Influence of Post-Harvest Processing on Functional Properties of Coffee (Coffea arabica L.)
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Coffee Samples
- Natural: coffee cherries were dried under the sun for 30 days.
- Full washed: coffee cherries were washed and then fermented for 24 h inside the tank with filled with water. The external temperature during fermentation was kept between 11 °C and 20 °C. The fermentation process was finished when the pH level reached 4.4.
- Washed–extended fermentation: Coffee cherries were washed and fermented 5 times for 24 h. Each fermentation process was followed by washing. The external temperature during fermentation was maintained between 12 and 18 °C.
- Anaerobic: The coffee cherries were fermented inside vacuum-sealed containers for 7 days, until the pH level reached 4.2.
3.2. Water
3.3. Titratable Acidity and pH
3.4. Caffeine Content
3.5. Total Phenolic Content
3.6. Antiradical Activity against DPPH
- Ac—absorbance of a control
- As—absorbance of a sample
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, C.H.; Park, S.J.; Yu, J.S.; Lee, D.Y. Interactive effect of post-harvest processing method, roasting degree, and brewing method on coffee metabolite profiles. Food Chem. 2022, 397, 133749. [Google Scholar] [CrossRef] [PubMed]
- Odžakovic, B.; Džinic, N.; Kukric, Z.; Grujic, S. Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes. Acta Sci. Pol. Technol. Aliment. 2016, 15, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant Activity, Polyphenols, Caffeine and Melanoidins in Soluble Coffee: The Influence of Processing Conditions and Raw Material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Gómez-Ruiz, J.Á.; Leake, D.S.; Ames, J.M. In Vitro Antioxidant Activity of Coffee Compounds and Their Metabolites. J. Agric. Food Chem. 2007, 55, 6962–6969. [Google Scholar] [CrossRef]
- Cheong, M.W.; Tong, K.H.; Ong, J.J.M.; Liu, S.Q.; Curran, P.; Yu, B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 2013, 51, 388–396. [Google Scholar] [CrossRef]
- Bobková, A.; Hudáček, M.; Jakabová, S.; Belej, L.; Capcarová, M.; Curlej, J.; Bobko, M.; Árvay, J.; Jakab, I.; Čapla, J.; et al. The effect of roasting on the total polyphenols and antioxidant activity of coffee. J. Environ. Sci. Health Part B 2020, 25, 2574–2588. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Wang, J.Y.; Nemzer, B. Antioxidant and Antiradical Activity of Coffee. Antioxidants 2013, 2, 230–245. [Google Scholar] [CrossRef]
- Wei, F.; Furihata, K.; Koda, M.; Hu, F.; Miyakawa, T.; Tanokura, M. Roasting process of coffee beans as studied by nuclear magnetic resonance: Time course of changes in composition. J. Agric. Food Chem. 2012, 60, 1005–1012. [Google Scholar] [CrossRef]
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Del Castillo, M.D.; Ames, J.M.; Gordon, M.H. Effect of roasting on the antioxidant activity of coffee brews. J. Agric. Food Chem. 2002, 50, 3698–3703. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Sanchez, L.; Caemmerer, B.; Kroh, L.W.; de Peña, M.P.; Cid, C. Extraction of coffee antioxidants: Impact of brewing time and method. Food Res. Int. 2012, 48, 57–64. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Yuwono, S.S.; Pangestu, N.B.S.W.; Nadhiroh, H. Physical and sensory quality of Java Arabica green coffee beans. In Proceedings of the 1st International Conference on Green Agro-Industry and Bioeconomy (ICGAB 2017), Malang, Indonesia, 24–25 October 2017. [Google Scholar]
- Figueroa Campos, G.A.; Sagu, S.T.; Saravia Celis, P.; Rawel, H.M. Comparison of Batch and Continuous Wet-Processing of Coffee: Changes in the Main Compounds in Beans, By-Products and Wastewater. Foods 2020, 9, 1135. [Google Scholar] [CrossRef]
