Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model
Abstract
:1. Introduction
2. Results
2.1. Quantitative Analysis of IS by the HPLC-MS/MS Method
2.2. Asperulosidic Acid Decreased the Accumulation of IS in UUO Mice
2.3. Effects of Asperulosidic Acid on the Liver Metabolic Enzymes of IS in UUO Mice
2.4. Effects of Asperulosidic Acid on the Excretion Pathway of IS in UUO Mice
2.5. Effect of Asperulosidic Acid on the Hepatocyte Nuclear Factor 1α (HNF1α)
3. Discussion
4. Materials and Methods
4.1. Chemicals and Regents
4.2. Animal Experiment
4.3. Histology Analysis
4.4. RT-qPCR
4.5. Western Blotting
4.6. Detection Method of IS
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Tummalapalli, S.L.; Boulware, L.E.; Grams, M.E.; Ix, J.H.; Jha, V.; Kengne, A.P.; Madero, M.; Mihaylova, B.; Tangri, N.; et al. The case for early identification and intervention of chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2021, 99, 34–47. [Google Scholar] [CrossRef]
- Humphreys, B.D. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. CJASN 2009, 4, 1551–1558. [Google Scholar] [CrossRef]
- Faria, M.; de Pinho, M.N. Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Transl. Res. J. Lab. Clin. Med. 2021, 229, 115–134. [Google Scholar] [CrossRef]
- Milanesi, S.; Garibaldi, S.; Saio, M.; Ghigliotti, G.; Picciotto, D.; Ameri, P.; Garibotto, G.; Barisione, C.; Verzola, D. Indoxyl Sulfate Induces Renal Fibroblast Activation through a Targetable Heat Shock Protein 90-Dependent Pathway. Oxid. Med. Cell. Longev. 2019, 2019, 2050183. [Google Scholar] [CrossRef]
- Dou, L.; Jourde-Chiche, N.; Faure, V.; Cerini, C.; Berland, Y.; Dignat-George, F.; Brunet, P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. JTH 2007, 5, 1302–1308. [Google Scholar] [CrossRef]
- Lu, C.L.; Zheng, C.M.; Lu, K.C.; Liao, M.T.; Wu, K.L.; Ma, M.C. Indoxyl-Sulfate-Induced Redox Imbalance in Chronic Kidney Disease. Antioxidants 2021, 10, 936. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yoo, T.H.; Hwang, Y.; Lee, G.H.; Kim, B.; Jang, J.; Yu, H.T.; Kim, M.C.; Cho, J.Y.; Lee, C.J.; et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci. Rep. 2017, 7, 3057. [Google Scholar] [CrossRef]
- Di Paola, R.; De, A.; Izhar, R.; Abate, M.; Zappavigna, S.; Capasso, A.; Perna, A.F.; La Russa, A.; Capasso, G.; Caraglia, M.; et al. Possible Effects of Uremic Toxins p-Cresol, Indoxyl Sulfate, p-Cresyl Sulfate on the Development and Progression of Colon Cancer in Patients with Chronic Renal Failure. Genes 2023, 14, 1257. [Google Scholar] [CrossRef]
- Shashar, M.; Francis, J.; Chitalia, V. Thrombosis in the uremic milieu—Emerging role of “thrombolome”. Semin. Dial. 2015, 28, 198–205. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, J.; Chen, X.; Xu, S.; Yang, X.; Zhang, Y.; Ma, Z.; Jiang, H.; Zhou, H. Proton pump inhibitor-induced risk of chronic kidney disease is associated with increase of indoxyl sulfate synthesis via inhibition of CYP2E1 protein degradation. Chem.-Biol. Interact. 2022, 368, 110219. [Google Scholar] [CrossRef]
- Hou, H.; Horikawa, M.; Narita, Y.; Jono, H.; Kakizoe, Y.; Izumi, Y.; Kuwabara, T.; Mukoyama, M.; Saito, H. Suppression of Indoxyl Sulfate Accumulation Reduces Renal Fibrosis in Sulfotransferase 1a1-Deficient Mice. Int. J. Mol. Sci. 2023, 24, 11329. [Google Scholar] [CrossRef]
- Taniguchi, T.; Omura, K.; Motoki, K.; Sakai, M.; Chikamatsu, N.; Ashizawa, N.; Takada, T.; Iwanaga, T. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2. Sci. Rep. 2021, 11, 7232. [Google Scholar] [CrossRef]
- Takada, T.; Yamamoto, T.; Matsuo, H.; Tan, J.K.; Ooyama, K.; Sakiyama, M.; Miyata, H.; Yamanashi, Y.; Toyoda, Y.; Higashino, T.; et al. Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. Sci. Rep. 2018, 8, 11147. [Google Scholar] [CrossRef]
- Mutsaers, H.A.; van den Heuvel, L.P.; Ringens, L.H.; Dankers, A.C.; Russel, F.G.; Wetzels, J.F.; Hoenderop, J.G.; Masereeuw, R. Uremic toxins inhibit transport by breast cancer resistance protein and multidrug resistance protein 4 at clinically relevant concentrations. PLoS ONE 2011, 6, e18438. [Google Scholar] [CrossRef]
