Tracing the Path between Mushrooms and Alzheimer’s Disease—A Literature Review
Abstract
1. Introduction
2. Mushrooms in Alzheimer’s Disease
2.1. Inhibition of BACE1 and Prevention of Aβ Aggregation and Aβ Cytotoxicity
Species | Body Part | Extract/ Compound | In Vitro Assays | In Vivo Assays | Mechanism | Refs. |
---|---|---|---|---|---|---|
Aleurodiscus vitellinus (Lév.) Pat. | Cultured mycelium | Fomannoxin | Cytotoxicity by MTT; Microfluorimetry of cytosolic Ca2+; Immunofluorescence for hippocampal neurons; Thioflavin T binding assay for Aβ aggregation | ↓ Aβ-induced cytotoxicity; preservation of synaptic function in hippocampal neurons; ↓ Aβ binding to neurons | [54] | |
Amanita caesarea (Scop.) Pers. | Sporocarp | Aqueous extract | HT22 neuron cells: Apoptosis (annexin V, propidium iodide); MTT; Intracellular ROS; Mitochondrial transmembrane potential (JC-1 staining); Aβ1–42 concentration, SOD, ROS levels by ELISA | AlCl3, D-galactose induced BALB/c mice: Morris water maze; Rotarod test; Locomotor activity test; Aβ1–42 in serum and brain of BALB/c mice measured by ELISA | ↓ Aβ1–42 in brain; ↑ Aβ1–42 in serum | [55] |
Antrodia camphorate (M. Zang & C.H. Su) Sheng H. Wu, Ryvarden & T.T. Chang | Mycelium and Fruiting body | 95% ethanolic extract | PC12 cells: Cytotoxicity by MTT; oxidative stress by DPPH | Aβ40 induced Wistar rats: Morris water maze; Immunoblotting (Aβ and BACE1); IHC—Aβ40 in hippocampus | ↓ Aβ-induced cytotoxicity; ↓ Aβ-induced oxidative stress | [56] |
Armillaria mellea (Vahl) P. Kumm. | Mycelium | Polysaccharides (precipitated in 70% ethanol) | D-galactose- (D-gal-) induced AD mouse model: Aβ in serum and hippocampus measured by ELISA | ↓ Aβ1–42 deposition | [57] | |
Auricularia polytricha (Mont.) Sacc. | Whole | HPLC fractions—aqueous, 100% methanol and 10% ethanol | BACE1 inhibition | ↓ BACE1; | [46,58] | |
Cordyceps militaris (L.) Fr. | Cordycepin (13) | Hippocampal neurons from rats: Acridine orange staining (Aβ25–35); Aβ cytotoxicity by MTT; ROS induction | ↓ Aβ25–35; ↓ Aβ-induced ROS; ↓ Aβ-induced cytotoxicity | [46] | ||
Cortinarius infractus (Pers.) Fr. | Fruiting body | Infractopicrin (11) 10-hydroxy-infractopicrin (12) | HepG2 and SHSY5 cell lines: Cytotoxicity (CytoTox-One assay); AChE inhibition; Thioflavin T binding assay for Aβ aggregation | ↓ Aβ1–40 aggregation in the absence of AChE | [59] | |
Cyathus africanus H.J. Brodie | Mycelium | (12R)-11α,14α-epoxy-13α,14β,15-trihydroxycyathene Allocyafrin B4 Cyathin I Cyathin O | BV2 microglial cells: Cytotoxicity by MTT; iNOS induction by Aβ1–42 | ↓ Aβ1–42 synthesis; ↓ Aβ-induced iNOS | [60] | |
Ganoderma lucidum (Curtis) P. Karst. | Fruiting body | Aqueous | Neurons collected from embryonic Sprague Dawley rats: Caspase-like activity; TUNEL staining; Immunofluorescence staining for synaptophysin and Aβ-induced cytotoxicity | ↓ Aβ-induced synaptotoxicity by preserving the synaptic density protein, synaptophysin | [61] | |
Whole | Biomass | SAMP8: Open field test Active avoidance test Aging scale | ↓ Aβ plaque formation | [48] | ||
Triterpenoids | APP/PS1 mice: Hematoxylin–eosin staining; IHC; Morris water maze; Exploration test; Burrowing test; TUNEL staining for neuronal apoptosis; Western-blot for Bax, caspase-3, Nrf2, hemeoxidase, NQO1, ROCK-2, GAPDH; SOD; MDA; LDH; Flow cytometry for apoptosis; | ↓inhibitory effect of Aβ25–35 on neuron proliferation | [49] | |||
Hericium erinaceus (Bull.) Pers. | Cultured mycelia | 90% Ethanolic extracts containing erinacine A (7), erinacine C (9), and erinacine S (10) | APPswe/PS1ΔE9 double transgenic mouse model (APP/PS1) of AD: Immunoblot; Thioflavin S and AB10 staining for plaque formation and size; ELISA for Aβ levels; Nesting test | ↓Aβ deposition; ↓ plaque size; ↑ Aβ-degrading enzymes IDE and neprilysin; ↑NGF | [52] | |
Whole | Powdered | AlCl3-induced Wistar rats: Morris water maze; Elevated plus maze; Novel object recognition; IHC; Western blot | ↓ Aβ1–42; ↓ APP | [62] | ||
Mycelia | Erinacine A (7) Erinacine H | APP/PS1 or SAMP 8 mice: Thioflavin S and AB10 staining for plaque formation and size; ELISA for Aβ; IHC; Immunostaining for Iba-1, AB10-P, and glial fibrillary acid protein; Nesting test; Burrowing test; Morris water maze | ↓Aβ deposition inhibition; ↓ microglial activation; ↑hippocampal neurogenesis ↑dendritic complexity; ↓ Aβ-induced iNOS | [53] | ||
Mycelium | Erinacine A (7) enriched mycelium | SAMP8: Avoidance test; iNOS; TBARS; Aβ-aggregation; 8 OHdG for DNA damage | ↓ iNOS; ↓ Aβ aggregation | [63] | ||
Pleurotus ostreatus (Jacq.) P. Kumm. | Whole | Polysaccharides | Wistar AlCl3/D-galactose induced: Morris water maze; Step-down memory test; Western blot for APP, BACE1, Aβ, and, PP2A in hippocampus tissue | ↓ Aβ formation; ↓ APP; ↓ BACE1; ↑PP2-A | [64] | |
Ergothioneine (14) | HeLa cells: ROS measurement | 5XFAD mice Elevated zero maze; Locomotor activity; Rotarod; Novel object recognition; Fear conditioning; IHC; Dynamic PET imaging | ↓ Aβ formation | [65] |
