
known for their potential antimicrobial activity, mimicking the action of naturally occurring
peptides [10]. However, they have the additional benefit of enhanced stability due to the
presence of modified amino acids that cannot be easily degraded by enzymes. Furthermore,
the peptide bond, unlike the true bond formation between the CO-NH associated with
the α-carbon atom, is bound to a carbon other than the α-carbon atom, thus rendering it
less susceptible to degradation [11]. Thus, the synthesized pseudopeptides can be a great
antibiotic alternative to conventional drugs as they mimic the function of natural peptides,
are more biocompatible, possess greater stability and half-life than naturally occurring
peptides, and can be used as an alternative drug against virulent Leptospiral species [12].
The aim of this study was to investigate the anti-leptospiral activity of the pseudopeptide-
targeting sphingomyelinase enzyme both by in silico and in vitro approaches.
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2. Results and Discussion
2.1. Molecular Detection of Leptospira

The proposed 16S rRNA G1 and G2 primers have been proven to be highly specific to L.
interrogans serovars hardjo and copenhagen, and they exclusively amplify genes in genomic
DNA extracted using the phenol chloroform isoamyl alcohol method. This established that
the MAT development observed on solid medium was caused by L. interrogans hardjo by
confirming the specificity of the primers to the respective genes of certain serovars, such
as hardjo and copenhagen. Since the primers were headed for amplification of metabolic
genes, such as designed 16S and G1 and G2 primers, which are very necessary and unique
for Leptospiral development and survival, this approach did not generate false-positive
findings. The PCR amplification conditions were optimized with a gradient PCR protocol
where the gradient for annealing temperature was set from 49 ◦C to 55 ◦C for 1 min based
on the hypothetical Tm value that was calculated while designing a primer, along with
varying concentrations of genomic DNA ranging from 5 ng to 50 ng concentrations. All the
genes were found to amplify well at a 10 ng concentration of genomic DNA (Figure 1).
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Figure 1. PCR amplification of Leptospiral DNA using primer sets G1/G2. Expected PCR product
size of 285 bp obtained using both primer sets from strains belonging to the Ethidium bromide-
stained agarose gel showing PCR products. Lane M: Molecular size marker 100 bp DNA Lad-
der. Lane 1: Positive control (Reference: Hardjo strain), Lane 2: Negative control (Staphylococcus
Spp), Lane 3: No template control, 4: Positive isolate (KVAFSU_BANG_KAR I), 5: Positive isolate
(KVAFSU_BANG_KAR II), 6: Negative sample.

2.2. In Vitro Anti-Leptospiral Activity

The pseudopeptide was evaluated for its anti-leptospiral activity using microdilution
and the dark field microscopic technique against two isolated and one standard strain, L.
pamona (Figure 2). It was observed that during the microdilution test, the pseudopeptide
showed good inhibitory activity for both the isolates and also at concentrations of 31.25 µg,
and L. pamona showed inhibition at a concentration of 62.5 µg upon treatment using
the pseudopeptide.
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2.3. The Anti-Hemolytic Activity of the Pseudopeptide

RBCs infected with Leptospira sp. were effectively inhibited by pseudopeptide and
benzylpenicillin. While pseudopeptide exhibited 85% inhibition of hemolysis at 100 µg per
100 µL concentrations, benzylpenicillin showed 75% inhibition at the same concentration
(Figure 3).
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Figure 3. Antihemolytic profile of pseudopeptide exhibiting 30% inhibition of hemolysis at 25 µg
per 100 µL concentration, with the highest inhibition of hemolysis of 85% at 100 µg per 100 µL
concentration; whereas benzylpenicillin exhibits 20% inhibition of hemolysis at 25 µg per 100 µL
concentration, with the highest inhibition of hemolysis of 75% at 100 µg per 100 µL concentration.

2.4. Sphingomyelinase Enzyme Assay

An increase of ROS and decrease of the mitochondrial membrane led to cell apoptosis.
Hence, in the present study, we evaluated the mechanism of Sph2 that causes cell apoptosis
in HUVEC cells. Flow cytometry was used to investigate the apoptosis levels in HUVEC
cells with a combination of FITC-conjugated annexin V, pseudopeptide, and propidium
iodide (PI) stain in a time-dependent manner, which shown in Figure 4. The addition of
pseudopeptide resulted in a significant reduction of apoptosis in HUVEC cells from 48% to
18%. Further, Hoechst 33,342 staining was used to examine the morphological changes of
cellular nuclei and cell apoptosis.
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2.5. Protein Structure Validation and Binding Site Prediction

