Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes
Abstract
:1. Introduction
1.1. Polyphenol Composition
1.2. Antioxidant Activity
1.3. Antimicrobial Activity
2. Material and Methods
2.1. Samples, Standards and Reagents
2.2. Extraction of Non-Anthocyanin Phenolic Compounds by Different Procedures
2.3. Chemical Characterization of Non-Anthocyanin Polyphenol-Rich Extracts
2.4. Bioactive Properties
2.4.1. Inhibition of Lipid Peroxidation by Thiobarbituric Acid Reactive Species (TBARS)
2.4.2. Reducing Power Assay
2.4.3. DPPH Radical-Scavenging Assay
2.4.4. Antimicrobial Activity
2.5. Statistical Analysis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schieber, A. Side Streams of Plant Food Processing as a Source of Valuable Compounds: Selected Examples. Annu. Rev. Food Sci. Technol. 2017, 8, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Caldas, J.; Rebelo, J. Portuguese wine ratings: An old product a new assessment. Wine Econ. Policy 2013, 2, 102–110. [Google Scholar] [CrossRef]
- Trigo, A.; Fragoso, R.; Marta-Costa, A. Sustainability awareness in the Portuguese wine industry: A grounded theory approach. Int. J. Agric. Sustain. 2022, 20, 1437–1453. [Google Scholar] [CrossRef]
- Bodington, J.; Malfeito-Ferreira, M. The 2016 Wines of Portugal Challenge: General implications of more than 8400 wine-score observations. J. Wine Res. 2017, 28, 313–325. [Google Scholar] [CrossRef]
- Ueda, J.M.; Pedrosa, M.C.; Heleno, S.A.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L. Food Additives from Fruit and Vegetable By-Products and Bio-Residues: A Comprehensive Review Focused on Sustainability. Sustainability 2022, 14, 5212. [Google Scholar] [CrossRef]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- Muñoz-Bernal, O.A.; Coria-Oliveros, A.J.; Rosa, L.A.; Rodrigo-García, J.; Martínez-Ruiz, N.R.; Sayago-Ayerdi, S.G.; Alvarez-Parrilla, E. Cardioprotective effect of red wine and grape pomace. Food Res. Int. 2021, 140, 110069. [Google Scholar] [CrossRef]
- Saratale, G.D.; Saratale, R.G.; Kim, D.; Kim, D.; Shin, H. Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach. Nanomaterials 2020, 10, 1457. [Google Scholar] [CrossRef]
- Zhou, D.; Li, J.; Xiong, R.; Saimaiti, A.; Huang, S.; Wu, S.; Yang, Z.; Shang, A.; Zhao, C.; Gan, R.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef]
- De Francesco, G.; Bravi, E.; Sanarica, E.; Marconi, O.; Cappelletti, F.; Perretti, G. Effect of Addition of Different Phenolic-Rich Extracts on Beer Flavour Stability. Foods 2020, 9, 1638. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Flamini, R.; De Rosso, M.; Bavaresco, L. Study of Grape Polyphenols by Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC/QTOF) and Suspect Screening Analysis. J. Anal. Methods Chem. 2015, 350259, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.P.; Cardoso, S.M.; Domingues, M.R.M.; Domingues, P.; Silva, C.M.; Coimbra, M.A. Evidence for galloylated type-A procyanidins in grape seeds. Food Chem. 2007, 105, 1457–1467. [Google Scholar] [CrossRef]