2.2. AChE and BChE Inhibition
Species | Body Part | Extract/ Compound | In Vitro Assays | In Vivo Assays | Refs. |
---|---|---|---|---|---|
Agaricus campestris L. | Fruiting body Whole | Methanol | AChE inhibition; BChE inhibition | [74] | |
Amanita caesaria (Scop.) Pers. | Sporocarp | Aqueous | Enzyme inhibition of brain and blood ELISA for AChE, ACh, and ChAT | AlCl3, D-galactose BALB/c mice: Morris water maze; Rotarod test; Locomotor activity test | [55] |
Amanita crocea (Quél.) Singer | Fruiting body | Methanolic | AChE inhibition; BChE inhibition | [75,76] | |
Armillaria mellea (Vahl) P. Kumm. | Mycelium | Polysaccharides (precipitated in 70% ethanol) | AlCl3, D-galactose Balb/c mice: Morris water maze; Fatigue rotarod test; Autonomic activity test; Serum and hypothalamus ACh, AChE, and ChAT; Serum and hypothalamus oxidation status; TUNEL staining; Aβ in serum and hippocampus; IHC | [57] | |
Cordyceps militaris (L.) Fr. | Cordycepin (13) | Rat hippocampal neurons: AChE activity induced by Aβ25–35 | [46] | ||
Cortinarius brunneus (Pers.) Fr. | Fruiting body | Brunneins A-C 3-(7-hydroxy-9H-β-carbone-1-yl)propanoic acid | AChE inhibition; | [77] | |
Cortinarius infractus (Pers.) Fr. | Fruiting body | Infractopicrin (11) 10-hydroxy-infractopicrin (12) | AChE inhibition; Molecular docking | [59] | |
Cyathus africanus H.J. Brodie | Mycelium | (12S)-11α,14α-epoxy-13α,14β,15-trihydroxycyath-3-ene (4) Neocyathin B (5) Neocyathin J (6) | AChE inhibition; Molecular docking | [60,78] | |
Cyclocybe cylindracea (DC.) Vizzini & Angelini | Fruiting body | Methanolic | AChE inhibition; BChE inhibition | [75] | |
Ganoderma lucidum | Fruiting body | Aqueous | AChE inhibition | [72] | |
(Curtis) P. Kumm. | Fruiting body | Ganoderic acid A (3), B, E, Y Ganodermadiol Ganodermanondiol Ganoderiol F Lucidadiol (2) Lucidenic acid A, N (1), Lucidumol B Methyl lucidenate E2 Methyl ganoderate A Methyl ganoderate A acetonide n-Butyl ganoderate H n-butyl lucidenate A n-butyl lucidenate N | AChE inhibition | [73] | |
Hygrocybe acutoconica (Clem.) Singer | Fruiting body | Aqueous | AChE inhibition; BChE inhibition | [75] | |
Inonotus obliquus (Ach. ex Pers.) Pilát | Lanostante type triterpenoids | AChE inhibition; BchE inhibition; Molecular docking | [79] | ||
Morchella esculenta (L.) Pers. | Whole | Polysaccharides | AchE inhibition; BchE inhibition | [80,81] | |
Neoboletus erythropus (Pers.) C. Hahn | Fruiting body | Aqueous | AChE inhibition | [75] | |
Phellinus pini (Brot.) A. Ames | Fruiting body | 80% methanolic and hot water extracts | AChE inhibition; BChE inhibition | Sprague Dawley rat: Carrageenin-induced hind-paw edema | [82] |
Pleurotus ostreatus (Jacq.) P. Kumm. | Fruiting body | Aqueous | AChE inhibition | [75] | |
Russula aurea Pers. | Fruiting body | Aqueous | AChE inhibition | [75] | |
Russula sanguinea (Bull.) Fr. | Fruiting body | Aqueous | AChE inhibition in solid and liquid | [75] | |
Trametes versicolor (L.) Lloyd | Mycelia and fruiting body | DMSO, ethanol, or sodium phosphate solution extracts | AChE inhibition | [83] | |
Trametes gibbosa (Pers.) Fr. | Mycelia and fruiting body | DMSO, ethanol, or sodium phosphate solution extracts | AChE inhibition | [83] | |
Trametes Hirsute (Wulfen) Pilát | Mycelia and fruiting body | DMSO, ethanol, or sodium phosphate solution extracts | AChE inhibition | [83] | |
Tremella fuciformis Berk. | Fruiting body | Aqueous | Scopolamine-treated Sprague Dawley rat: Morris water maze; IHC for ChAT | [84] | |
Tricholoma imbricatum (Fr.) P. Kumm. | Whole | Methanol Hexane Ethyl acetate | AChE inhibition; BChE inhibition | [85] |
2.3. Tau Protein Expression and Aggregation
Species | Body Part | Extract/ Compound | In Vitro Assays | In Vivo Assays | Mechanism | Refs. |
---|---|---|---|---|---|---|
Antrodia camphorata (M. Zang & C.H. Su) Sheng H. Wu, Ryvarden & T.T. Chang | Mycelium Fruiting body | Aqueous Ethanolic | Aβ-induced Wistar rats: Immunoblotting; Morris water maze; | ↓ p-tau expression | [56] | |
Armillaria mellea (Vahl) P. Kumm. | Polysaccharides | AlCl3, D-galactose-induced Balb/c mice: Morris water maze; Fatigue rotarod test; Autonomic activity test; TUNEL staining | ↓ p-tau aggregation; Antioxidant activity | [57] | ||
Cordyceps millitaris (L.) Fr. | Cordycepin (13) | Rat hippocampal neurons: Western blotting for p-tau | ↓ Aβ25–35-induced p-tau expression | [46] | ||
Hericium erinaceus (Bull.) Pers. | Whole | Powdered | AlCl3-induced Wistar rats: Morris water maze; Elevated plus maze; Novel object recognition; IHC; Western blot | ↓ p-tau | [62] | |
Pleurotus Ostreatus (Jacq.) P. Kumm. | Whole | Polysaccharides | Wistar AlCl3/D-galactose-induced rats: Morris water maze; Step-down memory test; Serum, hippocampus, and liver levels of SOD, GSH-Px, CAT, and MDA; Western blot for p-tau in hippocampus tissue | ↓ p-tau | [64] |
2.4. Other Activities for General Neuronal Protection
Species | Body Part | Extract/ Compound | In Vitro Assays | In Vivo Assays | Mechanism | Refs. |
---|---|---|---|---|---|---|
