Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = pseudopeptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1412 KB  
Article
Structure Elucidation, Biosynthetic Gene Cluster Distribution, and Biological Activities of Ketomemicin Analogs in Salinispora
by Gabriel Castro-Falcón, Dulce G. Guillén-Matus, Elany Barbosa Da Silva, Wentao Guo, Alicia Ross, Mateus Sá Magalhães Serafim, Thaís Helena Maciel Fernandes, Dean J. Tantillo, Anthony J. O’Donoghue and Paul R. Jensen
Mar. Drugs 2025, 23(3), 126; https://doi.org/10.3390/md23030126 - 14 Mar 2025
Cited by 1 | Viewed by 3385
Abstract
Pseudopeptides are attractive agents for protease inhibition due to their structural similarities to the natural substrates of these enzymes, as well as their enhanced stability and resistance to enzymatic degradation. We report three new ketomemicin pseudopeptides (13) from extracts [...] Read more.
Pseudopeptides are attractive agents for protease inhibition due to their structural similarities to the natural substrates of these enzymes, as well as their enhanced stability and resistance to enzymatic degradation. We report three new ketomemicin pseudopeptides (13) from extracts of the marine actinomycete Salinispora pacifica strain CNY-498. Their constitution and relative configuration were elucidated using NMR, mass spectrometry, and quantum chemical calculations. Using GNPS molecular networking and publicly available Salinispora LCMS datasets, five additional ketomemicin analogs (48) were identified with ketomemicin production detected broadly across Salinispora species. The ketomemicin biosynthetic gene cluster (ktm) is highly conserved in Salinispora, occurring in 79 of 118 public genome sequences, including eight of the nine named species. Outside Salinispora, ktm homologs were detected in various genera of the phylum Actinomycetota that might encode novel ketomemicin analogs. Ketomemicins 13 were tested against a panel of eleven proteases, with 2 displaying moderate inhibitory activity. This study describes the first report of ketomemicin production by Salinispora cultures, the distribution of the corresponding biosynthetic gene cluster, and the protease inhibitory activity of new ketomemicin derivatives. Full article
(This article belongs to the Special Issue Omics Technologies and Marine Microbial Natural Product Discovery)
Show Figures

Graphical abstract

18 pages, 6140 KB  
Article
Influence of Molecular Design on the Tumor Targeting and Biodistribution of PSMA-Binding Tracers Labeled with Technetium-99m
by Ekaterina Bezverkhniaia, Panagiotis Kanellopoulos, Ulrika Rosenström, Vladimir Tolmachev and Anna Orlova
Int. J. Mol. Sci. 2024, 25(7), 3615; https://doi.org/10.3390/ijms25073615 - 23 Mar 2024
Cited by 1 | Viewed by 2674
Abstract
Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that [...] Read more.
Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand’s total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed. Full article
(This article belongs to the Special Issue Prostate Cancer: Novel Research and Innovative Therapeutic Strategies)
Show Figures