The Ramachandran plots of the selected Leptospira interrogans proteins were initially
checked, but initial validation revealed less than 90% of residues in the allowed region.
However, after refinement, the proteins revealed considerably better percentages of residues
in the allowed region, indicating that the proteins are stable enough to move forward with
further molecular docking studies. The geometrical assessment of backbone psi and phi
dihedral angles of all Leptospiral proteins revealed that 89.7%, 90.8%, and 91.8% of residues
fell into the most favored regions of the proteins’ ATPase subunit of an orphan ABC
transporter, LipL32, and citrate synthase of Leptospira interrogans, respectively. According
to the PROCHECK results, the predicted models were of good quality. Figure 5 shows the
percentage of residues in the favored, allowed, and outlier regions of all three proteins. The
CASTp server revealed all surface pockets in protein structures, together with their exact
volume and area, as well as detailed information on all atoms involved in their formation.
(Figure 6)
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Figure 5. Ramachandran plots generated by PROCHECK tool. The residues are shown in the most
favored (red), further allowed (yellow), liberally allowed (light yellow), and disallowed zones (white).

2.6. Molecular Docking Studies

In order to identify the mode of action of the designed pseudopeptide, its interactions
with some of the important Leptospiral proteins for cell survival were evaluated. The
findings of the present study revealed that the pseudopeptide showed a potential inhibition
against all three selected Leptospira interrogans proteins.

2.6.1. Synthesized Pseudopeptides Interacting with 4HZI Protein

The docking analysis and visualization of the 4HZI protein are shown with the pseu-
dopeptide. The pseudopeptide shows good binding affinity (−8 Kcal/mol) and ASP-86,
ILE-84, ASN-162, GLY-107, and LEU-108 were the amino acids involved in the docking
interaction at the binding pocket of the 4HZI protein, which are shown in Figure 7.
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2.6.2. Synthesized Pseudopeptides Interacting with 2ZZ8 Protein

The docking analysis and visualization of the 2ZZ8 protein with pseudopeptide are
shown in Figure 8. The pseudopeptide showed a comparatively greater binding affinity
of −6.9 Kcal/mol. The amino acids that were involved in the docking interaction at the
binding pocket of the 2ZZ8 protein include SER-36, PRO-216, and PHE-215.
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2.6.3. Synthesized Pseudopeptides Interacting with Citrate Synthase of
Leptospira Interrogans

The docking analysis and visualization of the citrate synthase protein with pseudopep-
tide were shown in Figure 9. The docking analysis estimated a good binding affinity
(−7.7 Kcal/mol), and the amino acids involved in the docking interaction at the binding
pocket of the citrate synthase protein include GLU-230, CYS-233, HIS-306, and ARG-315.
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2.7. Molecular Dynamics Simulation

For MD simulations, pseudopeptide docked with 4HZI, the Leptospira interrogans
ATPase subunit of an orphan ABC transporter that was considered, as it showed the
highest binding affinity when compared to other proteins. In this study, the CHARMM36
all-atom force field of GROMACS 2021 was used to perform MD simulations for the
pseudopeptides to evaluate their binding interactions with the target protein. A total
of 100 ns MD simulations were run for the complex. Figure 10 shows the root square
mean deviation (RMSD) of the docked complex over the simulation time. The RMSD of
the protein backbone with respect to the starting conformation versus simulation time
were displayed to examine the global behavior of the tested systems. The RMSD of the
pseudopeptide gradually increased and stabilized at 50 ns. Smaller fluctuations were
observed for the pseudopeptide RMSD graph. Using 100 ns simulation trajectories, the
number of H-bonds between ligand and protein was investigated (Figure 11). The docked
complex of the pseudopeptide and Leptospira interrogans ATPase subunit of an orphan ABC
transporter indicated three hydrogen bonds, at most, with an average of one hydrogen
bond throughout the simulation time.
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3. Material and Methods
3.1. Isolation and Identification of Leptospira Isolates

Isolation and identification of Leptospira isolates have been carried out in differ-
ent samples, such as humans and domestic animals—including cattle and pigs—as well
as different environments such as natural landscapes, agricultural fields, rural settle-
ments, and urban areas. The isolation procedure was followed as per the method given
by Narkkul et al. [, with minor modifications. Briefly, the sample collected from the
serum/blood/urine/tissue were inoculated (1–2 drops) directly into the selective media,
called EMJH (Ellinghausen and McCullough, modified by Johnson and Harris) medium,
which contains 500 µg of 5-fluorouracil per mL at room temperature. After the incuba-
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tion period of 14 days, the cultures were filtered through a 0.2 µm membrane filter and
sub-cultured periodically from 8 to 10 weeks. After successful isolation, the cultures were
stored in EMJH medium until further use and sub-cultured periodically to maintain the
viability of the organism [13].