- Hsu, Y.; Liang, H.; Hung, C.; Kuo, P. Syringetin, a flavonoid derivative in grape and wine, induces human osteoblast differentiation through bone morphogenetic protein-2/extracellular signal-regulated kinase 1/2 pathway. Mol. Nutr. Food Res. 2009, 53, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Regitano-d’Arce, M.A.B.; Biasoto, A.C.T.; Shahidi, F. Low Molecular Weight Phenolics of Grape Juice and Winemaking Byproducts: Antioxidant Activities and Inhibition of Oxidation of Human Low-Density Lipoprotein Cholesterol and DNA Strand Breakage. J. Agric. Food Chem. 2014, 62, 12159–12171. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef]
- Grases, F.; Prieto, R.M.; Fernández-Cabot, R.A.; Costa-Bauzá, A.; Sánchez, A.M.; Prodanov, M. Effect of consuming a grape seed supplement with abundant phenolic compounds on the oxidative status of healthy human volunteers. Nutr. J. 2015, 14, 94. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; De Tommasi, N. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactives properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr.; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Romulo, A. The Principle of Some In vitro Antioxidant Activity Methods: Review. IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012177. [Google Scholar] [CrossRef]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal distillates: A new era of grape marc distillates with enriched antioxidant profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Milincic, D.D.; Kostic, A.Z.; Trifunovic, B.D.S.; Tesic, Z.L.J.; Tosti, T.B.; Dramicanin, A.M.; Barac, M.B.; Pesic, M.B. Grape seeds flour of different grape pomaces: Fatty acid profile, soluble sugar profile and nutritional value. J. Serbian Chem. Soc. 2020, 85, 305–319. [Google Scholar] [CrossRef]
- Bao, Y.; Ren, X.; Zhu, Y.; Zhang, Y.; Peng, Z.; Zhou, G. Comparison of lipid radical scavenging capacity of spice extract in situ in roast beef with DPPH and peroxyl radical scavenging capacities in vitro models. LWT Food Sci. Technol. 2020, 130, 109626. [Google Scholar] [CrossRef]
- Nascimento, L.D.; Moraes, A.A.B.; Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; Andrade, E.H.A.; Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findindgs and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Gulcin, I.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Molva, C.; Baysal, A.H. Antimicrobial activity of grape seed extract on Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT Food Sci. Technol. 2015, 60, 238–245. [Google Scholar] [CrossRef]
- Khah, M.D.; Ghanbarzadeh, B.; Nezhad, L.R.; Ostadrahimi, A. Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. Int. J. Biol. Macromol. 2021, 171, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Shoko, T.; Soichi, T.; Megumi, M.M.; Eri, F.; Jun, K.; Michiko, W. Isolation and identification of an antibacterial compound from grape and its application to foods. Nippon. Nogeikagaku Kaishi 1999, 73, 125–128. [Google Scholar] [CrossRef]