Figure 1

15 pages, 9221 KB  
Article
Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach
by Chandan Dharmashekar, Bhargav Shreevatsa, Anisha S. Jain, Bhavana Harendra, Sushma Pradeep, Prashanth M. Vishwanath, Pranav Singh, Balamurugan V, Vinod KK, Sharanagouda S. Patil, Ali A. Shati, Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Raghavendra G. Amachawadi, Shiva Prasad Kollur and Chandan Shivamallu
Molecules 2023, 28(3), 1106; https://doi.org/10.3390/molecules28031106 - 22 Jan 2023
Cited by 4 | Viewed by 3395
Abstract
Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected tropical zoonotic disease worldwide. The adaptation to various environmental conditions has made Leptospira acquire a large [...] Read more.
Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected tropical zoonotic disease worldwide. The adaptation to various environmental conditions has made Leptospira acquire a large genome (~4.6 Mb) and a complex outer membrane, making it unique among bacteria that mimic the symptoms of jaundice and hemorrhage. Sph2 is another important virulence factor that enhances hemolytic sphingomyelinase—capable of moving inside mitochondria—which increases the ROS level and decreases the mitochondrial membrane potential, thereby leading to cell apoptosis. In the present study, 25 suspected bovine serum samples were subjected to the Microscopic Agglutination Test (MAT) across the Mysuru region. Different samples, such as urine, serum, and aborted materials from the confirmed MAT-positive animals, were used for isolation and genomic detection by conventional PCR targeting virulence gene, Lipl32, using specific primers. Further, in vitro and in silico studies were performed on isolated cultures to assess the anti-leptospiral, anti-hemolytic, and sphingomyelinase enzyme inhibition using novel pseudopeptides. The microdilution technique (MDT) and dark field microscope (DFM) assays revealed that at a concentration of 62.5 μg/mL, the pseudopeptide inhibited 100% of the growth of Leptospira spp., suggesting its efficiency in the treatment of leptospirosis. The flow cytometry analyses show the potency of the pseudopeptide against sphingomyelinase enzymes using human umbilical vein endothelial cells (HUVECs). Thus, the present study demonstrated the efficacy of the pseudopeptide in the inhibition of the growth of Leptospira, and therefore, this can be used as an alternative drug for the treatment of leptospirosis. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

11 pages, 8233 KB  
Article
Synergistic Activity of Pep16, a Promising New Antibacterial Pseudopeptide against Multidrug-Resistant Organisms, in Combination with Colistin against Multidrug-Resistant Escherichia coli, In Vitro and in a Murine Peritonitis Model
by Samuel Chosidow, Bruno Fantin, Irène Nicolas, Jean-Baptiste Mascary, Françoise Chau, Valérie Bordeau, Marie-Clemence Verdier, Pierre Rocheteau, Francois Guérin, Vincent Cattoir and Victoire de Lastours
Antibiotics 2023, 12(1), 81; https://doi.org/10.3390/antibiotics12010081 - 3 Jan 2023
Cited by 5 | Viewed by 3315
Abstract
Colistin is a drug of last resort to treat extreme drug-resistant Enterobacterales, but is limited by dose-dependent toxicity and the emergence of resistance. A recently developed antimicrobial pseudopeptide, Pep16, which acts on the cell membrane, may be synergistic with colistin and limit the [...] Read more.
Colistin is a drug of last resort to treat extreme drug-resistant Enterobacterales, but is limited by dose-dependent toxicity and the emergence of resistance. A recently developed antimicrobial pseudopeptide, Pep16, which acts on the cell membrane, may be synergistic with colistin and limit the emergence of resistance. We investigated Pep16 activity against Escherichia coli with varying susceptibility to colistin, in vitro and in a murine peritonitis model. Two isogenic derivatives of E. coli CFT073 (susceptible and resistant to colistin) and 2 clinical isolates (susceptible (B119) and resistant to colistin (Af31)) were used. Pep16 activity, alone and in combination with colistin, was determined in vitro (checkerboard experiments, time–kill curves, and flow cytometry to investigate membrane permeability). Toxicity and pharmacokinetic analyses of subcutaneous Pep16 were performed in mice, followed by the investigation of 10 mg/kg Pep16 + 10 mg/kg colistin (mimicking human concentrations) in a murine peritonitis model. Pep16 alone was inactive (MICs = 32–64 mg/L; no bactericidal effect). A concentration-dependent bactericidal synergy of Pep16 with colistin was evidenced on all strains, confirmed by flow cytometry. In vivo, Pep16 alone was ineffective. When Pep16 and colistin were combined, a significant decrease in bacterial counts in the spleen was evidenced, and the combination prevented the emergence of colistin-resistant mutants, compared to colistin alone. Pep16 synergizes with colistin in vitro, and the combination is more effective than colistin alone in a murine peritonitis by reducing bacterial counts and the emergence of resistance. Pep16 may optimize colistin use, by decreasing the doses needed, while limiting the emergence of colistin-resistant mutants. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