3.2. Synthesis of Pseudopeptide

The pseudopeptide was synthesized using the previously reported method [8]. A
general overview of the synthetic route of the pseudopeptide under study is depicted in
Figure 12.
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3.3. Polymerase Chain Reaction (PCR)

The Leptospira isolates were subjected to genomic DNA extraction using a QIAmp
DNA mini kit (Qiagen, Valencia, CA, USA) as per the manufacturer’s instructions. PCR
was performed using G1 and G2 primers (G1 5′-CTG AAT CGC TGT ATA AAA GT 3′ and
G2 5′-GGA AAA CAA ATG GTC GGA AG-3′) that targeted Leptospira genus-specific secY
gene (ACD46818.1) methodology described elsewhere Meenambigai et al [14]. DNA of
L. interrogans serovar Hardjo and Staphylococcus spp. were used in PCR as positive and
negative controls, respectively.

3.4. In Vitro Anti-Leptospiral Activity

The in vitro anti-leptospiral activity by microdilution and dark field microscope assays
was performed with 96-well microtiter plates as per the previously published procedure [15].
Briefly, each plate included a positive control (bacteria), negative control (EMJH media only),
and synthesized pseudopeptide with varying concentrations ranging from 25, 50, 75, 100,
125, and 150 µg/mL, while benzylpenicillin (25 µg/mL) was used as the standard control
drug. One-hundred microliters of leptospiral inoculum containing 2 × 106 leptospiral
organism per ml were added to 96-well plates to increase the final volume to 200 µL
and the plates were incubated in 30 ◦C. After three days of incubation, 20 µL of 10-times
concentrated alamarBlue was added to all wells. No change of color from dark blue to pink
shows the potency of pseudopeptides at different concentrations and were compared with
a standard drug, benzyl penicillin. Furthermore, the viable cells were treated with varying
concentrations (5 µL each tube) of the test sample in a microtiter plate. The plates were
mixed thoroughly by covering it with aluminum foil and incubated for 30 min at room
temperature. The organism was then observed under the dark field microscope to assess
the extent of inhibition, and the obtained results were tabulated as MIC (Table 1).
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Table 1. MIC of pseudopeptide against isolated Leptospira species by microdilution technique (MDT).

Genotype/Strain MIC(µg/mL) MIC(µg/mL)

L. interrogans/pomona 6.8/6.8 58.4/37.8
Isolate 1 6.8/6.8 58.4/37.8
Isolate 2 6.8/6.8 58.4/37.8

MIC(µg/mL) 6.8 58.4
Broth microdilution (micro) MICs (run 1/run 2 for each) are given in micrograms per milliliter (units per milliliter
for penicillin G).

3.5. Hemolytic Activity

The effects of the pseudopeptide on hemolysis were assessed in vitro, which is one
of the many symptoms of leptospirosis. The assay was performed as per the previously
published procedure [16]. Briefly, 5 mL of blood was collected into a tube containing
trisodium citrate (anticoagulant) from healthy volunteers not under non-steroidal anti-
inflammatory drug (NSAIDs) administration up to two weeks before the blood collection.
This was subjected to centrifugation for 5 min at 3000 rpm to separate plasma and RBCs.
The erythrocytes were collected by discarding the supernatant, which was then washed
thrice using phosphate buttered saline. The pellet was further suspended in the same
buffer (1:9 dilution) and used within 6 h. Aliquots of 50 µL of erythrocytes were taken
in four tubes, treated with 25 µL of each of the five Leptospira strains, and incubated at
room temperature for 30 min along with triton-X100 as a positive control to demonstrate
100% hemolysis. This incubation facilitates the Leptospira sp. to infect the erythrocytes.
In the post-incubation period, 100 µL of varying concentrations (25, 50, 75, 100, 125, and
150 µg) of the pseudopeptide were added to all the tubes, including the control. The
standard drugs, penicillin and benzylpenicillin (50 µg/mL), were taken as standards for the
experiment with the same concentration as that of the pseudopeptide. The tubes were then
incubated in a water bath for 60 min at 37 ◦C. Furthermore, the tubes were subjected to
centrifugation at 3000 rpm for 3 min, and the supernatant was collected. The optical density
of the supernatant was evaluated at 540 nm with an erythrocyte- and phosphate-buffered
saline as a blank.

3.6. Cell Lines and Cultivation

Human vascular endothelial cell lines derived from umbilical cord vein, HUVEC cells,
were procured from American Type Culture Collection (ATCC CRL-4053). The cells were
cultured at 37 ◦C in RPMI 1640 media, 10% fetal bovine serum, and streptomycin and
penicillin (100 µg/mL) antibiotics in a 5% CO2 incubator.