- Simonetti, G.; D’Auria, F.C.; Mulinacci, N.; Milella, R.A.; Antonacci, D.; Innocenti, M.; Pasqua, G. Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes. Nat. Prod. Res. 2019, 33, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, O.; Ozturk, I.; Ozkan, G.; Yetim, H.; Ekici, L.; Yilmaz, M.T. RP-HPLC-DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: Evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chem. 2011, 126, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Antonio, A.L.; Fernandes, Â.; Barreira, J.C.M.; Bento, A.; Botelho, M.L.; Ferreira, I.C.F.R. Influence of gamma irradiation in the antioxidant potential of chestnuts (Castanea sativa Mill.) fruits and skins. Food Chem. Toxicol. 2011, 49, 1918–1923. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. Cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef]
Grape Seeds | ||||||||
---|---|---|---|---|---|---|---|---|
Peak | Rt (min) | λmax (nm) | [M−H]− m/z | MS2 (m/z) * | Tentative Identification | Quantification (mg/g dw) | ||
MAC | UAE | MAE | ||||||
1 | 4.12 | 277 | 169 | 125 (100) | Gallic acid 1 | 0.65 ± 0.04 a | 0.26 ± 0.02 b | 0.23 ± 0.01 b |
2 | 4.56 | 280 | 227 | 143 (100) | Resveratrol 2 | 0.48 ± 0.03 a | 0.44 ± 0.02 a | 0.35 ± 0.02 b |
3 | 4.75 | 295 | 389 | 227 (100) | Resveratrol-3-O-glucoside 2 | 0.84 ± 0.01 a | 0.63 ± 0.02 b | 0.41 ± 0.02 c |
4 | 4.91 | 275 | 153 | 135 (100) | Protocatechuic acid 3 | 0.82 ± 0.02 a | 0.77 ± 0.03 a | 0.321 ± 0.001 b |
5 | 5.69 | 324 | 593 | 505 (14), 473 (20), 383 (21), 353 (39), 325 (8) | Apigenin-6,8-C-diglucoside 4 | 0.59 ± 0.01 c | 0.51 ± 0.03 c | 0.46 ± 0.02 |
6 | 6.16 | 311 | 1169 | 1017 (100), 881 (5), 729 (11), 847 (25), 891 (14), 577 (65), 289 (8) | Procyanidin trimer digallate 1 | 1.88 ± 0.06 a | 0.65 ± 0.01 | 1.3 ± 0.1 b |
7 | 6.52 | 321 | 1017 | 729 (21), 865 (12), 847 (2), 577 (100), 575 (55), 559 (6), 289 (9) | Procyanidin trimer monogallate 1 | 1.01 ± 0.06 a | 0.9 ± 0.1 a | 0.86 ± 0.04 b |
8 | 6.92 | 311 | 865 | 451 (44), 425 (59), 407 (97), 289 (65) | Procyanidin trimer 5 | 2.2 ± 0.1 a | 1.0 ± 0.1 b | 1.0 ± 0.1 b |
9 | 7.11 | 309 | 1153 | 865 (22), 713 (4), 577 (33), 575 (16), 561 (20), 289 (100) | Procyanidin tetramer isomer I 5 | 1.1 ± 0.1 a | 0.7 ± 0.1 b | 0.71 ± 0.05 b |
10 | 8.01 | 274 | 1439 | 1153 (100), 865 (32), 713 (8), 577 (33), 575 (16), 561 (50), 289 (10) | Procyanidin pentamer 5 | 7.42 ± 0.21 a | 5.76 ± 0.48 b | 2.99 ± 0.05 c |
11 | 10.36 | 280 | 937 | 467 (100), 301 (23) | Trigalloyl-HHDP-glucose 1 | 0.47 ± 0.04 a | nd | nd |
12 | 12.32 | 279 | 1153 | 865 (22), 713 (4), 577 (33), 575 (16), 561 (20), 289 (100) | Procyanidin tetramer isomer II 5 | 6.49 ± 0.32 a | 1.4 ± 0.03 c | 2.66 ± 0.1 b |
13 | 13.02 | 361 | 609 | 301 (100) | Quercetin-3-O-rutinoside 6 | 0.31 ± 0.03 a | nd | nd |
14 | 13.48 | 368 | 593 | 285 (100) | Kaempferol-3-O-rutinoside 7 | 0.33 ± 0.03 a | nd | nd |
15 | 13.75 | 328 | 477 | 301 (100) | Quercetin-3-O-glucoronide 8 | 0.71 ± 0.1 b | 0.22 ± 0.01 c | 0.63 ± 0.05 b |
16 | 14.29 | 315 | 447 | 285 (100) | Kaempferol-3-glucoside 7 | 0.73 ± 0.03 b | 0.66 ± 0.05 | 0.60 ± 0.04 c |
17 | 15.21 | 346 | 461 | 285 (100) | Luteolin-glucuronide 9 | 0.11 ± 0.001 b | 0.1 ± 0.01 b | 0.10 ± 0.0 1 b |
18 | 16.04 | 338 | 463 | 301 (100) | Quercetin-3-O-glucoside 8 | 0.62 ± 0.02 a | 0.58 ± 0.01 a | nd |