18 pages, 4441 KB  
Article
Quantum Dot-Based Screening Identifies F3 Peptide and Reveals Cell Surface Nucleolin as a Therapeutic Target for Rhabdomyosarcoma
by Dzhangar Dzhumashev, Andrea Timpanaro, Safa Ali, Andrea J. De Micheli, Kamel Mamchaoui, Ilaria Cascone, Jochen Rössler and Michele Bernasconi
Cancers 2022, 14(20), 5048; https://doi.org/10.3390/cancers14205048 - 14 Oct 2022
Cited by 7 | Viewed by 3415
Abstract
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to [...] Read more.
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to bind to two RMS cell lines, Rh30 and RD, using quantum dots Streptavidin and biotin-peptides conjugates as a model for nanoparticles. Four peptides revealed a very strong binding to RMS cells: NCAM-1-targeting NTP peptide, nucleolin-targeting F3 peptide, and two Furin-targeting peptides, TmR and shTmR. F3 peptide showed the strongest binding to all RMS cell lines tested, low binding to normal control myoblasts and fibroblasts, and efficient internalization into RMS cells demonstrated by the cytoplasmic delivery of the Saporin toxin. The expression of the nucleophosphoprotein nucleolin, the target of F3, on the surface of RMS cell lines was validated by competition with the natural ligand lactoferrin, by colocalization with the nucleolin-binding aptamer AS1411, and by the marked sensitivity of RMS cell lines to the growth inhibitory nucleolin-binding N6L pseudopeptide. Taken together, our results indicate that nucleolin-targeting by F3 peptide represents a potential therapeutic approach for RMS. Full article
(This article belongs to the Special Issue Targeted Therapies for Pediatric Solid Tumors)
Show Figures

Graphical abstract

18 pages, 3606 KB  
Article
Nucleolin Therapeutic Targeting Decreases Pancreatic Cancer Immunosuppression
by Matteo Ponzo, Anais Debesset, Mélissande Cossutta, Mounira Chalabi-Dchar, Claire Houppe, Caroline Pilon, Alba Nicolas-Boluda, Sylvain Meunier, Fabio Raineri, Allan Thiolat, Rémy Nicolle, Federica Maione, Serena Brundu, Carina Florina Cojocaru, Philippe Bouvet, Corinne Bousquet, Florence Gazeau, Christophe Tournigand, José Courty, Enrico Giraudo, José L. Cohen and Ilaria Casconeadd Show full author list remove Hide full author list
Cancers 2022, 14(17), 4265; https://doi.org/10.3390/cancers14174265 - 31 Aug 2022
Cited by 9 | Viewed by 4099 | Correction
Abstract
Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which [...] Read more.
Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma. Full article
(This article belongs to the Special Issue Tumor Vasculature and Immunity in Cancer)
Show Figures

Figure 1

17 pages, 2859 KB  
Article
Unravelling the Supramolecular Driving Forces in the Formation of CO2-Responsive Pseudopeptidic Low-Molecular-Weight Hydrogelators
by Ferran Esteve, Alexis Villanueva-Antolí, Belén Altava, Eduardo García-Verdugo and Santiago V. Luis
Gels 2022, 8(6), 390; https://doi.org/10.3390/gels8060390 - 20 Jun 2022
Cited by 3 | Viewed by 2499
Abstract
A new family of C2-symmetric pseudopeptides with a high functional density for supramolecular interactions has been synthetized through the attachment of four amino acid subunits to a diamino aliphatic spacer. The resulting open-chain compounds present remarkable properties as low-molecular-weight hydrogelators. The [...] Read more.
A new family of C2-symmetric pseudopeptides with a high functional density for supramolecular interactions has been synthetized through the attachment of four amino acid subunits to a diamino aliphatic spacer. The resulting open-chain compounds present remarkable properties as low-molecular-weight hydrogelators. The self-assembled 3D networks were characterized by SEM analyses, observing regular nanofibres with 80–100 nm diameters. Spectroscopic and molecular modelling experiments revealed the presence of strong synergic effects between the H-bonding and π–π interactions, with the best results obtained for the homoleptic tetra-pseudopeptide derived from l-Phe. In addition, these bioinspired hydrogels possessed pH- and CO2-responsive sol–gel transitions. The formation of ammonium carbamate derivatives in the presence of carbon dioxide led to a detrimental change in its adequate self-assembly. CO2 desorption temperatures of ca. 70 °C were assigned to the thermodynamically favoured recovery of the supramolecular gel. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Polymer Gels)
Show Figures

