Monoterpenoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities (II)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Compounds 1–8
2.2. The Bioactivities of Compounds 1–8
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plant Material
3.3. Extraction and Separation
3.4. Acid Hydrolysis of Compounds 1–6
3.5. Enzymatic Hydrolysis of Compound 5
3.6. Determination of Bioactivities
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) ammonium salt |
Ac-CoA | acetyl-coenzyme A |
ANOVA | one-way analysis of variance |
CC | column chromatography |
Cou | coumaroyl |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EtOAc | ethyl acetate |
FAS | fatty acid synthase |
Glc | glucosyl |
1H-1H COSY | 1H-1H homonuclear chemical shift correlation spectroscopy |
HMBC | heteronuclear multiple bond coherence spectroscopy |
HPLC | high-performance liquid chromatography |
HRESIMS | high-resolution electrospray ionization mass spectroscopy |
HSQC | heteronuclear single quantum coherence spectroscopy |
IC50 | half inhibitory concentration |
IR | infrared absorption spectrum |
Mal-CoA | methylmalonyl coenzyme A |
NMR | nuclear magnetic resonance |
NOEDS | nuclear Overhauser effect difference spectrum |
Rha | rhamnosyl |
SD | standard deviation |
TLC | thin-layer chromatography |
UV | ultraviolet–visible absorption spectrum |
References
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically active phytomolecules isolated from traditional antidiabetica plants and their therapeutic role for the management of diabetes mellitus. Molecules 2022, 27, 4278. [Google Scholar] [PubMed]
- Wang, H.; Tang, S.; Zhang, G.; Pan, Y.; Jiao, W.; Shao, H. Synthesis of N-substituted iminosugar C-glycosides and evaluation as promising α-glucosidase inhibitors. Molecules 2022, 27, 5517. [Google Scholar] [PubMed]
- Lu, S.-H.; Zuo, H.-J.; Huang, J.; Li, W.-N.; Huang, J.-L.; Li, X.-X. Chemical constituents from the leaves of Ligustrum robustum and their bioactivities. Molecules 2023, 28, 362. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-H.; Liang, X.-N.; Nong, X.-J.; Chen, R.; Li, X.-X. A new HPLC-UV method using hydrolyzation with sodium hydroxide for quantitation of trans-p-hydroxycinnamic acid and total trans-p-hydroxycinnamic acid esters in the leaves of Ligustrum robustum. Molecules 2023, 28, 5309. [Google Scholar] [CrossRef] [PubMed]