Armillaria mellea (Vahl) P. Kumm. | Mycelium | Polysaccharides (precipitated in 70% ethanol) | HT22 apoptotic cells: ROS inhibition; MMP depolarization | AlCl3, D-galactose Balb/c mice: Morris water maze; Fatigue rotarod test; Autonomic activity test; IHC | ↑ Cell viability; ↑Behavior | [57] |
Cordyceps millitaris (L.) Fr. | Cordycepin (13) | Aβ1–42 induced ICR mice: T maze test; Novel object recognition test; Morris water maze; NO scavenging activity | ↑Spatial memory ↑Behavior; ↑Memory | [45] | ||
Coriolus versicolor (L.) Quél. | Whole | Biomass | C57BL/6 WT mice: Immunofluorescence; Microscopy for dendritic morphology assessment and β-catenin quantification; Mouse body conditions | ↑ Arborization of newly generated neurons; ↑ β-catenin | [102] | |
Dictyophora indusitata (Vent.) Desv. | Dictyophorine A Dictyophorine B | Quiescent rat astroglial cells: NGF production | ↑NGF | [103] | ||
Ganoderma lucidum (Curtis) P. Kumm. | Fruiting body | Aqueous | Neurons collected from embryonic Sprague Dawley rats: Aβ-induced cytotoxicity; Caspase-like activity | ↓ JNK phosphorylation; ↓ Caspase-3-like activity | [61] | |
Basidiocarp | Aqueous | PC-12 cells: Cell viability by MTT; Neurite outgrowth stimulation; Immunofluorescence | ↑NGF | [93] | ||
Ganodenic acid A (3) | C57 BL/6 APP/PS1 mice: IHC; Western blotting; Transcriptome sequencing; Metabolic analysis | ↑p-mTOR; ↓ apoptosis; ↑sphingolipid metabolism; ↑ iron function; ↑autophagy; Regulation of lipid metabolism; | [96] | |||
Ganoderma neo-japonicum Imazeki | Basidiocarp | Aqueous | PC-12 cells: Cell viability by MTT Neurite outgrowth stimulation Immunofluorescence | ↑NGF | [93] | |
Grifola frondosa (Dicks.) Gray | Lysophosphatidylethanolamine (17) | PC12 cells: MAPK activation; Protein phosphorylation; Signal transduction inhibition; Apoptotic DNA fragmentation | ↑ neurite outgrowth- GLPE; ↑ neurofilament M expression; ↑Ras/MAPK; ↑NGF | [95] | ||
Basidiocarp | Aqueous | PC-12 cells: Cell viability by MTT; Neurite outgrowth stimulation; Immunofluorescence | ↑NGF | [93] | ||
Hericium erinaceus (Bull.) Pers. | Basidiocarp | Hot water and 80% ethanolic extract | NG108-15 (neuroblastoma glial cell hybrid) and MRC-5 (human lung fibroblast) cell lines: Cell viability by MTT, trypan blue, tunnel assay; Neurite outgrowth stimulation assay; ELISA for NGF | ↑NGF | [104] | |
Hericenone C (19), hericenone D (20), hericenone E (21) | PC12 cells: ELISA for NGF; Enzymatic inhibition for MAPK, PI3K, TrkA; Phospho-ERK levels; Phospho-Akt levels | ↑NGF (mediated by TrkA, MEK); ↑ Neurite outgrowth (mediated by Pi3K/Akt) | [99] | |||
Mycelia | Erinacine A–C (7–9) | Mouse astroglial cells: Medium NGF | ↑NGF | [105] | ||
Erinacine A (7) | Wistar rats: Catecholamine levels (tissue); Indoleamine levels (tissue); ELISA for NGF; | ↑NGF; ↑Catecholamine | [106] | |||
dilinoleoyl phosphatidylethanolamine (22) | Neuro2a: Cell viability by MTT; PI staining; Caspase-12 activation; Protein kinase C activation | ↓ Endoplasmic reticulum stress-induced death; ↑PKC | [97] | |||
Mycoleptodonoides aitchisonii Karasaki | Whole | Aqueous; Powder | Rat astrocytes: NGF | Newborn Wistar rats: Morris water maze; Monoamine concentration; Amino acid concentration; ELISA for NGF | ↑NGF; ↑L-serine; ↑spatial memory | [107] |
Terpenoids: 3-(hydroxymethyl)-4-methylfuran-2(5H)-one (15) (3R,4S,10R)-3-(1′-hydroxy-ethyl)-4-methyldihydrofuran-2(3H)-one (16) 1-hydroxy-3-pentanone (18) | Neuro2a cells: Cell viability by MTT | ↓ Endoplasmic reticulum stress-induced death; ↑NGF | [100] | |||
Paxillus panuidodes (Fr.) Fr. | p-terphenyl leucomentins 2–6 | Mouse cortical cells: Cell viability by MTT; NMDA cytotoxicity; Glutamate cytotoxicity; Iron chelation—DNA damage | ↓ NMDA cytotoxicity; ↓ Glutamate cytotoxicity; ↓DNA damage; ↓ Fenton reactions | [108] | ||
Sarcodon cyrneus Maast Geest. | Cyrneine A Cyrneine B | PC12 and 1321N astrocytoma cells Medium NGF levels | ↑ Neurite growth | [109,110] | ||
Sarcodon scabrosus (Fr.) P. Karst. | Scabronine A | 1321N astrocytoma cells: Medium NGF levels; RT-PCR | ↑ NFG synthesis | [111] | ||
Scabronine B–F | Rat astroglial cells: Medium NGF levels | ↑ NFG synthesis | [101] | |||
Termitomyces albuminosus (Berk.) R. Heim | Termitomycesphins A–D | PC-12 cells: Neurite growth | ↑ Neurite growth | [112] | ||
Termitomycesphin E–H | PC12 cells Morphology monitoring—phase contrast microscopy | ↑ Neurogenesis | [113] | |||
Termitomyces titanicus Pegler & Piearce | Termitomycamides B (23) and E (24) | Neuro2a cells: Tunicamycin-induced stress test | ↓ Endoplasmic reticulum stress-induced death | [114] | ||
Tremella fuciformis Berk. | Fruiting body | Aqueous | PC12h cells: Morphology evaluation by imaging | Scopolamine-treated Sprague Dawley rat: Morris water maze | ↑ neuritogenesis; ↑ NGF; ↑ FGF | [84] |
2.5. Medicinal Mushrooms in AD Clinical Studies