- Marzocco, S.; Dal Piaz, F.; Di Micco, L.; Torraca, S.; Sirico, M.L.; Tartaglia, D.; Autore, G.; Di Iorio, B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013, 35, 196–201. [Google Scholar] [CrossRef]
- Schulman, G.; Agarwal, R.; Acharya, M.; Berl, T.; Blumenthal, S.; Kopyt, N. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am. J. Kidney Dis. 2006, 47, 565–577. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Chen, R.; He, J.; Tong, X.; Tang, L.; Liu, M. The Hedyotis diffusa Willd. (Rubiaceae): A Review on Phytochemistry, Pharmacology, Quality Control and Pharmacokinetics. Molecules 2016, 21, 710. [Google Scholar] [CrossRef]
- He, J.; Lu, X.; Wei, T.; Dong, Y.; Cai, Z.; Tang, L.; Liu, M. Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Int. J. Mol. Sci. 2018, 19, 2027. [Google Scholar] [CrossRef]
- Xianyuan, L.; Wei, Z.; Yaqian, D.; Dan, Z.; Xueli, T.; Zhanglu, D.; Guanyi, L.; Lan, T.; Menghua, L. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Phytomedicine 2019, 53, 274–285. [Google Scholar] [CrossRef]
- Liu, M.; Yang, C.; Zou, W.; Guan, X.; Zheng, W.; Lai, L.; Fang, S.; Cai, S.; Su, W. Toxicokinetics of naringin, a putative antitussive, after 184-day repeated oral administration in rats. Environ. Toxicol. Pharmacol. 2011, 31, 485–489. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Owolabi, M.O. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Rosner, M.H.; Reis, T.; Husain-Syed, F.; Vanholder, R.; Hutchison, C.; Stenvinkel, P.; Blankestijn, P.J.; Cozzolino, M.; Juillard, L.; Kashani, K.; et al. Classification of Uremic Toxins and Their Role in Kidney Failure. Clin. J. Am. Soc. Nephrol. CJASN 2021, 16, 1918–1928. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Clark, W.R.; Dehghani, N.L.; Narsimhan, V.; Ronco, C. Uremic Toxins and their Relation to Dialysis Efficacy. Blood Purif. 2019, 48, 299–314. [Google Scholar] [CrossRef]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef]
- Aleksunes, L.M.; Augustine, L.M.; Scheffer, G.L.; Cherrington, N.J.; Manautou, J.E. Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology 2008, 250, 82–88. [Google Scholar] [CrossRef]
- Yu, W.H.; Zhang, N.; Qi, J.F.; Sun, C.; Wang, Y.H.; Lin, M. Arsenic and Mercury Containing Traditional Chinese Medicine (Realgar and Cinnabar) Strongly Inhibit Organic Anion Transporters, Oat1 and Oat3, In Vivo in Mice. BioMed Res. Int. 2015, 2015, 863971. [Google Scholar] [CrossRef]
- Bush, K.T.; Singh, P.; Nigam, S.K. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 2020, 5, 133817. [Google Scholar] [CrossRef]
- Lovisa, S.; LeBleu, V.S.; Tampe, B.; Sugimoto, H.; Vadnagara, K.; Carstens, J.L.; Wu, C.C.; Hagos, Y.; Burckhardt, B.C.; Pentcheva-Hoang, T.; et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 2015, 21, 998–1009. [Google Scholar] [CrossRef]
- Kittayaruksakul, S.; Soodvilai, S.; Asavapanumas, N.; Muanprasat, C.; Chatsudthipong, V. Liver X receptor activation downregulates organic anion transporter 1 (OAT1) in the renal proximal tubule. Am. J. Physiol. Ren. Physiol. 2012, 302, F552–F560. [Google Scholar] [CrossRef]
- Saji, T.; Kikuchi, R.; Kusuhara, H.; Kim, I.; Gonzalez, F.J.; Sugiyama, Y. Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 alpha/beta. J. Pharmacol. Exp. Ther. 2008, 324, 784–790. [Google Scholar] [CrossRef]
- Gallegos, T.F.; Martovetsky, G.; Kouznetsova, V.; Bush, K.T.; Nigam, S.K. Organic anion and cation SLC22 “drug” transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS ONE 2012, 7, e40796. [Google Scholar] [CrossRef]
- Ogasawara, K.; Terada, T.; Asaka, J.; Katsura, T.; Inui, K. Hepatocyte nuclear factor-4{alpha} regulates the human organic anion transporter 1 gene in the kidney. Am. J. Physiol. Ren. Physiol. 2007, 292, F1819–F1826. [Google Scholar] [CrossRef]