- He, Z.D.; Lau, K.M.; But, P.P.-H.; Jiang, R.W.; Dong, H.; Ma, S.C.; Fung, K.P.; Ye, W.C.; Sun, H.D. Antioxidative glycosides from the leaves of Ligustrum robustum. J. Nat. Prod. 2003, 66, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peng, Y.; Xu, L.J.; Wu-Lan, T.N.; Shi, R.B.; Xiao, P.G. Chemical constituents from Ligustrum robustum Bl. Biochem. Syst. Ecol. 2010, 38, 398–401. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Liu, Y.; Xu, L.J.; Guo, N.; Shi, R.B.; Xiao, P.G. Two new phenethanol glycosides from Ligustrum robustum. Chin. Chem. Lett. 2011, 22, 326–329. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, H.J.; Sun, H.D.; Pan, L.T.; Yao, P.; Chen, D.Y. Monoterpenoid glycosides from Ligustrum robustum. Phytochemistry 1998, 48, 1013–1018. [Google Scholar] [CrossRef]
- Tian, J.; Sun, H.D. New monoterpenoid glycosides from Ligustrum robustum. Chin. J. Appl. Environ. Biol. 1999, 5, 501–506. [Google Scholar]
- Yu, Z.L.; Zeng, W.C. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Roxb.) Blume extract. J. Food Sci. 2013, 78, 1354–1362. [Google Scholar]
- Yu, Z.L.; Gao, H.X.; Zhang, Z.; He, Z.; He, Q.; Jia, L.R.; Zeng, W.C. Inhibitory effects of Ligustrum robustum (Roxb.) Blume extract on α-amylase and α-glucosidase. J. Funct. Foods 2015, 19, 204–213. [Google Scholar] [CrossRef]
- Ito, H.; Otsuki, A.; Mori, H.; Li, P.; Kinoshita, M.; Kawakami, Y.; Tsuji, H.; Fang, D.Z.; Takahashi, Y. Two new monoterpene glycosides from Qing Shan Lu Shui tea with inhibitory effects on leukocyte-type 12-lipoxygenase activity. Molecules 2013, 18, 4257–4266. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, Z.-W.; Li, C.-C.; Yang, R.-M.; Pan, R.-L. Chemical constituents of alcoholic extract from Ligustrum robustum (Roxb.) Blume. Mod. Chin. Med. 2018, 20, 540–544. [Google Scholar]
- Kawakami, Y.; Otsuki, A.; Mori, Y.; Kanzaki, K.; Suzuki-Yamamoto, T.; Fang, D.Z.; Ito, H.; Takahashi, Y. Involvement of the hydroperoxy group in the irreversible inhibition of leukocyte-type 12-lipoxygenase by monoterpene glycosides contained in the Qing Shan Lu Shui tea. Molecules 2019, 24, 304. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-H.; Huang, J.; Zuo, H.-J.; Zhou, Z.-B.; Yang, C.-Y.; Huang, Z.-L. Monoterpenoid glycosides from the leaves of Ligustrum robustum and their bioactivities. Molecules 2022, 27, 3709. [Google Scholar] [CrossRef] [PubMed]