19 | 17.77 | 356 | 507 | 345 (100) | Syringetin-3-O-hexoside 10 | 0.79 ± 0.05 a | nd | nd |
Total Phenolic Acids | 1.5 ± 0.1 a | 1.03 ± 0.05 b | 0.55 ± 0.01 c | |||||
Total Condensed Tannins | 20 ± 1 a | 10 ± 1 b | 9.5 ± 0.4 b | |||||
Total Stilbenes | 1.32 ± 0.04 a | 1.07 ± 0.03 b | 0.75 ± 0.04 b | |||||
Total Flavonoids | 3.6 ± 0.3 a | 1.6 ± 0.1 b | 1.3 ± 0.1 c | |||||
Total Phenolic Compounds | 27 ± 1 a | 15 ± 1 b | 13.1 ± 0.5 b | |||||
Grape marc | ||||||||
Peak | Rt (min) | λmax (nm) | [M−H]− m/z | MS2 (m/z)* | Tentative Identification | Quantification (mg/g dw) | ||
1 | 4.23 | 277 | 169 | 125 (100) | Gallic acid 1 | MAC | UAE | MAE |
20 | 4.38 | 276 | 331 | 169 (100), 125 (3) | Galloyl glucose 1 | 0.307 ± 0.004 b | 0.131 ± 0.003 c | 0.44 ± 0.02 a |
21 | 4.85 | 280 | 289 | 245 (100) | ( + )-Catechin 5 | 1.38 ± 0.05 b | 0.47 ± 0.01 c | 2.5 ± 0.1 a |
22 | 4.98 | 282 | 1137 | 1119 (42), 1011 (59) 865 (100), 847 (51), 739 (26), 577 (46), 559 (33), 407 (26) | Proanthocyanidin tetramer 5 | 1.99 ± 0.04 a | 0.63 ± 0.02 c | 1.56 ± 0.01 b |
23 | 5.61 | 276 | 867 | 287 (63), 409 (58), 577 (100), 715 (46) | Procyanidin trimer C 5 | nd | 0.49 ± 0.01 a | nd |
24 | 6.17 | 283 | 863 | 739 (100), 713 (5), 577 (25), 575 (12), 425 (25), 287 (25) | A-type procyanidin trimer 5 | nd | 0.42 ± 0.01 a | nd |
25 | 6.44 | 280 | 577 | 451 (18), 425 (82), 407 (91), 289 (100), 287 (18) | B-Type (epi)catechin dimer 5 | 2.75 ± 0.04 a | 0.349 ± 0.005 c | 1.01 ± 0.04 b |
8 | 6.71 | 279 | 865 | 739 (8), 713 (7), 695 (20), 577 (45), 575 (8), 425 (20), 407 (30), 289 (11), 287 (25) | B-Type (epi)catechin trimer 5 | 1.17 ± 0.04 a | 0.55 ± 0.01 c | 1.3 ± 0.1 a |
26 | 7.25 | 280 | 289 | 245 (100) | (-)-Epicatechin 5 | 1.48 ± 0.01 a | 0.62 ± 0.01 c | 0.87 ± 0.04 b |
9 | 7.57 | 281 | 1153 | 865 (22), 713 (4), 577 (33), 575 (16), 561 (20), 289 (100) | Procyanidin tetramer isomer I 5 | 1.26 ± 0.03 a | 0.26 ± 0.01 c | 1.1 ± 0.03 a |
10 | 8.36 | 274 | 1439 | 1153 (100), 865 (32), 713 (8), 577 (33), 575 (16), 561 (50), 289 (10) | Procyanidin pentamer isomer I 5 | 1.53 ± 0.04 c | 4.3 ± 0.1 a | 4.22 ± 0.04 a |
27 | 10.36 | 282 | 1439 | 1153 (100), 865 (32), 713 (8), 577 (33), 575 (16), 561 (50), 289 (10) | Procyanidin pentamer isomer II 5 | nd | 0.308 ± 0.003 a | nd |
12 | 12.75 | 279 | 1153 | 865 (22), 713 (4), 577 (33), 575 (16), 561 (20), 289 (100) | Procyanidin tetramer isomer II 5 | 4.21 ± 0.04 a | 0.717 ± 0.004 c | 3.4 ± 0.1 b |
28 | 15.29 | 281 | 1121 | 865 (100), 713 (8), 577 (35), 575 (26), 289 (10) | B-type proanthocyanidin tetramer 5 | 3.23 ± 0.03 a | 1.47 ± 0.04 b | 2.44 ± 0.02 a |
29 | 17.47 | 280 | 1017 | 739 (100), 713 (8), 577 (25), 575 (5), 425 (30), 289 (11), 169 (25) | Galloylated procyanidin trimer 1 | 2.0 ± 0.1 a | 0.727 ± 0.002 b | 1.2 ± 0.1 b |
Total Phenolic Acids | 0.61 ± 0.01 b | 0.306 ± 0.005 c | 0.83 ± 0.03 a | |||||
Total Condensed Tannins | 18.1 ± 0.3 a | 10.2 ± 0.2 b | 16.1 ± 0.4 a | |||||
Total Flavonoids | 2.9 ± 0.1 a | 1.1 ± 0.02 b | 3.3 ± 0.1 a | |||||
Total Phenolic Compounds | 21.6 ± 0.4 a | 11.6 ± 0.2 b | 20.3 ± 0.5 a |
TBARS | Reducing Power | DPPH | ||
---|---|---|---|---|