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s Disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Alzheimer Europe. Dementia in Europe Yearbook 2019: Estimating the Prevalence of Dementia in Europe; Alzheimer Europe: Helsinki, Finland, 2019; ISBN 978-99959-995-9-9. [Google Scholar]
- Alzheimer’s Association. 2023 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2023, 19, 1598–1695. [Google Scholar] [CrossRef] [PubMed]
- Maresova, P.; Klimova, B.; Novotny, M.; Kuca, K. Alzheimer’s and Parkinson’s Diseases: Expected Economic Impact on Europe-A Call for a Uniform European Strategy. J. Alzheimers Dis. 2016, 54, 1123–1133. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Liu, F.; Gong, C.-X.; Grundke-Iqbal, I. Tau in Alzheimer Disease and Related Tauopathies. Curr. Alzheimer Res. 2010, 7, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Levine, H. Alzheimer’s Disease and the Amyloid-β Peptide. J. Alzheimers Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef]
- Bauzon, J.; Lee, G.; Cummings, J. Repurposed Agents in the Alzheimer’s Disease Drug Development Pipeline. Alzheimer’s Res. Ther. 2020, 12, 98. [Google Scholar] [CrossRef]
- Sharma, K. Cholinesterase Inhibitors as Alzheimer’s Therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef]
- Martins, R.N.; Villemagne, V.; Sohrabi, H.R.; Chatterjee, P.; Shah, T.M.; Verdile, G.; Fraser, P.; Taddei, K.; Gupta, V.B.; Rainey-Smith, S.R.; et al. Alzheimer’s Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J. Alzheimers Dis. 2018, 62, 965–992. [Google Scholar] [CrossRef]
- Metcalfe, M.J.; Figueiredo-Pereira, M.E. Relationship between Tau Pathology and Neuroinflammation in Alzheimer’s Disease. Mt. Sinai J. Med. 2010, 77, 50–58. [Google Scholar] [CrossRef]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef]
- Walker, K.A.; Ficek, B.N.; Westbrook, R. Understanding the Role of Systemic Inflammation in Alzheimer’s Disease. ACS Chem. Neurosci. 2019, 10, 3340–3342. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s Disease Drug Development Pipeline: 2022. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12295. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Kokras, N.; Stamouli, E.; Sotiropoulos, I.; Katirtzoglou, E.A.; Siarkos, K.T.; Dalagiorgou, G.; Alexandraki, K.I.; Coulocheri, S.; Piperi, C.; Politis, A.M. Acetyl Cholinesterase Inhibitors and Cell-Derived Peripheral Inflammatory Cytokines in Early Stages of Alzheimer’s Disease. J. Clin. Psychopharmacol. 2018, 38, 138–143. [Google Scholar] [CrossRef]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 43. [Google Scholar] [CrossRef]
- Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics 2022, 20, 195–206. [Google Scholar] [CrossRef]
- McDade, E.; Cummings, J.L.; Dhadda, S.; Swanson, C.J.; Reyderman, L.; Kanekiyo, M.; Koyama, A.; Irizarry, M.; Kramer, L.D.; Bateman, R.J. Lecanemab in Patients with Early Alzheimer’s Disease: Detailed Results on Biomarker, Cognitive, and Clinical Effects from the Randomized and Open-Label Extension of the Phase 2 Proof-of-Concept Study. Alzheimer’s Res. Ther. 2022, 14, 191. [Google Scholar] [CrossRef]
- Withington, C.G.; Turner, R.S. Amyloid-Related Imaging Abnormalities with Anti-Amyloid Antibodies for the Treatment of Dementia Due to Alzheimer’s Disease. Front. Neurol. 2022, 13, 862369. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Hirai, T.; Kumazawa, R.; Nakagawa, S.; Yonezawa, A.; Matsubara, K.; Nakao, H. Prevalence of and Risk Factors for Adverse Events in Alzheimer’s Patients Receiving Anti-Dementia Drugs in at-Home Care. PLoS ONE 2020, 15, e0231226. [Google Scholar] [CrossRef] [PubMed]
- Miculas, D.C.; Negru, P.A.; Bungau, S.G.; Behl, T.; Hassan, S.; Tit, D.M. Pharmacotherapy Evolution in Alzheimer’s Disease: Current Framework and Relevant Directions. Cells 2023, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.P.; Yang, F.; Chu, T.; Chen, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.; Ashe, K.H.; Frautschy, S.A.; et al. Ibuprofen Suppresses Plaque Pathology and Inflammation in a Mouse Model for Alzheimer’s Disease. J. Neurosci. 2000, 20, 5709–5714. [Google Scholar] [CrossRef]
- Imbimbo, B.P.; Solfrizzi, V.; Panza, F. Are NSAIDs Useful to Treat Alzheimer’s Disease or Mild Cognitive Impairment? Front. Aging Neurosci. 2010, 2, 1517. [Google Scholar] [CrossRef]
- Lee, Y.J.; Choi, I.S.; Park, M.H.; Lee, Y.M.; Song, J.K.; Kim, Y.H.; Kim, K.H.; Hwang, D.Y.; Jeong, J.H.; Yun, Y.P.; et al. 4-O-Methylhonokiol Attenuates Memory Impairment in Presenilin 2 Mutant Mice through Reduction of Oxidative Damage and Inactivation of Astrocytes and the ERK Pathway. Free Radic. Biol. Med. 2011, 50, 66–77. [Google Scholar] [CrossRef]
- Basu Mallik, S.; Mudgal, J.; Nampoothiri, M.; Hall, S.; Dukie, S.A.; Grant, G.; Rao, C.M.; Arora, D. Caffeic Acid Attenuates Lipopolysaccharide-Induced Sickness Behaviour and Neuroinflammation in Mice. Neurosci. Lett. 2016, 632, 218–223. [Google Scholar] [CrossRef]