3.7. Sphingomyelinase Enzyme Assay

The activity was performed by coupled assay using the Sphingomyelinase Assay Kit
(ThermoFischer Scientific, Amplex™,TX, USA) as per the manufacturer’s instructions. The
HUVEC cell lines were infected with L. interrogans as described previously by Jin et al [17].
To the infected cells, 150 µM of pseudopeptides labelled with FITC were added and incu-
bated at 37 ◦C for about 24 h. After incubation, the cell culture supernatant was discarded
and the intermediate-adhering leptospires were collected for the Sphingomyelinase as-
say. The Sphingomyelinase assay was performed in flat bottom black polystyrene 96-well
microtiter plates. The reaction mixture contains 100 µL of test sample and 100 µL of µM
Amplex red reagent (composed of 0.2 U/mL choline oxidase, 2 U/mL horseradish perox-
idase, 0.5 mM sphingomyelin, and 8 U/mL alkaline phosphatase) and was incubated at
37 ◦C for about 90 min. The obtained fluorescence color was measured both in excitation
and emission state with wavelengths ranging from 530 nm to 590 nm using Thermo Multi-
skan FC Microplate Reader. The reaction buffer without sphingomyelinase was used as a
negative control. The assay was repeated with three biological replicates.
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3.8. In Silico Analysis
3.8.1. Protein Structure Preparation and Validation

For the in silico study, three Leptospiral metabolic proteins were chosen. The struc-
ture of citrate synthase was modeled using homology modelling by the SWISS-MODEL
server [18], which is accessible via the Expasy web server and relies on the target and
template proteins’ evolutionary relationship. The sequence for modelling this protein was
obtained from NCBI under the accession number, WP_061270692. A search for homolo-
gous proteins in a library of experimentally known protein structures was used to identify
potential structural templates. The structures of the other two Leptospiral proteins, the
ATPase subunit of an orphan ABC transporter and LipL32 and the most abundant surface
proteins of pathogenic Leptospira spp., were taken from the RCSB Protein Data Bank [19]
with the PDB ID 4HZI [20] and 2ZZ8, each possessing a structure resolution of 1.85 Å and
2.01 Å, respectively (Figure 13).
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Model tool.

The selected protein structures were refined using the ModRefiner tool, which is acces-
sible via the Zhang Lab web server. Using the PROCEHCK program from the online server,
UCLA-DOE LAB—SAVES v6.0, the abovementioned protein structures were confirmed
and evaluated for precision based on the Ramachandran plot. The proteins’ binding sites
were identified using the CASTp (Computed Atlas of Surface Topography of Proteins 3.0)
tool [21]. In a protein structure, it provides all inner cavities and surface pockets (Figure 14).
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3.8.2. Ligand Preparation

H-NMR studies were used to predict the structure of the synthesized pseudopeptide.
For in silico molecular docking and molecular simulation investigations, this structure
was sketched using the ChemSketch 12.0 software. To obtain the pdb file, which is the
needed file format for docking studies, file format conversion was performed using the
OpenBabel GUI 2.4.1 [22]. BIOVIA Discovery Studio Visualizer 2020 [23] was used to fix up
the geometry of the sketched ligand (Figure 15). The visualization software, UCSF Chimera
1.15 [24], was used to perform the energy minimization.
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3.8.3. Molecular Docking and Visualization

The validated protein structures were considered as the target structures for molecular
docking analysis. The synthesized pseudopeptide was docked against the target leptospiral
proteins using the PyRx 0.8 [25] virtual screening tool; it aims to anticipate the possible
binding modalities of the three-dimensional structure of the complex based on the binding
capabilities of the pseudopeptide and the target protein [26,27]. The pseudopeptide was
docked using a genetic algorithm, in which the ligand undergoes conformational changes
to determine the lowest energy conformation, which is the most stable structure and the
most likely structure observed in in vivo systems. The best docking structure with the
lowest binding energy (Kcal/mol) was chosen. To determine the non-bonded interactions,
the docking complexes formed in molecular docking were further visualized using the
visualization tools, Chimera and BIOVIA Discovery Studio Visualizer.