Graphical abstract

21 pages, 2820 KB  
Article
Development of Reduced Peptide Bond Pseudopeptide Michael Acceptors for the Treatment of Human African Trypanosomiasis
by Santo Previti, Roberta Ettari, Carla Di Chio, Rahul Ravichandran, Marta Bogacz, Ute A. Hellmich, Tanja Schirmeister, Sandro Cosconati and Maria Zappalà
Molecules 2022, 27(12), 3765; https://doi.org/10.3390/molecules27123765 - 11 Jun 2022
Cited by 12 | Viewed by 2928
Abstract
Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led [...] Read more.
Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led to a panel of inhibitors endowed with micro/sub-micromolar activity towards the protozoa. However, whilst impressive binding affinity against rhodesain has been observed, the limited selectivity towards the target still remains a hard challenge for the development of antitrypanosomal agents. In this paper, we report the synthesis, biological evaluation, as well as docking studies of a series of reduced peptide bond pseudopeptide Michael acceptors (SPR10SPR19) as potential anti-HAT agents. The new molecules show Ki values in the low-micro/sub-micromolar range against rhodesain, coupled with k2nd values between 1314 and 6950 M−1 min−1. With a few exceptions, an appreciable selectivity over human cathepsin L was observed. In in vitro assays against T. b. brucei cultures, SPR16 and SPR18 exhibited single-digit micromolar activity against the protozoa, comparable to those reported for very potent rhodesain inhibitors, while no significant cytotoxicity up to 70 µM towards mammalian cells was observed. The discrepancy between rhodesain inhibition and the antitrypanosomal effect could suggest additional mechanisms of action. The biological characterization of peptide inhibitor SPR34 highlights the essential role played by the reduced bond for the antitrypanosomal effect. Overall, this series of molecules could represent the starting point for further investigations of reduced peptide bond-containing analogs as potential anti-HAT agents Full article
(This article belongs to the Special Issue Medicinal Chemistry Studies of Neglected Diseases)
Show Figures

Figure 1

35 pages, 11431 KB  
Review
Synthetic Receptors Based on Abiotic Cyclo(pseudo)peptides
by Stefan Kubik
Molecules 2022, 27(9), 2821; https://doi.org/10.3390/molecules27092821 - 28 Apr 2022
Cited by 4 | Viewed by 2658
Abstract
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of [...] Read more.
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of subunits along the ring to facilitate the correlation between structure, conformation, and binding properties. Later, nonnatural amino acids as building blocks were also considered. With growing research in this area, cyclopeptides and related macrocycles developed into an important and structurally diverse receptor family. This review provides an overview of these developments, starting from the early years. The presented systems are classified according to characteristic structural elements present along the ring. Wherever possible, structural aspects are correlated with binding properties to illustrate how natural or nonnatural amino acids affect binding properties. Full article
(This article belongs to the Special Issue Synthetic Receptor Molecules for and with Amino Acids and Peptides)
Show Figures