Grape seed | MAC | 0.048 ± 0.003 a | 0.097 ± 0.014 a | 0.242 ± 0.007 a |
UAE | 0.398 ± 0.001 b | 0.439 ± 0.026 b | 0.240 ± 0.016 a | |
MAE | 0.255 ± 0.010 c | 0.561 ± 0.035 c | 1.448 ± 0.302 b | |
Grape marc | MAC | 0.230 ± 0.100 a,b | 0.221 ± 0.004 a | 2.789 ± 0.095 a |
UAE | 0.023 ± 0.001 a | 1.708 ± 0.074 b | 2.277 ± 0.048 b | |
MAE | 0.110 ± 0.003 b | 2.463 ± 0.083 c | 0.939 ± 0.082 c | |
Trolox | 3.73 ± 1.90 | 0.029 ± 0.003 | 0.043 ± 0.002 |
Grape Seeds | Grape Marc | Positive Controls | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAC | UAE | MAE | MAC | UAE | MAE | Streptomycin | Methicillin | Ampicillin | ||||||||||
Gram-negative bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Enterobacter cloacae | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Escherichia coli | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 0.01 | 0.01 | n.d. | n.d | 0.15 | 0.15 |
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 0.06 | 0.06 | n.d. | n.d. | 0.63 | 0.63 |
Salmonella enterocolitica | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Yersinia enterocolitica | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Gram-positive bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Bacillus cereus | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 0.007 | 0.007 | n.d. | n.d. | n.d. | n.d. |
Listeria monocytogenes | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Staphylococcus aureus | 10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 0.007 | 0.007 | 0.007 | 0.007 | 0.15 | 0.15 |
Ketoconazole | ||||||||||||||||||
Fungi | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | ||||
Aspergillus brasiliensis | 10 | >10 | 5 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 0.06 | 0.125 | ||||
Aspergillus fumigatus | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 0.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueda, J.M.; Griebler, K.R.; Finimundy, T.C.; Rodrigues, D.B.; Veríssimo, L.; Pires, T.C.S.P.; Gonçalves, J.; Fernandes, I.P.; Pereira, E.; Barros, L.; et al. Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes. Molecules 2023, 28, 7368. https://doi.org/10.3390/molecules28217368
Ueda JM, Griebler KR, Finimundy TC, Rodrigues DB, Veríssimo L, Pires TCSP, Gonçalves J, Fernandes IP, Pereira E, Barros L, et al. Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes. Molecules. 2023; 28(21):7368. https://doi.org/10.3390/molecules28217368
Chicago/Turabian StyleUeda, Jonata M., Karoline Ribeiro Griebler, Tiane C. Finimundy, Daniele B. Rodrigues, Lavínia Veríssimo, Tânia C. S. P. Pires, João Gonçalves, Isabel P. Fernandes, Eliana Pereira, Lillian Barros, and et al. 2023. "Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes" Molecules 28, no. 21: 7368. https://doi.org/10.3390/molecules28217368
APA StyleUeda, J. M., Griebler, K. R., Finimundy, T. C., Rodrigues, D. B., Veríssimo, L., Pires, T. C. S. P., Gonçalves, J., Fernandes, I. P., Pereira, E., Barros, L., Heleno, S. A., & Calhelha, R. C. (2023). Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes. Molecules, 28(21), 7368. https://doi.org/10.3390/molecules28217368