- Chang, W.; Huang, D.; Lo, Y.M.; Tee, Q.; Kuo, P.; Wu, J.S.; Huang, W.; Shen, S. Protective Effect of Caffeic Acid against Alzheimer’s Disease Pathogenesis via Modulating Cerebral Insulin Signaling, β-Amyloid Accumulation, and Synaptic Plasticity in Hyperinsulinemic Rats. J. Agric. Food Chem. 2019, 67, 7684–7693. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, C.; Wang, X.; Yang, Z.; Chen, J.; Hu, L.; Jiang, H.; Shen, X. 2,2’,4’-Trihydroxychalcone from Glycyrrhiza Glabra as a New Specific BACE1 Inhibitor Efficiently Ameliorates Memory Impairment in Mice. J. Neurochem. 2010, 114, 374–385. [Google Scholar] [CrossRef]
- ‘t Hart, B.A.; Copray, S.; Philippens, I. Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease. Biomed. Res. Int. 2014, 2014, 298020. [Google Scholar] [CrossRef]
- Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2017, 1403, 142–149. [Google Scholar] [CrossRef]
- Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as Acetylcholinesterase Inhibitors: Current Therapeutic Standing and Future Prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef]
- Lakshmi, S.; Prakash, P.; M Essa, M.; Qoronfleh, W.; Akbar, M.; Song, B.-J.; Kumar, S.; Elumalai, P. Marine Derived Bioactive Compounds for Treatment of Alzheimer’s Disease. Front. Biosci. 2018, 10, 537–548. [Google Scholar]
- Wang, S.; Kong, X.; Chen, Z.; Wang, G.; Zhang, J.; Wang, J. Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022, 27, 4175. [Google Scholar] [CrossRef]
- Abitbol, A.; Mallard, B.; Tiralongo, E.; Tiralongo, J. Mushroom Natural Products in Neurodegenerative Disease Drug Discovery. Cells 2022, 11, 3938. [Google Scholar] [CrossRef]
- Lee, W.; Fujihashi, A.; Govindarajulu, M.; Ramesh, S.; Deruiter, J.; Majrashi, M.; Almaghrabi, M.; Nadar, R.M.; Moore, T.; Agrawal, D.C.; et al. Role of Mushrooms in Neurodegenerative Diseases. In Medicinal Mushrooms: Recent Progress in Research and Development; Springer: Singapore, 2019; pp. 223–249. [Google Scholar] [CrossRef]
- Dhakal, S.; Kushairi, N.; Phan, C.W.; Adhikari, B.; Sabaratnam, V.; Macreadie, I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 5090. [Google Scholar] [CrossRef]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic Inflammation and Oxidative Stress as a Major Cause of Age-Related Diseases and Cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Chami, L.; Checler, F. BACE1 Is at the Crossroad of a Toxic Vicious Cycle Involving Cellular Stress and β-Amyloid Production in Alzheimer’s Disease. Mol. Neurodegener. 2012, 7, 52. [Google Scholar] [CrossRef]
- Jędrejko, K.J.; Lazur, J.; Muszyńska, B. Cordyceps Militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021, 10, 2634. [Google Scholar] [CrossRef]
- Cunningham, K.G.; Manson, W.; Spring, F.S.; Hutchinson, S.A. Cordycepin, a Metabolic Product Isolated from Cordyceps militaris (Linn.) Link. Nature 1950, 166, 949. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal Uses of the Mushroom Cordyceps Militaris: Current State and Prospects. Fitoterapia 2010, 81, 961–968. [Google Scholar] [CrossRef] [PubMed]
- He, M.T.; Lee, A.Y.; Kim, J.H.; Park, C.H.; Shin, Y.S.; Cho, E.J. Protective Role of Cordyceps Militaris in Aβ 1–42 -Induced Alzheimer’s Disease in Vivo. Food Sci. Biotechnol. 2019, 28, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Huang, L.P.; Li, Y.; Liu, C.; Wang, S.; Meng, W.; Wei, S.; Liu, X.P.; Gong, Y.; Yao, L.H. Neuroprotective Effects of Cordycepin Inhibit Aβ-Induced Apoptosis in Hippocampal Neurons. Neurotoxicology 2018, 68, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M. Antioxidant, Antibacterial, Antitumor, Antifungal, Antiviral, Anti-Inflammatory, and Nevro-Protective Activity of Ganoderma Lucidum: An Overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar] [CrossRef]
- Wang, M.-F.; Chan, Y.-C.; Wu, C.-L.; Wong, Y.-C.; Hosoda, K.; Yamamoto, S. Effects of Ganoderma on Aging and Learning and Memory Ability in Senescence Accelerated Mice. Int. Congr. Ser. 2004, 1260, 399–404. [Google Scholar] [CrossRef]
- Yu, N.; Huang, Y.; Jiang, Y.; Zou, L.; Liu, X.; Liu, S.; Chen, F.; Luo, J.; Zhu, Y. Ganoderma Lucidum Triterpenoids (GLTs) Reduce Neuronal Apoptosis via Inhibition of ROCK Signal Pathway in APP/PS1 Transgenic Alzheimer’s Disease Mice. Oxid. Med. Cell. Longev. 2020, 2020, 9894037. [Google Scholar] [CrossRef]
- Ghosh, S.; Nandi, S.; Banerjee, A.; Sarkar, S.; Chakraborty, N.; Acharya, K. Prospecting Medicinal Properties of Lion’s Mane Mushroom. J. Food Biochem. 2021, 45, e13833. [Google Scholar] [CrossRef]
- Chen, C.C.; Tzeng, T.T.; Chen, C.C.; Ni, C.L.; Lee, L.Y.; Chen, W.P.; Shiao, Y.J.; Shen, C.C. Erinacine S, a Rare Sesterterpene from the Mycelia of Hericium erinaceus. J. Nat. Prod. 2016, 79, 438–441. [Google Scholar] [CrossRef]
- Tsai-Teng, T.; Chin-Chu, C.; Li-Ya, L.; Wan-Ping, C.; Chung-Kuang, L.; Chien-Chang, S.; Chi-Ying, H.F.; Chien-Chih, C.; Shiao, Y.J. Erinacine A-Enriched Hericium erinaceus Mycelium Ameliorates Alzheimer’s Disease-Related Pathologies in APPswe/PS1dE9 Transgenic Mice. J. Biomed. Sci. 2016, 23, 49. [Google Scholar] [CrossRef]
- Tzeng, T.T.; Chen, C.C.; Chen, C.C.; Tsay, H.J.; Lee, L.Y.; Chen, W.P.; Shen, C.C.; Shiao, Y.J. The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice. Int. J. Mol. Sci. 2018, 19, 598. [Google Scholar] [CrossRef]