- He, Z.D.; Ueda, S.; Akaji, M.; Fujita, T.; Inoue, K.; Yang, C.R. Monoterpenoid and phenylethanoid glycosides from Ligustrum pedunculare. Phytochemistry 1994, 36, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.W.; Zhang, X.T.; Zhao, Y.; Liu, X.L.; Zhang, Z.H.; Wang, M.A. Divergent synthesis of four isomers of 6,7-dihydroxy-3,7-dimethyloct-2-enoic acid, esters and evaluation for the antifungal activity. Chin. Chem. Lett. 2018, 29, 1872–1874. [Google Scholar] [CrossRef]
- Fan, H.J.; Wu, D.; Tian, W.X.; Ma, X.F. Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim. Biophys. Acta 2013, 1831, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ma, X.F.; Tian, W.X. Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J. Func. Foods 2013, 5, 633–641. [Google Scholar] [CrossRef]
- Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018, 259, 46–54. [Google Scholar] [CrossRef] [PubMed]
No | 1a b | 1b b | 2a c | 2b c | 3a c |
1a | 4.26 d (7.2) | 4.26 d (7.2) | 4.21 d (6.8) | 4.21 d (6.8) | 4.27 dd (12.0, 8.0) |
1b | 4.27 d (7.2) | 4.27 d (7.2) | 4.22 d (6.8) | 4.22 d (6.8) | 4.38 dd (8.0, 6.4) |
2 | 5.37 t (7.2) | 5.37 t (7.2) | 5.35 t (6.8) | 5.35 t (6.8) | 5.40 dd (12.0, 6.4) |
4 | 2.02 t (7.2) | 2.03 t (7.2) | 2.02 t (6.4) | 2.02 t (6.4) | 2.06 t (7.2) |
5 | 1.48 m | 1.48 m | 1.48 m | 1.48 m | 1.51 m |
6 | 1.40 m | 1.40 m | 1.40 m | 1.40 m | 1.41 m |
8 | 1.15 s | 1.15 s | 1.16 s | 1.16 s | 1.19 s |
9 | 1.15 s | 1.15 s | 1.16 s | 1.16 s | 1.19 s |
10 | 1.66 s | 1.66 s | 1.64 s | 1.64 s | 1.70 s |
Glc | |||||
1′ | 4.32 d (7.8) | 4.26 d (7.8) | 4.28 d (8.0) | 4.32 d (8.0) | 4.38 d (7.6) |
2′ | 3.30 m | 3.30 m | 3.29 m | 3.30 m | 3.40 m |
3′ | 3.53 t (9.6) | 3.48 t (9.6) | 3.50 t (8.8) | 3.51 t (8.8) | 3.82 t (9.6) |
4′ | 3.40 t (9.6) | 3.38 t (9.6) | 3.39 t (8.8) | 3.38 t (8.8) | 4.92 t (9.6) |
5′ | 3.52 m | 3.49 m | 3.50 m | 3.52 m | 3.53 m |
6′a | 4.36 dd (12.0, 6.6) | 4.29 dd (9.6, 6.6) | 4.29 dd (12.0, 6.0) | 4.35 dd (12.0, 6.0) | 3.55 m |
6′b | 4.51 dd (12.0, 2.4) | 4.48 dd (9.6, 1.8) | 4.49 dd (12.0, 2.0) | 4.50 dd (12.0, 2.0) | 3.63 m |
Rha | |||||
1″ | 5.18 d (1.8) | 5.15 d (1.8) | 5.15 d (2.0) | 5.17 d (2.0) | 5.19 d (1.6) |
2″ | 3.95 m | 3.94 m | 3.94 dd (3.2, 2.0) | 3.94 dd (3.2, 2.0) | 3.92 dd (3.2, 1.6) |
3″ | 3.71 dd (9.6, 3.6) | 3.70 dd (9.6, 3.6) | 3.70 dd (9.6, 3.2) | 3.70 dd (9.6, 3.2) | 3.58 m |
4″ | 3.40 t (9.6) | 3.39 t (9.6) | 3.39 t (9.6) | 3.39 t (9.6) | 3.29 m |
5″ | 4.00 m | 4.00 m | 3.98 dd (9.6, 6.4) | 4.00 dd (9.6, 6.4) | 3.57 m |
6″ | 1.25 d (6.6) | 1.25 d (6.6) | 1.24 d (6.4) | 1.25 d (6.4) | 1.09 d (6.4) |
Cou | |||||