- Pereira, L.L.; Guarçoni, R.C.; Pinheiro, P.F.; Osório, V.M.; Pinheiro, C.A.; Moreira, T.R.; ten Caten, C.S. New Propositions about Coffee Wet Processing: Chemical and Sensory Perspectives. Food Chem. 2020, 310, 125943. [Google Scholar] [CrossRef]
- Clarke, R.J. Green Coffee Processing. In Coffee; Clifford, M.N., Willson, K.C., Eds.; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Oliveira, P.D.; Biaggioni, M.A.M.; Borém, F.M.; Isquierdo, E.P.; Vaz Damasceno, M.D.O. Quality of natural and pulped coffee as a function of temperature changes during mechanical drying. Coffee Sci. 2018, 13, 415–425. [Google Scholar] [CrossRef]
- Alves, R.C.; Rodrigues, F.; Nunes, M.A.A.; Vinha, A.F.; Oliveira, M.B.P.P. State of the art in coffee processing by-products. In Handbook of Coffee Processing By-Products: Sustainable Applications; Galanakis, C., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–26. [Google Scholar]
- Tesfa, M. Review on Post-Harvest Processing Operations Affecting Coffee (Coffea arabica L.) Quality in Ethiopia. J. Environ. Earth Sci. 2019, 9, 30–39. [Google Scholar]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.; Batista, L.R.; Abreu, L.M.; Dias, E.S.; Schwan, R.F. Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiol. 2008, 25, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.M.S.; Abreu, C.M.P.; Menezes, H.C.; Santos, M.H.; Gouvêa, C.M.C.P. Effect of processing and roasting on the antioxidant activity of coffee brews. Food Sci. Technol. 2005, 25, 387–393. [Google Scholar] [CrossRef]
- Rotta, N.M.; Curry, S.; Han, J.; Reconco, R.; Spang, E.; Ristenpart, W.; Donis-Gonzalez, I.R. A comprehensive analysis of operations and mass flows in postharvest processing of washed coffee. Resour. Conserv. Recycl. 2021, 170, 105554. [Google Scholar] [CrossRef]
- Batista da Mota, M.C.; Dias, N.D.N.; Schwan, R.F. Impact of microbial selfinduced anaerobiosis fermentation (SIAF) on coffee quality. Food Biosci. 2022, 47, 101640. [Google Scholar] [CrossRef]
- Mazzafera, P.; Robinson, S.P. Characterization of polyphenol oxidase in coffee. Phytochemistry 2000, 55, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Orchard, M. Experimental Fermentation in Coffee Processing. 2019. Available online: https://plotroasting.com/blogs/news/experimental-fermentation-in-coffee-processing (accessed on 24 August 2023).
- Partida-Sedas, J.G.; Muñoz Ferreiro, M.N.; Vázquez-Odériz, M.L.; Romero-Rodríguez, M.Á.; Pérez-Portilla, E. Influence of the postharvest processing of the “Garnica” coffee variety on the sensory characteristics and overall acceptance of the beverage. J. Sens. Stud. 2019, 34, e12502. [Google Scholar] [CrossRef]
- da Silva Vale, A.; Balla, G.; Rodrigues, L.R.S.; de Carvalho Neto, D.P.; Soccol, C.R.; de Melo Pereira, G.V. Understanding the Effects of Self-Induced Anaerobic Fermentation on Coffee Beans Quality: Microbiological, Metabolic, and Sensory Studies. Foods 2023, 12, 37. [Google Scholar] [CrossRef]
- Shen, X.; Zi, C.; Yang, Y.; Wang, Q.; Zhang, Z.; Shao, J.; Zhao, P.; Liu, K.; Li, X.; Fan, J. Effects of Different Primary Processing Methods on the Flavor of Coffea arabica Beans by Metabolomics. Fermentation 2023, 9, 717. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Yuwono, S.; Nadhiroh, H. Effect of different post-harvest processing on the sensory profile of Java Arabica coffee. Adv. Food Sci. Sustain. Agric. Agroind. Eng. 2018, 1, 9–13. [Google Scholar] [CrossRef]
- Baggenstoss, J.; Rainer, P.; Escher, F. Water content of roasted coffee: Impact on grinding behaviour, extraction, and aroma retention. Eur. Food Res. Technol. 2008, 227, 1357–1365. [Google Scholar] [CrossRef]
- De Paula, J.; Farah, A. Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef]