- González-Ramírez, M.; Gavilán, J.; Silva-Grecchi, T.; Cajas-Madriaga, D.; Triviño, S.; Becerra, J.; Saez-Orellana, F.; Pérez, C.; Fuentealba, J. A Natural Benzofuran from the Patagonic Aleurodiscus Vitellinus Fungus Has Potent Neuroprotective Properties on a Cellular Model of Amyloid-β Peptide Toxicity. J. Alzheimers Dis. 2018, 61, 1463–1475. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Lu, W.; Zhang, S.; Guan, X.; Li, Z.; Wang, D. Anti-Oxidative Stress Activity Is Essential for Amanita Caesarea Mediated Neuroprotection on Glutamate-Induced Apoptotic HT22 Cells and an Alzheimer’s Disease Mouse Model. Int. J. Mol. Sci. 2017, 18, 1623. [Google Scholar] [CrossRef]
- Wang, L.C.; Wang, S.E.; Wang, J.J.; Tsai, T.Y.; Lin, C.H.; Pan, T.M.; Lee, C.L. In Vitro and in Vivo Comparisons of the Effects of the Fruiting Body and Mycelium of Antrodia Camphorata against Amyloid β-Protein-Induced Neurotoxicity and Memory Impairment. Appl. Microbiol. Biotechnol. 2012, 94, 1505–1519. [Google Scholar] [CrossRef]
- An, S.; Lu, W.; Zhang, Y.; Yuan, Q.; Wang, D. Pharmacological Basis for Use of Armillaria Mellea Polysaccharides in Alzheimer’s Disease: Antiapoptosis and Antioxidation. Oxid. Med. Cell Longev. 2017, 2017, 4184562. [Google Scholar] [CrossRef]
- Bennett, L.; Sheean, P.; Zabaras, D.; Head, R. Heat-Stable Components of Wood Ear Mushroom, Auricularia Polytricha (Higher Basidiomycetes), Inhibit in Vitro Activity of Beta Secretase (BACE1). Int. J. Med. Mushrooms 2013, 15, 233–249. [Google Scholar] [CrossRef]
- Geissler, T.; Brandt, W.; Porzel, A.; Schlenzig, D.; Kehlen, A.; Wessjohann, L.; Arnold, N. Acetylcholinesterase Inhibitors from the Toadstool Cortinarius Infractus. Bioorg. Med. Chem. 2010, 18, 2173–2177. [Google Scholar] [CrossRef]
- Wei, J.; Cheng, Y.; Guo, W.H.; Wang, D.C.; Zhang, Q.; Li, D.; Rong, J.; Gao, J.M. Molecular Diversity and Potential Anti-Neuroinflammatory Activities of Cyathane Diterpenoids from the Basidiomycete Cyathus Africanus. Sci. Rep. 2017, 7, 8883. [Google Scholar] [CrossRef]
- Lai, C.S.W.; Yu, M.S.; Yuen, W.H.; So, K.F.; Zee, S.Y.; Chang, R.C.C. Antagonizing β-Amyloid Peptide Neurotoxicity of the Anti-Aging Fungus Ganoderma lucidum. Brain Res. 2008, 1190, 215–224. [Google Scholar] [CrossRef]
- Cordaro, M.; Salinaro, A.T.; Siracusa, R.; D’amico, R.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Cuzzocrea, S.; Di Paola, R.; Fusco, R.; et al. Key Mechanisms and Potential Implications of Hericium Erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer’s Disease. Antioxidants 2021, 10, 1664. [Google Scholar] [CrossRef]
- Lee, L.Y.; Chou, W.; Chen, W.P.; Wang, M.F.; Chen, Y.J.; Chen, C.C.; Tung, K.C. Erinacine A-Enriched Hericium erinaceus Mycelium Delays Progression of Age-Related Cognitive Decline in Senescence Accelerated Mouse Prone 8 (Samp8) Mice. Nutrients 2021, 13, 3659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Jin, G.; Yang, X.; Zhang, Y. Polysaccharides from Pleurotus Ostreatus Alleviate Cognitive Impairment in a Rat Model of Alzheimer’s Disease. Int. J. Biol. Macromol. 2016, 92, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, C.A.; Haynes, J.R.; Behof, W.J.; Rosenberg, A.J.; Tantawy, M.N.; Hachey, B.C.; Wadzinski, B.E.; Spiller, B.W.; Peterson, T.E.; Paffenroth, K.C.; et al. Longitudinal Consumption of Ergothioneine Reduces Oxidative Stress and Amyloid Plaques and Restores Glucose Metabolism in the 5XFAD Mouse Model of Alzheimer’s Disease. Pharmaceuticals 2022, 15, 742. [Google Scholar] [CrossRef] [PubMed]
- Lesa, K.N.; Khandaker, M.U.; Mohammad Rashed Iqbal, F.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Oblak, A.L.; Lin, P.B.; Kotredes, K.P.; Pandey, R.S.; Garceau, D.; Williams, H.M.; Uyar, A.; O’Rourke, R.; O’Rourke, S.; Ingraham, C.; et al. Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study. Front. Aging Neurosci. 2021, 13, 713726. [Google Scholar] [CrossRef]
- Jasiecki, J.; Wasąg, B. Butyrylcholinesterase Protein Ends in the Pathogenesis of Alzheimer’s Disease—Could BCHE Genotyping Be Helpful in Alzheimer’s Therapy? Biomolecules 2019, 9, 592. [Google Scholar] [CrossRef]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s Disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine Improves Cognition, Hippocampal Inflammation, and Synaptic Plasticity Impairments Induced by Lipopolysaccharide in Mice. J. Neuroinflamm. 2018, 15, 112. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Haertel, C.; Maelicke, A.; Montag, D. Galantamine Slows down Plaque Formation and Behavioral Decline in the 5XFAD Mouse Model of Alzheimer’s Disease. PLoS ONE 2014, 9, e89454. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Pervin, M.; Lim, B.O. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma Lucidum Grown on Germinated Brown Rice. Molecules 2013, 18, 6663–6678. [Google Scholar] [CrossRef]