Graphical abstract

14 pages, 2721 KB  
Article
Practical Synthesis of Phosphinic Dipeptides by Tandem Esterification of Aminophosphinic and Acrylic Acids under Silylating Conditions
by Paraskevi Kokkala, Kostas Voreakos, Angelos Lelis, Konstantinos Patiniotis, Nikolaos Skoulikas, Laurent Devel, Angeliki Ziotopoulou, Eleni Kaloumenou and Dimitris Georgiadis
Molecules 2022, 27(4), 1242; https://doi.org/10.3390/molecules27041242 - 12 Feb 2022
Cited by 4 | Viewed by 3512
Abstract
In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is [...] Read more.
In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is based on the tandem esterification of α-aminophosphinic and acrylic acids under silylating conditions in order to subsequently participate in a P-Michael reaction. The scope of the transformation was investigated by using a diverse set of readily available acrylic acids and (R)-α-aminophosphinic acids, and high yields were achieved in all cases. In most examples reported herein, the isolation of biologically relevant (R,S)-diastereoisomers became possible by simple crystallization from the crude products, thus enhancing the operational simplicity of the proposed method. Finally, functional groups corresponding to acidic or basic natural amino acids are also compatible with the reaction conditions. Based on the above, we expect that the practicality of the proposed protocol will facilitate the discovery of pharmacologically useful bioactive phosphinic peptides. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry 2021)
Show Figures

Graphical abstract

25 pages, 6095 KB  
Article
Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics
by Aleksandra Kotynia, Benita Wiatrak, Wojciech Kamysz, Damian Neubauer, Paulina Jawień and Aleksandra Marciniak
Int. J. Mol. Sci. 2021, 22(21), 12028; https://doi.org/10.3390/ijms222112028 - 6 Nov 2021
Cited by 13 | Viewed by 3485
Abstract
Antimicrobial peptides are a promising group of compounds used for the treatment of infections. In some cases, metal ions are essential to activate these molecules. Examples of metalloantibiotics are, for instance, bleomycin and dermcidin. This study is focused on three new pseudopeptides with [...] Read more.
Antimicrobial peptides are a promising group of compounds used for the treatment of infections. In some cases, metal ions are essential to activate these molecules. Examples of metalloantibiotics are, for instance, bleomycin and dermcidin. This study is focused on three new pseudopeptides with potential biological activity. The coordination behavior of all ligands with Cu(II) and Ni(II) ions has been examined. Various analytical methods such as potentiometric titration, UV-Vis and CD spectroscopies, and mass spectrometry were used. All compounds are convenient chelators for metal ion-binding. Two of the ligands tested have histidine residues. Surprisingly, imidazole nitrogen is not involved in the coordination of the metal ion. The N-terminal amino group, Dab side chains, and amide nitrogen atoms of the peptide bonds coordinated Cu(II) and Ni(II) in all the complexes formed. The cytotoxicity of three pseudopeptides and their complexes was evaluated. Moreover, their other model allowed for assessing the attenuation of LPS-induced cytotoxicity and anti-inflammatory activities were also evaluated, the results of which revealed to be very promising. Full article
(This article belongs to the Special Issue Bioactive Peptides in Human Health and Disease)
Show Figures

Figure 1

21 pages, 4934 KB  
Article
Nucleolin Aptamer N6L Reprograms the Translational Machinery and Acts Synergistically with mTORi to Inhibit Pancreatic Cancer Proliferation
by Mounira Chalabi-Dchar, Elisabeth Cruz, Hichem C. Mertani, Jean-Jacques Diaz, José Courty, Ilaria Cascone and Philippe Bouvet
Cancers 2021, 13(19), 4957; https://doi.org/10.3390/cancers13194957 - 1 Oct 2021
Cited by 4 | Viewed by 3385
Abstract
We previously showed that N6L, a pseudopeptide that targets nucleolin, impairs pancreatic ductal adenocarcinoma (PDAC) growth and normalizes tumor vessels in animal models. In this study, we analyzed the translatome of PDAC cells treated with N6L to identify the pathways that were either [...] Read more.
We previously showed that N6L, a pseudopeptide that targets nucleolin, impairs pancreatic ductal adenocarcinoma (PDAC) growth and normalizes tumor vessels in animal models. In this study, we analyzed the translatome of PDAC cells treated with N6L to identify the pathways that were either repressed or activated. We observed a strong decrease in global protein synthesis. However, about 6% of the mRNAs were enriched in the polysomes. We identified a 5′TOP motif in many of these mRNAs and demonstrated that a chimeric RNA bearing a 5‘TOP motif was up-regulated by N6L. We demonstrated that N6L activates the mTOR pathway, which is required for the translation of these mRNAs. An inhibitory synergistic effect in PDAC cell lines, including patient-derived xenografts and tumor-derived organoids, was observed when N6L was combined with mTOR inhibitors. In conclusion, N6L reduces pancreatic cells proliferation, which then undergoes translational reprogramming through activation of the mTOR pathway. N6L and mTOR inhibitors act synergistically to inhibit the proliferation of PDAC and human PDX cell lines. This combotherapy of N6L and mTOR inhibitors could constitute a promising alternative to treat pancreatic cancer. Full article
(This article belongs to the Special Issue Combination and Innovative Therapies for Pancreatic Cancer)
Show Figures