3.8.4. Molecular Dynamics (MD) Simulations

After docking, an MD simulation was used to improve the final structures, examine
the stability of distinct complexes, and account for solvent effects and more accurate
binding energy calculations. The GROMACS 2021 was chosen as the best docked protein–
peptide complex, and it was chosen to examine the dynamic binding interactions of the
pseudopeptide with the target Leptospiral proteins. The NVT ensemble was performed
first, with the number of molecules (N), volume (V), and temperature (T) all maintained at
a constant, followed by the NPT ensemble, with the number of molecules (N), pressure (P),
and temperature (T) all kept constant. Finally, 100 ns MD simulations of the protein–peptide
complex were performed at 310 K and 1 bar atmospheric pressure. QtGrace was used to
plot the graphs from the resulting xvg files [28,29].

4. Discussion

Leptospira infections are usually treated with the antibiotics, tetracyclines. Knowing
how to treat leptospirosis with antibiotics requires in vivo clinical testing, which is typically
done on patients who have severe and recent Leptospira infections. Earlier studies have
examined the effectiveness and workings of novel chemotherapeutic compounds. This
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study is the first to demonstrate the effectiveness of tigecycline against Leptospira species
in vitro. In the present study, we have designed ligands based on their core structures,
which is unlike that of the terpenoid derivatives analyzed by de Oliveira et al. [30], which
makes this study a novel approach to the treatment and eradication of L. interrogans. Several
studies have reported on the anti-leptospiral activity of synthetic compounds that target
various pathways for bacterial growth. Umamaheshwari et al. [31] virtually screened
for various drug attributes by targeting the ATP-dependent MurD protein responsible for
peptidoglycan biosynthesis. Similarly, an in silico approach for the design of anti-leptospiral
molecules was carried out by Wolkmer et al. [32], who identified sodium curcuminate
and Gemichalcone B as the most likely compounds that are effective against inhibiting
pathways such as NF-kB and MAPK and their corresponding chemokines responsible
for tubular inflammation. However, these studies did not elucidate the precise pathway
and evaluate the potential of the drug attribute against pathogenic growth. In the present
study, the synthetic pseudopeptide was evaluated against the growth of different serotypes
of Leptospira, revealing promising results. Fernandes et al. [33] proved that non-receptor
serine/threonine kinase p38 is essential for tumour progression, cell proliferation, and
cell differentiation; moreover, increased levels of p38 increase the cytokine levels, which
promotes inflammation and the development of tumors. As a result, the protein, p38, was
selected as a target for avoiding the spread of inflammatory cancers. The development
measures helped in our decision to use human p38 as a drug target for the development of
herbal remedies for this disorder. Leptospira OMPs may cause tubulointerstitial nephritis
and necrosis through a pathway that is based on Toll-like receptors (TLRs) [34]. The findings
suggest that the designed pseudopeptide could be used as a potential anti-leptospiral agent
after further studies on its toxicity, bioavailability, and kinetics. Molecular docking forms
an essential tool in the discovery and design of new drugs [35]. It is a default process to
identify and analyze docking introduction in drug discovery and forms the basis for the
design and analysis of novel drugs against a specific target protein [36]. Several studies
have reported the use of molecular docking to understand the probable mechanism of
action for various drugs, including antimicrobial agents [37]. The degree of protein–ligand
complex interaction is commonly referred to as the binding affinity in molecular docking
investigations. The ligand’s ability to bind to the target depends on its affinity. The
pseudopeptide showed the highest binding affinities and lowest binding energies for the
chosen target proteins [38]. The target proteins had binding energies between −8 Kcal/mol
and −6.9 kcal/mol, and at least three to five hydrogen bonds were formed. The current
study concludes that pseudopeptides have an effective anti-leptospiral activity based on
the binding energy obtained, regardless of whether the interactions between the target and
ligand are bonded or non-bonded.

5. Conclusions

This current work focuses on the inhibition of metabolism in Leptospira to inhibit
its growth and propagation instead of inhibiting the protein synthesis, as is the case for
conventional antibiotics. This approach not only inhibits the growth of Leptospira, but
also instantly kills the organism. Conventional antibiotics take a longer time to act on
Leptospiral inhibition and their effect can be overcome by Leptospira with the help of
drug resistance proteins such as multidrug efflux protein, which make the drug ineffective.
However, in the case of the metabolic inhibition approach, the organism does not have
enough time to cope and develop a resistance mechanism, thereby reducing the chance
for development of resistance against the inhibitory molecule. Interestingly, our study
has provided remarkable evidence for the efficiency of synthesized pseudopeptides in
inhibiting the growth of Leptospira. The in vitro efficacy evaluated using the MDT and
DFM assays revealed that the pseudopeptides were effective against isolated leptospiral
pathogens, which was further supported by the in silico evaluation of Leptospiral metabolic
proteins. The promising results from this study suggest that this pseudopeptide could be
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further evaluated in vivo in order to check for its bioavailability and kinetics for usage as
an anti-leptospiral drug.
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