Nitrogen-Doped Graphene Quantum Dot-Passivated δ-Phase CsPbI3: A Water-Stable Photocatalytic Adjuvant to Degrade Rhodamine B
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sample Synthesis
4.2.1. Synthesis of NGQDs
4.2.2. Synthesis of δ-CsPbI3
4.2.3. Synthesis of NGQDs-CsPbI3
4.2.4. Synthesis of NGQDs-CsPbI3/TiO2
4.3. Characterization
4.4. Photodegradation Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Xu, D.; Ma, H. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar]
- Elliott, G.S.; Mason, R.W.; Edwards, I.R. Studies on the pharmacokinetics and mutagenic potential of rhodamine B. J. Toxicol.-Clin. Toxic. 1990, 28, 45–59. [Google Scholar]
- Gupta, V.K.; Suhas; Ali, I.; Saini, V.K. Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 2004, 43, 1740–1747. [Google Scholar]
- Liu, Y.; Cheng, M.; Liu, Z.; Zeng, G.; Zhong, H.; Chen, M.; Zhou, C.; Xiong, W.; Shao, B.; Song, B. Heterogeneous fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane wastewater. Chemosphere 2019, 236, 124387. [Google Scholar]
- Liu, Y.; Huang, D.; Cheng, M.; Liu, Z.; Lai, C.; Zhang, C.; Zhou, C.; Xiong, W.; Qin, L.; Shao, B.; et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coord. Chem. Rev. 2020, 409, 213220. [Google Scholar]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.F.; Liu, Y.; Yang, X.; Liang, Q.H. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar]
- Emin, S.; Singh, S.P.; Han, L.; Satoh, N.; Islam, A. Colloidal quantum dot solar cells. Nat. Energy 2011, 85, 1264–1282. [Google Scholar]
- Khalid, N.R.; Mazia, U.; Tahir, M.B.; Niaz, N.A.; Javid, M.A. Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure. J. Mol. Liq. 2020, 313, 113522. [Google Scholar]
- Lin, X.; Li, Y.X. Preparation of TiO2/Ag BMIM Cl composites and their visible light photocatalytic properties for the degradation of rhodamine B. Catalysts 2021, 11, 661. [Google Scholar] [CrossRef]
- Todescato, F.; Fortunati, I.; Gardin, S.; Garbin, E.; Collini, E.; Bozio, R.; Jasieniak, J.J.; Della Giustina, G.; Brusatin, G.; Toffanin, S.; et al. Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots. Adv. Funct. Mater. 2012, 22, 337–344. [Google Scholar] [CrossRef]
- Guo, Z.; Ni, S.; Wu, H.; Wen, J.; Li, X.; Tang, T.; Li, M.; Liu, M. Designing nitrogen and phosphorus co-doped graphene quantum dots/g-C3N4 heterojunction composites to enhance visible and ultraviolet photocatalytic activity. Appl. Surf. Sci. 2021, 548, 149211. [Google Scholar]
- Liu, Y.; Zeng, X.; Hu, X.; Hu, J.; Wang, Z.; Yin, Y.; Sun, C.; Zhang, X. Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection. Catal. Today 2019, 335, 243–251. [Google Scholar]
- Zhang, L.; Zhang, Q.; Xie, H.; Guo, J.; Lyu, H.; Li, Y.; Sun, Z.; Wang, H.; Guo, Z. Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B Environ. 2017, 201, 470–478. [Google Scholar]
- Li, K.; Xiong, J.; Chen, T.; Yan, L.; Dai, Y.; Song, D.; Lv, Y.; Zeng, Z. Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation. J. Hazard. Mater. 2013, 250–251, 19–28. [Google Scholar]
- Ioan-Alexandru, B.; John, B.; Kiem, G.N.; Tobias, H.; Muhammad Tariq, S.; Stuart, A.J.T.; Alistair, R.; David, J.M.; Nicholas, P.P.; Sabina Alexandra, N.; et al. Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide. J. Mater. Chem. A 2023, 11, 9791–9806. [Google Scholar]
- Guo, Z.; Wu, H.; Li, M.; Tang, T.; Wen, J.; Li, X. Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl. Surf. Sci. 2020, 526, 146724. [Google Scholar]