- Lee, I.S.; Ahn, B.R.; Choi, J.S.; Hattori, M.; Min, B.; Bae, K.H. Selective Cholinesterase Inhibition by Lanostane Triterpenes from Fruiting Bodies of Ganoderma Lucidum. Bioorg. Med. Chem. Lett. 2011, 21, 6603–6607. [Google Scholar] [CrossRef]
- Akata, I.; Zengin, G.; Picot, C.M.N.; Mahomoodally, M.F. Enzyme Inhibitory and Antioxidant Properties of Six Mushroom Species from the Agaricaceae Family. S. Afr. J. Bot. 2019, 120, 95–99. [Google Scholar] [CrossRef]
- Alkan, S.; Uysal, A.; Kasik, G.; Vlaisavljevic, S.; Berežni, S.; Zengin, G. Chemical Characterization, Antioxidant, Enzyme Inhibition and Antimutagenic Properties of Eight Mushroom Species: A Comparative Study. J. Fungi 2020, 6, 166. [Google Scholar] [CrossRef]
- Raquel Leal, A.; Barros, L.; Barreira, J.C.; João Sousa, M.; Martins, A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Portuguese Wild Mushrooms at the “Pharma-Nutrition” Interface: Nutritional Characterization and Antioxidant Properties. Food Res. Int. 2013, 50, 1–9. [Google Scholar] [CrossRef]
- Teichert, A.; Schmidt, J.; Porzel, A.; Arnold, N.; Wessjohann, L. Brunneins A-C, β-Carboline Alkaloids from Cortinarius Brunneus. J. Nat. Prod 2007, 70, 1529–1531. [Google Scholar] [CrossRef]
- Wei, J.; Guo, W.H.; Cao, C.Y.; Kou, R.W.; Xu, Y.Z.; Górecki, M.; Di Bari, L.; Pescitelli, G.; Gao, J.M. Polyoxygenated Cyathane Diterpenoids from the Mushroom Cyathus Africanus, and Their Neurotrophic and Anti-Neuroinflammatory Activities. Sci. Rep. 2018, 8, 2175. [Google Scholar] [CrossRef]
- Wei, Y.M.; Yang, L.; Wang, H.; Cai, C.H.; Chen, Z.B.; Chen, H.Q.; Mei, W.L.; Dai, H.F. Triterpenoids as Bivalent and Dual Inhibitors of Acetylcholinesterase/Butyrylcholinesterase from the Fruiting Bodies of Inonotus obliquus. Phytochemistry 2022, 200, 113182. [Google Scholar] [CrossRef]
- Badshah, S.L.; Riaz, A.; Muhammad, A.; Çayan, G.T.; Çayan, F.; Duru, M.E.; Ahmad, N.; Emwas, A.H.; Jaremko, M. Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta. Molecules 2021, 26, 1459. [Google Scholar] [CrossRef]
- Heleno, S.A.; Stojković, D.; Barros, L.; Glamočlija, J.; Soković, M.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. A Comparative Study of Chemical Composition, Antioxidant and Antimicrobial Properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Res. Int. 2013, 51, 236–243. [Google Scholar] [CrossRef]
- Im, K.H.; Nguyen, K.; Kim, J.K.; Choi, J.-H.; Lee, T.S. Evaluation of Anticholinesterase and Inflammation Inhibitory Activity of Medicinal Mushroom Phellinus pini (Basidiomycetes) Fruiting Bodies. Int. J. Med. Mushrooms 2016, 18, 1011–1022. [Google Scholar] [CrossRef]
- Knežević, A.; Stajić, M.; Sofrenić, I.; Stanojković, T.; Milovanović, I.; Tešević, V.; Vukojević, J. Antioxidative, Antifungal, Cytotoxic and Antineurodegenerative Activity of Selected Trametes Species from Serbia. PLoS ONE 2018, 13, e0203064. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Ha, H.-C.; Lee, M.-S.; Kang, J.-I.; Kim, H.-S.; Lee, S.-Y.; Pyun, K.-H.; Shim, I. Effect of Tremella fuciformis on the Neurite Outgrowth of PC12h Cells and the Improvement of Memory in Rats. Biol. Pharm. Bull. 2007, 30, 708–714. [Google Scholar] [CrossRef]
- Tel, G.; Apaydın, M.; Duru, M.E.; Öztürk, M. Antioxidant and Cholinesterase Inhibition Activities of Three Tricholoma Species with Total Phenolic and Flavonoid Contents: The Edible Mushrooms from Anatolia. Food Anal. Methods 2012, 5, 495–504. [Google Scholar] [CrossRef]
- Doǧan, H.H.; Akbaş, G. Biological Activity and Fatty Acid Composition of Caesar’s Mushroom. Pharm. Biol. 2013, 51, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Ovenden, S.P.B.; Yu, J.; Bernays, J.; Wan, S.S.; Christophidis, L.J.; Sberna, G.; Tait, R.M.; Wildman, H.G.; Lebeller, D.; Platel, D.; et al. Trichomycins A and B: Antibacterial Triterpenes from the New Species Tricholoma sp. AU1. J. Nat. Prod. 2005, 68, 409–412. [Google Scholar] [CrossRef]
- Hussain, S.; Ahmed, S.; Sardar, R.; Bukhari, S.; Akrem, A.; Mustafa, S.; Manan, A.; Sajid, M.; Talha Rafiq, M. Edible and Medicinal Mushrooms: That Mitigate the Threatening Diseases. Med. Mycol. 2021, 7, 1–6. [Google Scholar]
- Brondz, I.; Høiland, K. Biogenesis of Infractine Alkaloids in Cortinarius Infractus: Importance of 5-Hydroxytriptophane Pathway in Biogenesis of Alkaloids in Mushrooms. In Proceedings of the 5th Conference Nordic Separation Science Society, Tallinn, Estonia, 26–29 January 2010. [Google Scholar]
- Muszynska, B.; Sulkowska-Ziaja, K.; Wolkowska, M.; Ekiert, H. Chemical, Pharmacological, and Biological Characterization of the Culinary-Medinical Honey Mushroom, Armillaria mellea (Vahl) P. Kumm. (Agaricomycetideae): A Review. Int. J. Med. Mushrooms 2011, 13, 167–175. [Google Scholar] [CrossRef]
- Wu, J.Y.; Siu, K.C.; Geng, P. Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods 2021, 10, 95. [Google Scholar] [CrossRef]
- Tan, W.C.; Kuppusamy, U.R.; Phan, C.W.; Tan, Y.S.; Raman, J.; Anuar, A.M.; Sabaratnam, V. Ganoderma Neo-Japonicum Imazeki Revisited: Domestication Study and Antioxidant Properties of Its Basidiocarps and Mycelia. Sci. Rep. 2015, 5, 12515. [Google Scholar] [CrossRef]