2‴ | 7.45 d (8.4) | 7.66 d (8.4) | 7.65 d (8.8) | 7.46 d (8.8) | 7.47 d (8.4) |
3‴ | 6.81 d (8.4) | 6.74 d (8.4) | 6.76 d (8.8) | 6.81 d (8.8) | 6.81 d (8.4) |
5‴ | 6.81 d (8.4) | 6.74 d (8.4) | 6.76 d (8.8) | 6.81 d (8.8) | 6.81 d (8.4) |
6‴ | 7.45 d (8.4) | 7.66 d (8.4) | 7.65 d (8.8) | 7.46 d (8.8) | 7.47 d (8.4) |
7‴ | 7.64 d (16.2) | 6.87 d (12.6) | 6.88 d (12.8) | 7.64 d (16.0) | 7.66 d (16.0) |
8‴ | 6.35 d (16.2) | 5.76 d (12.6) | 5.80 d (12.8) | 6.31 d (16.0) | 6.34 d (16.0) |
No | 3b c | 4b c | 5a c | 5b c | 6b b |
1a | 4.27 dd (12.0, 8.0) | 4.25 dd (6.4, 6.0) | 4.26 d (7.2) | 4.26 d (7.2) | 4.26 d (7.2) |
1b | 4.38 dd (8.0, 6.4) | 4.34 dd (12.0, 6.0) | 4.27 d (7.2) | 4.27 d (7.2) | |
2 | 5.40 dd (12.0, 6.4) | 5.38 dd (12.0, 6.4) | 5.41 t (7.2) | 5.41 t (7.2) | 5.35 t (7.2) |
4a | 2.06 t (7.2) | 2.07 m | 2.08 m | 2.08 m | 2.03 t (7.2) |
4b | 2.29 m | 2.29 m | |||
5a | 1.51 m | 1.63 m | 1.33 m | 1.38 m | 2.09 m |
5b | 1.76 m | 1.72 m | |||
6 | 1.41 m | 3.97 t (6.0) | 3.23 dd (10.4, 2.0) | 3.22 dd (10.4, 2.0) | 5.08 t (6.6) |
8a | 1.19 s | 4.81 d (2.0) | 1.12 s | 1.11 s | 1.66 s |
8b | 4.91 d (2.0) | ||||
9 | 1.19 s | 1.70 s | 1.16 s | 1.15 s | 1.58 s |
10 | 1.70 s | 1.68 s | 1.68 s | 1.68 s | 1.66 s |
Glc | |||||
1′ | 4.33 d (7.6) | 4.30 d (8.0) | 4.32 d (7.6) | 4.32 d (7.6) | 4.28 d (7.8) |
2′ | 3.36 m | 3.29 m | 3.31 m | 3.31 m | 3.34 m |
3′ | 3.75 t (9.6) | 3.52 m | 3.52 t (9.2) | 3.52 t (9.2) | 3.52 m |
4′ | 4.86 t (9.6) | 3.37 m | 3.39 t (9.2) | 3.39 t (9.2) | 3.40 t (9.6) |
5′ | 3.48 m | 3.51 m | 3.52 m | 3.52 m | 3.52 m |
6′a | 3.55 m | 4.30 dd (12.0, 6.0) | 4.36 dd (12.0, 6.0) | 4.36 dd (12.0, 6.0) | 4.30 dd (12.0, 6.0) |
6′b | 3.63 m | 4.49 dd (12.0, 1.6) | 4.51 dd (12.0, 2.0) | 4.51 dd (12.0, 2.0) | 4.45 br. d (12.0) |
Rha | |||||
1″ | 5.16 d (2.0) | 5.15 d (2.0) | 5.17 d (2.0) | 5.17 d (2.0) | 5.15 br. s |
2″ | 3.92 dd (3.2, 2.0) | 3.93 m | 3.94 dd (3.2, 2.0) | 3.94 dd (3.2, 2.0) | 3.94 m |
3″ | 3.58 m | 3.70 dd (9.6, 3.2) | 3.70 dd (9.6, 3.2) | 3.70 dd (9.6, 3.2) | 3.70 dd (9.6, 3.6) |
4″ | 3.30 m | 3.39 m | 3.39 t (9.6) | 3.39 t (9.6) | 3.40 t (9.6) |
5″ | 3.61 m | 4.00 dd (9.6, 6.4) | 4.00 dd (9.6, 6.4) | 4.00 dd (9.6, 6.4) | 4.00 dd (9.6, 6.0) |
6″ | 1.16 d (6.4) | 1.25 d (6.4) | 1.24 d (6.4) | 1.24 d (6.4) | 1.25 d (6.0) |
Cou | |||||
2‴ | 7.72 d (8.4) | 7.66 d (8.4) | 7.46 d (8.4) | 7.46 d (8.4) | 7.64 d (8.4) |
3‴ | 6.76 d (8.4) | 6.74 d (8.4) | 6.81 d (8.4) | 6.81 d (8.4) | 6.76 d (8.4) |