- Eshetu, E.F.; Tolassa, K.; Mohammed, A.; Berecha, G.; Garedew, W. Effect of processing and drying methods on biochemical composition of coffee (Coffea arabica L.) varieties in Jimma Zone, Southwestern Ethiopia. Cogent Food Agric. 2022, 8, 2121203. [Google Scholar] [CrossRef]
- Guyot, B.; Manez, J.C.; Perriot, J.J.; Giron, J.; Villain, L. Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. Plant Rech. Dév. 1996, 3, 272–280. [Google Scholar]
- Mintesnot, A.; Dechassa, N. Effect of altitude, shade, and processing methods on the quality and biochemical composition of green coffee beans in Ethiopia. East Afr. J. Sci. 2018, 12, 87–100. [Google Scholar]
- Jeszka-Skowron, M.; Sentkowska, A.; Pyrzyńska, K.; De Peña, M.P. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: Influence of green coffee bean preparation. Eur. Food Res. Technol. 2016, 242, 1403–1409. [Google Scholar] [CrossRef]
- Mesfin, H.; Bae, H.M.; Kang, W.H. Comparison of the Antioxidant Activities and Volatile Compounds of Coffee Beans Obtained Using Digestive Bio-Processing (Elephant Dung Coffee) and Commonly Known Processing Methods. Antioxidants 2020, 9, 408. [Google Scholar]
- Yusibani, E.; Woodfield, P.L.; Rahwanto, A.; Surbakti, M.S.; Rajibussalim, R.; Rahmi, R. Physical and Chemical Properties of Indonesian Coffee Beans for Different Postharvest Processing Methods. J. Eng. Technol. Sci. 2023, 55, 1–11. [Google Scholar] [CrossRef]
- PN-A-76100:2009; Roasted Coffee—Requirements and Test Methods. PKN: Warszawa, Poland, 2009.
- AOAC. Official Methods of Analysis, 18th ed.; International Association of Official Analytical Chemists: Washington, DC, USA, 2010. [Google Scholar]
- ISO 20481:2008; Coffee and Coffee Products. Determination of the Caffeine Content Using High Performance Liquid Chromatography (HPLC). Reference Method; ISO: Geneva, Switzerland, 2008.
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH Assay for Evaluating the Antioxidant Capacity of Food Additives—Inter-Laboratory Evaluation Study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 10 July 2023).
Parameter | Sample (n = 3) | p | ||||
---|---|---|---|---|---|---|
Washed–Extended Fermentation—A | Full Washed—B | Natural—C | Anaerobic—D | |||
Water (g/100 g) | mean ± SD | 2.46 ± 0.02 | 2.68 ± 0.03 | 2.24 ± 0.03 | 2.63 ± 0.02 | p = 0.019 * B,D > C |
pH | mean ± SD | 5.08 ± 0.03 | 5.04 ± 0.02 | 5.04 ± 0.01 | 4.98 ± 0.02 | p = 0.019 * A > D |
Titratable acidity (mol L−1 NaOH per 100 g) | mean ± SD | 18.5 ± 0.5 | 18.83 ± 0.76 | 18.83 ± 0.76 | 18.83 ± 0.29 | p = 0.811 |
Caffeine (g/100 g) | mean ± SD | 1.672 ± 0.010 | 1.666 ± 0.009 | 1.758 ± 0.008 | 1.758 ± 0.014 | p = 0.04 * D > A,B,C > B |
TPC (mg GAE/g) | mean ± SD | 38.81 ± 1.88 | 37.51 ± 0.78 | 37.93 ± 2.21 | 40.12 ± 1.81 | p = 0.273 |
DPPH IC₅₀ (μg mL–1) | mean ± SD | 21.59 ± 1.8 | 19.37 ± 0.18 | 20.16 ± 2.57 | 23.54 ± 1.3 | p = 0.129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halagarda, M.; Obrok, P. Influence of Post-Harvest Processing on Functional Properties of Coffee (Coffea arabica L.). Molecules 2023, 28, 7386. https://doi.org/10.3390/molecules28217386
Halagarda M, Obrok P. Influence of Post-Harvest Processing on Functional Properties of Coffee (Coffea arabica L.). Molecules. 2023; 28(21):7386. https://doi.org/10.3390/molecules28217386
Chicago/Turabian StyleHalagarda, Michał, and Paweł Obrok. 2023. "Influence of Post-Harvest Processing on Functional Properties of Coffee (Coffea arabica L.)" Molecules 28, no. 21: 7386. https://doi.org/10.3390/molecules28217386
APA StyleHalagarda, M., & Obrok, P. (2023). Influence of Post-Harvest Processing on Functional Properties of Coffee (Coffea arabica L.). Molecules, 28(21), 7386. https://doi.org/10.3390/molecules28217386