- Abaut, A.Y.; Chevanne, F.; Le Corre, P. Influence of efflux transporters on liver, bile and brain disposition of amitriptyline in mice. Int. J. Pharm. 2009, 378, 80–85. [Google Scholar] [CrossRef]
- Xie, M.; Guo, H.; Lou, G.; Yao, J.; Liu, Y.; Sun, Y.; Yang, Z.; Zheng, M. Neddylation inhibitor MLN4924 has anti-HBV activity via modulating the ERK-HNF1α-C/EBPα-HNF4α axis. J. Cell. Mol. Med. 2021, 25, 840–854. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, D.; Kang, X.; Zhou, R.; Sun, Y.; Lian, F.; Tong, X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front. Cell Dev. Biol. 2021, 9, 696542. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, W.; Yin, P.; Gao, J.; Na, L.; Sun, Y.; Wang, Z.; Zhang, Z.; Zhao, C. Ruxolitinib Alleviates Renal Interstitial Fibrosis in UUO Mice. Int. J. Biol. Sci. 2020, 16, 194–203. [Google Scholar] [CrossRef]
- Zou, W.; Dong, Y.; Yang, S.; Gong, L.; Zhang, Y.; Shi, B.; La, L.; Tang, L.; Liu, M. Imperatae rhizoma-Hedyotis diffusa Willd. herbal pair alleviates nephrotic syndrome by integrating anti-inflammatory and hypolipidaemic effects. Phytomedicine 2021, 90, 153644. [Google Scholar] [CrossRef]
- Nagappan, A.; Kim, J.H.; Jung, D.Y.; Jung, M.H. Cryptotanshinone from the Salvia miltiorrhiza Bunge Attenuates Ethanol-Induced Liver Injury by Activation of AMPK/SIRT1 and Nrf2 Signaling Pathways. Int. J. Mol. Sci. 2019, 21, 265. [Google Scholar] [CrossRef]
- Guo, L.; Yu, F.; Zhang, T.; Wu, B. The Clock Protein Bmal1 Regulates Circadian Expression and Activity of Sulfotransferase 1a1 in Mice. Drug Metab. Dispos. Biol. Fate Chem. 2018, 46, 1403–1410. [Google Scholar] [CrossRef]
- Lu, X.; Dong, Y.; Jian, Z.; Li, Q.; Gong, L.; Tang, L.; Zhou, X.; Liu, M. Systematic Investigation of the Effects of Long-Term Administration of a High-Fat Diet on Drug Transporters in the Mouse Liver, Kidney and Intestine. Curr. Drug Metab. 2019, 20, 742–755. [Google Scholar] [CrossRef]
- Liu, H.; Ren, H.; Spear, B.T. The mouse alpha-albumin (afamin) promoter is differentially regulated by hepatocyte nuclear factor 1α and hepatocyte nuclear factor 1β. DNA Cell Biol. 2011, 30, 137–147. [Google Scholar] [CrossRef]
- Litovchick, L. Stripping of the Immunoblot for Reprobing. Cold Spring Harb. Protoc. 2020, 2020, 098491. [Google Scholar] [CrossRef]
- Ahmed, S.; Sparidans, R.W.; Lu, J.; Mihaila, S.M.; Gerritsen, K.G.F.; Masereeuw, R. A robust, accurate, sensitive LC-MS/MS method to measure indoxyl sulfate, validated for plasma and kidney cells. Biomed. Chromatogr. 2022, 36, e5307. [Google Scholar] [CrossRef]
Name | Forward Primer | Reverse Primer | Reference |
---|---|---|---|
Cyp2e1 | CTTTGCAGGAACAGAGACCA | ATGCACTACAGCGTCCATGT | [42] |
Sult1a1 | CACAAGGGTCCTCTCCTTAGC | TGACAGCGGAACGTGAAGTC | [43] |
Oat1 | CTACTGCATTTTCCGGCTCC | ATAGGCACGGGTGTGAATAGG | [44] |
Oat3 | ACAGCAGCCCTTCATCCCTAATG | CCTCCCAGTAGAGTCATGGTCAC | [44] |
Mrp4 | AGAGGCCATCGTCAGCATTC | ACTGTCTAGTGCCTTGTCCC | [44] |
Abcg2 | TGGCTGTCCTGGCTTCAGTAC | CCAAGAATTCATTATACTGCAA | [44] |
Hnf1α | GCCACCATGGTTTCTAAGCTGAGC | GGATCCCTGGGAAGAGGAGGC | [45] |
Hnf4α | GGATATGGCCGACTACAGCG | AGATGGGGACGTGTCATTGC | designed |
Gapdh | CTTTGGCATTGTGGAAGGGC | TGCAGGGATGATGTTCTGGG | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shi, B.; Pan, Y.; Yang, Z.; Zou, W.; Liu, M. Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model. Molecules 2023, 28, 7690. https://doi.org/10.3390/molecules28237690
Wang J, Shi B, Pan Y, Yang Z, Zou W, Liu M. Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model. Molecules. 2023; 28(23):7690. https://doi.org/10.3390/molecules28237690
Chicago/Turabian StyleWang, Jing, Birui Shi, Yueqing Pan, Zhuan Yang, Wei Zou, and Menghua Liu. 2023. "Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model" Molecules 28, no. 23: 7690. https://doi.org/10.3390/molecules28237690
APA StyleWang, J., Shi, B., Pan, Y., Yang, Z., Zou, W., & Liu, M. (2023). Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model. Molecules, 28(23), 7690. https://doi.org/10.3390/molecules28237690