5‴ | 6.76 d (8.4) | 6.74 d (8.4) | 6.81 d (8.4) | 6.81 d (8.4) | 6.76 d (8.4) |
6‴ | 7.72 d (8.4) | 7.66 d (8.4) | 7.46 d (8.4) | 7.46 d (8.4) | 7.64 d (8.4) |
7‴ | 6.95 d (12.8) | 6.87 d (12.8) | 7.64 d (16.0) | 7.64 d (16.0) | 6.87 d (13.2) |
8‴ | 5.79 d (12.8) | 5.77 d (12.8) | 6.35 d (16.0) | 6.35 d (16.0) | 5.79 d (13.2) |
No | 1a a | 1b a | 2a a | 2b a | 3a b |
1 | 66.2 | 66.2 | 66.2 | 66.2 | 66.5 |
2 | 121.3 | 121.4 | 121.3 | 121.3 | 121.5 |
3 | 142.4 | 142.4 | 142.5 | 142.5 | 142.2 |
4 | 41.0 | 41.0 | 41.0 | 41.0 | 41.0 |
5 | 23.3 | 23.4 | 23.4 | 23.4 | 23.4 |
6 | 44.2 | 44.2 | 44.3 | 44.3 | 44.2 |
7 | 71.3 | 71.4 | 71.4 | 71.4 | 71.4 |
8 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 |
9 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 |
10 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 |
Glc | |||||
1′ | 102.4 | 102.4 | 102.4 | 102.4 | 102.6 |
2′ | 75.6 | 75.6 | 75.6 | 75.6 | 76.1 |
3′ | 84.0 | 84.5 | 84.1 | 84.0 | 81.6 |
4′ | 70.5 | 70.5 | 70.5 | 70.5 | 70.6 |
5′ | 75.6 | 75.5 | 75.3 | 75.6 | 76.1 |
6′ | 64.7 | 64.5 | 64.5 | 64.7 | 62.4 |
Rha | |||||
1″ | 102.7 | 102.7 | 102.7 | 102.7 | 103.0 |
2″ | 72.3 | 72.3 | 72.3 | 72.3 | 72.3 |
3″ | 72.2 | 72.2 | 72.2 | 72.2 | 72.0 |
4″ | 73.9 | 74.0 | 74.0 | 74.0 | 73.7 |
5″ | 70.0 | 70.0 | 70.0 | 70.0 | 70.4 |
6″ | 17.9 | 17.9 | 17.9 | 17.9 | 18.4 |
Cou | |||||
1‴ | 127.0 | 125.9 | 127.6 | 125.9 | 127.0 |
2‴ | 131.2 | 133.9 | 133.4 | 131.3 | 131.3 |
3‴ | 116.9 | 116.3 | 115.9 | 117.6 | 116.9 |
4‴ | 161.3 | 161.0 | 160.1 | 163.8 | 161.5 |
5‴ | 116.9 | 116.3 | 115.9 | 117.6 | 116.9 |
6‴ | 131.2 | 133.9 | 133.4 | 131.3 | 131.3 |
7‴ | 146.8 | 145.5 | 145.2 | 147.2 | 147.6 |
8‴ | 114.9 | 115.6 | 116.2 | 113.8 | 114.7 |
CO | 169.0 | 168.2 | 168.1 | 169.3 | 168.3 |
No | 3b b | 4b a | 5a a | 5b a | 6b b |
1 | 66.5 | 66.4 | 66.2 | 66.2 | 66.2 |
2 | 121.5 | 121.7 | 121.4 | 121.4 | 121.3 |
3 | 142.2 | 142.2 | 142.5 | 142.5 | 142.3 |
4 | 41.0 | 36.7 | 37.7 | 37.7 | 40.7 |
5 | 23.4 | 34.2 | 30.3 | 30.4 | 27.4 |
6 | 44.2 | 76.2 | 78.8 | 78.8 | 125.0 |
7 | 71.4 | 148.8 | 73.8 | 73.8 | 132.5 |
8 | 29.2 | 111.5 | 24.9 | 24.9 | 25.9 |
9 | 29.2 | 17.6 | 25.8 | 25.7 | 17.8 |
10 | 16.4 | 16.6 | 16.5 | 16.6 | 16.5 |
Glc | |||||
1′ | 102.7 | 102.4 | 102.3 | 102.3 | 102.3 |
2′ | 76.0 | 75.6 | 75.6 | 75.6 | 75.6 |
3′ | 81.9 | 84.0 | 84.0 | 84.0 | 84.0 |
4′ | 70.7 | 70.5 | 70.5 | 70.5 | 70.5 |
5′ | 76.1 | 75.4 | 75.5 | 75.5 | 75.5 |
6′ | 62.4 | 64.5 | 64.7 | 64.7 | 64.9 |