Figure 1

16 pages, 1361 KB  
Article
Harnessing the Anti-Nociceptive Potential of NK2 and NK3 Ligands in the Design of New Multifunctional μ/δ-Opioid Agonist–Neurokinin Antagonist Peptidomimetics
by Charlène Gadais, Justyna Piekielna-Ciesielska, Jolien De Neve, Charlotte Martin, Anna Janecka and Steven Ballet
Molecules 2021, 26(17), 5406; https://doi.org/10.3390/molecules26175406 - 6 Sep 2021
Cited by 8 | Viewed by 3501
Abstract
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a [...] Read more.
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids. Full article
(This article belongs to the Special Issue A Themed Issue Dedicated to Professor Victor Hruby)
Show Figures

Graphical abstract

16 pages, 3667 KB  
Review
From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides
by Pasqualina Liana Scognamiglio, Chiara Platella, Ettore Napolitano, Domenica Musumeci and Giovanni Nicola Roviello
Molecules 2021, 26(12), 3558; https://doi.org/10.3390/molecules26123558 - 10 Jun 2021
Cited by 19 | Viewed by 4615
Abstract
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high [...] Read more.
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems. Full article
Show Figures

Figure 1

27 pages, 6654 KB  
Article
Phosphinotripeptidic Inhibitors of Leucylaminopeptidases
by Michał Jewgiński, Kinga Haremza, Jesús M. de los Santos, Zouhair Es Sbai, Bartosz Oszywa, Małgorzata Pawełczak, Francisco Palacios and Rafał Latajka
Int. J. Mol. Sci. 2021, 22(10), 5090; https://doi.org/10.3390/ijms22105090 - 11 May 2021
Cited by 4 | Viewed by 2816
Abstract
Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, [...] Read more.
Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, zinc or magnesium ions. These two properties of phosphinate pseudopeptides make them an ideal candidate for metal-related protease inhibitors. This research investigates the influence of additional residue in the P2 position on the inhibitory properties of phosphinopeptides. The synthetic strategy is proposed, based on retrosynthetic analysis. The N-C-P bond formation in the desired compounds is conveniently available from the three-component condensation of appropriate amino components, aldehydes, and hypophosphorous acid. One of the crucial synthetic steps is the careful selection of the protecting groups for all the functionals. Determination of the inhibitor activity of the obtained compounds has been done using UV-Vis spectroscopy and standard substrate L-Leu-p-nitroanilide toward the enzymes isolated from the porcine kidney (SsLAP, Sus scrofa Leucine aminopeptidase) and barley seeds (HvLAP, Hordeum vulgare Leucine aminopeptidase). An efficient procedure for the preparation of phosphinotripeptides has been performed. Activity test shown that introduction of additional residue into P2 position obtains the micromolar range inhibitors of SsLAP and HvLAP. Moreover, careful selection of the residue in the P2 position should improve its selectivity toward mammalian and plant leucyl aminopeptidases. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 3.0)
Show Figures

Figure 1

Back to TopTop