- Li, M.; Wu, W.; Ren, W.; Cheng, H.; Tang, N.; Zhong, W.; Du, Y. Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl. Phys. Lett. 2012, 101, 103107. [Google Scholar]
- Pan, A.; Ma, X.; Huang, S.; Wu, Y.; Jia, M.; Shi, Y.; Liu, Y.; Wangyang, P.; He, L.; Liu, Y. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 2019, 10, 6590–6597. [Google Scholar]
- Nam, S.; Mai, C.T.K.; Oh, I. Ultrastable photoelectrodes for solar water splitting based on organic metal halide perovskite fabricated by lift-off process. ACS Appl. Mater. Interfaces 2018, 10, 14659–14664. [Google Scholar]
- Li, K.; Li, S.; Zhang, W.; Shi, Z.; Wu, D.; Chen, X.; Lin, P.; Tian, Y.; Li, X. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. J. Colloid Interface Sci. 2021, 596, 376–383. [Google Scholar]
- Huang, Z.; Qin, H.; Wen, J.; Jiang, L.; Hu, G.; Li, M.; Chen, J.; Liu, F.; Tao, T. Observation of abnormal photoluminescence upon structural phase competence and transition-induced disorder of stable α-FAPbI3. Opt. Mater. Express 2022, 13, 263–271. [Google Scholar]
- Monroy, M.I.P.; Goldberg, I.; Elkhouly, K.; Georgitzikis, E.; Clinckemalie, L.; Croes, G.; Annavarapu, N.; Qiu, W.; Debroye, E.; Kuang, Y.; et al. All-evaporated, all-inorganic CsPbI3 perovskite-based devices for broad-band photodetector and solar cell applications. ACS Appl. Electron. Mater. 2021, 3, 3023–3033. [Google Scholar]
- Straus, D.B.; Guo, S.; Cava, R.J. Kinetically stable single crystals of perovskite-phase CsPbI3. J. Am. Chem. Soc. 2019, 141, 11435–11439. [Google Scholar] [PubMed]
- Chen, B.; Liao, W.; Wu, C. High-stability CsPbIBr2 nanocrystal with nitrogen-doped graphene quantum dot/titanium dioxide for enhancing rhodamine B photocatalytic degradation under visible light. J. Environ. Chem. Eng. 2022, 10, 107534. [Google Scholar]
- Far’ain Md Noor, N.; Saiful Badri, M.A.; Salleh, M.M.; Umar, A.A. Synthesis of white fluorescent pyrrolic nitrogen-doped graphene quantum dots. Opt. Mater. 2018, 83, 306–314. [Google Scholar]
- Yin, Y.; Cheng, H.; Tian, W.; Wang, M.; Yin, Z.; Jin, S.; Bian, J. Self-assembled δ-CsPbI3 nanowires for stable white light emission. ACS Appl. Nano Mater. 2022, 5, 18879–18884. [Google Scholar]
- Steele, J.A.; Jin, H.; Dovgaliuk, I.; Berger, R.F.; Braeckevelt, T.; Yuan, H.; Martin, C.; Solano, E.; Lejaeghere, K.; Rogge, S.M.J.; et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 2019, 365, 679–684. [Google Scholar]
- Kundu, S.; Richtsmeier, D.; Hart, A.; Yeddu, V.; Song, Z.; Niu, G.; Thrithamarassery Gangadharan, D.; Dennis, E.; Tang, J.; Voznyy, O.; et al. Orthorhombic non-perovskite CsPbI3 microwires for stable high-resolution X-ray detectors. Adv. Opt. Mater. 2022, 10, 2200516. [Google Scholar]
- Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277. [Google Scholar]
- Zhang, J.; Zhang, X.; Dong, S.; Zhou, X.; Dong, S. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J. Photochem. Photobiol. A 2016, 325, 104–110. [Google Scholar]
- Xu, J.; Wu, Y.; Li, Z.; Liu, X.; Cao, G.; Yao, J. Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices. ACS Appl. Mater. Interfaces 2020, 12, 9409–9420. [Google Scholar] [PubMed]
- Yuan, G.; Feng, S.; Yang, Q.; Yi, F.; Li, X.; Yuan, Y.; Wang, C.; Yan, H. Promoting charge separation in a composite of δ-CsPbI3 and covalent organic frameworks. J. Mater. Chem. C 2023, 11, 7570–7574. [Google Scholar]