Rha | |||||
1″ | 103.1 | 102.8 | 102.7 | 102.7 | 102.7 |
2″ | 72.2 | 72.4 | 72.3 | 72.3 | 72.3 |
3″ | 72.1 | 72.3 | 72.2 | 72.2 | 72.2 |
4″ | 74.0 | 74.0 | 74.0 | 74.0 | 74.0 |
5″ | 70.0 | 70.0 | 70.0 | 70.0 | 70.0 |
6″ | 18.2 | 17.9 | 17.9 | 17.9 | 17.9 |
Cou | |||||
1‴ | 127.5 | 127.0 | 127.1 | 127.1 | 127.6 |
2‴ | 134.3 | 133.9 | 131.2 | 131.2 | 133.8 |
3‴ | 115.8 | 116.3 | 116.9 | 116.9 | 115.9 |
4‴ | 160.4 | 161.4 | 161.5 | 161.5 | 160.1 |
5‴ | 115.8 | 116.3 | 116.9 | 116.9 | 115.9 |
6‴ | 134.3 | 133.9 | 131.2 | 131.2 | 133.8 |
7‴ | 147.3 | 145.5 | 147.8 | 147.8 | 145.3 |
8‴ | 115.8 | 115.6 | 114.9 | 114.9 | 116.2 |
CO | 166.9 | 168.2 | 169.1 | 169.1 | 168.1 |
Compounds | FAS IC50 (μM) b | α-Glucosidase Inhibition at 0.1 mM (%) | α-Amylase Inhibition at 0.1 mM (%) | DPPH IC50 (μM) b | ABTS•+ IC50 (μM) b |
---|---|---|---|---|---|
1 | NA c | 56.6 ± 2.3 b | 22.6 ± 2.4 b | NA | 6.40 ± 0.34 a |
2 | >100 | 41.7 ± 3.3 c | 29.8 ± 9.6 b | NA | 7.52 ± 0.09 b |
3 | NA | 34.6 ± 0.6 d | 29.5 ± 2.8 b | NA | 6.27 ± 0.23 a |
4 | 24.68 ± 0.27 d | 35.0 ± 2.4 d | 28.4 ± 0.9 b | NA | 12.54 ± 0.25 e |
5 | 4.38 ± 0.11 a | NA | 23.9 ± 3.6 b | NA | 8.34 ± 0.19 c |
6 | 9.78 ± 0.41 c | NA | 33.3 ± 3.9 b | NA | 8.59 ± 0.09 c |
7 | NA | 20.8 ± 2.0 e | 33.2 ± 2.7 b | NA | 7.74 ± 0.10 b |
8 | 6.78 ± 0.18 b | 33.6 ± 3.4 d | 30.2 ± 8.8 b | NA | 7.34 ± 0.13 b |
Orlistat d | 4.46 ± 0.13 a | ||||
Acarbose d | 93.2 ± 0.1 a | 51.8 ± 2.5 a | |||
l-(+)-ascorbic acid d | 13.66 ± 0.13 | 10.06 ± 0.19 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.-H.; Li, X.-X.; Zuo, H.-J.; Li, W.-N.; Pan, J.-P.; Huang, J. Monoterpenoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities (II). Molecules 2023, 28, 7274. https://doi.org/10.3390/molecules28217274
Lu S-H, Li X-X, Zuo H-J, Li W-N, Pan J-P, Huang J. Monoterpenoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities (II). Molecules. 2023; 28(21):7274. https://doi.org/10.3390/molecules28217274
Chicago/Turabian StyleLu, Shi-Hui, Xiu-Xia Li, Hao-Jiang Zuo, Wei-Neng Li, Jia-Ping Pan, and Jing Huang. 2023. "Monoterpenoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities (II)" Molecules 28, no. 21: 7274. https://doi.org/10.3390/molecules28217274
APA StyleLu, S. -H., Li, X. -X., Zuo, H. -J., Li, W. -N., Pan, J. -P., & Huang, J. (2023). Monoterpenoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities (II). Molecules, 28(21), 7274. https://doi.org/10.3390/molecules28217274