- Sarkar, D.; Ghosh, C.K.; Mukherjee, S.; Chattopadhyay, K.K. Three dimensional Ag2O/TiO2 Type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces 2013, 5, 331–337. [Google Scholar]
- Zhang, W.; Xiong, J.; Li, J.; Daoud, W.A. Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr2 solar cells with efficiency over 10%. Small 2020, 16, 2001535. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, H.; Peng, Y.; Li, P.; Chen, S.; Yang, B.; Zhang, J. Photocatalytic performance and degradation pathway of rhodamine B with TS-1/C3N4 composite under visible light. Nanomaterials 2020, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Xi, Q.; Zhou, H.; Zhao, Y.; Wu, C.; Wang, L.; Guo, P.; Xu, J. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038. [Google Scholar]
- Qi, X.; Zhang, F.; Chen, Z.; Chen, X.; Jia, M.; Ji, H.; Shi, Z. Hydrothermal synthesis of stable lead-free Cs4MnBi2Cl12 perovskite single crystals for efficient photocatalytic degradation of organic pollutants. J. Mater. Chem. C 2023, 11, 3715–3725. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, X.; Wang, M.; Li, G.; Qi, X.; Tian, Y.; Jia, M.; Han, Y.; Wu, D.; Li, X.; et al. In-situ growth of Cs2AgBiBr6 perovskite nanocrystals on Ti3C2Tx MXene nanosheets for enhanced photocatalytic activity. Appl. Surf. Sci. 2023, 621, 156877. [Google Scholar]
- Chen, B.; Lu, W.; Xu, P.; Yao, K. Potassium poly(heptazine imide) coupled with Ti3C2 MXene-derived TiO2 as a composite photocatalyst for efficient pollutant degradation. ACS Omega 2023, 8, 11397–11405. [Google Scholar]
- Sun, Y.; Long, W.; Guo, Y.; Wei, R.; Wang, Y.; Zhang, J.; Hu, S. Degradation of pollutants by Bi-doped LaFeO3/CQDs/CN Z-scheme heterojunction photocatalysts and mechanism study. Diam. Relat. Mater. 2022, 130, 109555. [Google Scholar]
- Preeyanghaa, M.; Vinesh, V.; Neppolian, B. Complete removal of tetracycline by sonophotocatalysis using ultrasound-assisted hierarchical graphitic carbon nitride nanorods with carbon vacancies. Chemosphere 2021, 287, 132379. [Google Scholar] [PubMed]
No. | Catalysts | Dye Solution | Efficiency | Ref. |
---|---|---|---|---|
1 | TiO2 | RhB in water | 10% in 4 h | [8] |
2 | CsPbBr3 | RhB in toluene/ethanol | 89% in 100 min | [36] |
3 | CsPbCl3 | RhB in toluene/ethanol | 90% in 100 min | [36] |
4 | Cs3AgInCl3 | Sudan Red in ethanol | 98.5% in 16 min | [20] |
5 | Cs4MnBiCl12 | RhB in ethanol | 97% in 7 min | [37] |
6 | Cs2AgBiBr6/Ti3C2 | RhB in ethanol | 100% in 70 min | [38] |
7 | NGQDs-CsPbI3/TiO2 | RhB in water | 96% in 4 h | our |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Du, X.; Hua, F.; Wen, J.; Li, M.; Tang, T. Nitrogen-Doped Graphene Quantum Dot-Passivated δ-Phase CsPbI3: A Water-Stable Photocatalytic Adjuvant to Degrade Rhodamine B. Molecules 2023, 28, 7310. https://doi.org/10.3390/molecules28217310
Gu Y, Du X, Hua F, Wen J, Li M, Tang T. Nitrogen-Doped Graphene Quantum Dot-Passivated δ-Phase CsPbI3: A Water-Stable Photocatalytic Adjuvant to Degrade Rhodamine B. Molecules. 2023; 28(21):7310. https://doi.org/10.3390/molecules28217310
Chicago/Turabian StyleGu, Yiting, Xin Du, Feng Hua, Jianfeng Wen, Ming Li, and Tao Tang. 2023. "Nitrogen-Doped Graphene Quantum Dot-Passivated δ-Phase CsPbI3: A Water-Stable Photocatalytic Adjuvant to Degrade Rhodamine B" Molecules 28, no. 21: 7310. https://doi.org/10.3390/molecules28217310