- Ling-Sing Seow, S.; Naidu, M.; David, P.; Wong, K.H.; Sabaratnam, V. Potentiation of Neuritogenic Activity of Medicinal Mushrooms in Rat Pheochromocytoma Cells. BMC Complement. Altern. Med. 2013, 13, 157. [Google Scholar] [CrossRef]
- Wiatrak, B.; Kubis-Kubiak, A.; Piwowar, A.; Barg, E. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 2020, 9, 958. [Google Scholar] [CrossRef]
- Nishina, A.; Kimura, H.; Sekiguchi, A.; Fukumoto, R.H.; Nakajima, S.; Furukawa, S. Lysophosphatidylethanolamine in Grifola Frondosa as a Neurotrophic Activator via Activation of MAPK. J. Lipid. Res. 2006, 47, 1434–1443. [Google Scholar] [CrossRef]
- Zeng, M.; Qi, L.; Guo, Y.; Zhu, X.; Tang, X.; Yong, T.; Xie, Y.; Wu, Q.; Zhang, M.; Chen, D. Long-Term Administration of Triterpenoids from Ganoderma lucidum Mitigates Age-Associated Brain Physiological Decline via Regulating Sphingolipid Metabolism and Enhancing Autophagy in Mice. Front. Aging Neurosci. 2021, 13, 628860. [Google Scholar] [CrossRef]
- Nagai, K.; Chiba, A.; Nishino, T.; Kubota, T.; Kawagishi, H. Dilinoleoyl-Phosphatidylethanolamine from Hericium Erinaceum Protects against ER Stress-Dependent Neuro2a Cell Death via Protein Kinase C Pathway. J. Nutr. Biochem. 2006, 17, 525–530. [Google Scholar] [CrossRef]
- Ma, B.J.; Shen, J.W.; Yu, H.Y.; Ruan, Y.; Wu, T.T.; Zhao, X. Hericenones and Erinacines: Stimulators of Nerve Growth Factor (NGF) Biosynthesis in Hericium erinaceus. Mycology 2010, 1, 92–98. [Google Scholar] [CrossRef]
- Kawagishi, H.; Ando, M.; Sakamoto, H.; Yoshida, S.; Ojima, F.; Ishiguro, Y.; Ukai, N.; Furukawa, S. Hericenones C, D and E, Stimulators of Nerve Growth Fact (NGF)-Synthesis, from the Mushroom Hericium erinaceum. Tetrahedron Lett. 1991, 32, 4561–4564. [Google Scholar] [CrossRef]
- Choi, J.-H.; Horikawa, M.; Okumura, H.; Kodani, S.; Nagai, K.; Hashizume, D.; Koshino, H.; Kawagishi, H. Endoplasmic Reticulum (ER) Stress Protecting Compounds from the Mushroom Mycoleptodonoides aitchisonii. Tetrahedron 2009, 65, 221–224. [Google Scholar] [CrossRef]
- Kita, T.; Takaya, Y.; Oshima, Y.; Ohta, T.; Aizawa, K.; Hirano, T.; Inakuma, T. Scabromines B, C, C, D, E and F, Novel Diterpenoids Showing Stimulating Activity of Nerve Growth Factor-Synthesis, from the Mushroom Sarcodon scabrosus. Pergamon Tetrahedron 1998, 54, 11877–11886. [Google Scholar] [CrossRef]
- Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus Versicolor Biomass Increases Dendritic Arborization of Newly-Generated Neurons in Mouse Hippocampal Dentate Gyrus. Oncotarget 2018, 9, 32929. [Google Scholar] [CrossRef]
- Kawagishi, H.; Ishiyama, D.; Mori, H.; Sakamoto, H.; Ishiguro, Y.; Furukawa, S.; Li, J. Dictyophorines A and B, Two Stimulators of NGF-Synthesis from the Mushroom Dictyophora indusitata. Pergamon 1997, 45, 1203–1205. [Google Scholar]
- Lai, P.-L.; Naidu, M.; Sabaratnam, V.; Wong, K.H.; David, R.P.; Kuppusamy, U.R.; Abdullah, N.; Malek, S.N.A. Neurotrophic Properties of the Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int. J. Med. Mushrooms 2013, 15, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Kawagishia, H.; Shimadaa, A.; Shiraia, R.; Okamotob, K.; Ojimab, F.; Sakamotob, H.; Ishigurob, Y.; Furukawac, S. Erinacines A, B and C, Strong Stimulators of Nerve Growth Factor (NGF)-Synthesis, from the Mycelia of Hericium erinaceum. Pergamon 1994, 35, 1569–1572. [Google Scholar] [CrossRef]
- Shimbo, M.; Kawagishi, H.; Yokogoshi, H. Erinacine A Increases Catecholamine and Nerve Growth Factor Content in the Central Nervous System of Rats. Nutr. Res. 2005, 25, 617–623. [Google Scholar] [CrossRef]
- Okuyama, S.; Lam, N.V.; Hatakeyama, T.; Terashima, T.; Yamagata, K.; Yokogoshi, H. Mycoleptodonoides aitchisonii Affects Brain Nerve Growth Factor Concentration in Newborn Rats. Nutr. Neurosci. 2004, 7, 341–349. [Google Scholar] [CrossRef]
- Lee, I.-K.; Yun, B.-S.; Kim, J.-P.; Ryoo, I.-J.; Kim, Y.-H.; Yoo, I.-D. Neuroprotective Activity of P-Terphenyl Leucomentins from the Mushroom Paxillus panuoides. Biosci. Biotechnol. Biochem. 2003, 67, 1813–1816. [Google Scholar] [CrossRef]
- Obara, Y.; Hoshino, T.; Marcotullio, M.C.; Pagiotti, R.; Nakahata, N. A Novel Cyathane Diterpene, Cyrneine A, Induces Neurite Outgrowth in a Rac1-Dependent Mechanism in PC12 Cells. Life Sci. 2007, 80, 1669–1677. [Google Scholar] [CrossRef]
- Marcotullio, M.C.; Pagiotti, R.; Maltese, F.; Oball-Mond Mwankie, G.N.; Hoshino, T.; Obara, Y.; Nakahata, N. Cyathane Diterpenes from Sarcodon cyrneus and Evaluation of Their Activities of Neuritegenesis and Nerve Growth Factor Production. Bioorg. Med. Chem. 2007, 15, 2878–2882. [Google Scholar] [CrossRef]
- Ohta, T.; Kita, T.; Kobayashi, N.; Obara, Y.; Nakahata, N.; Ohizumi, Y.; Takaya, Y.; Oshima, Y. Scabronine A, a Novel Diterpenoid Having Potent Inductive Activity of the Nerve Growth Factor Synthesis, Isolated from the Mushroom, Sarcodon scabrosus. Tetrahedron Lett. 1998, 39, 6229–6232. [Google Scholar] [CrossRef]
- Qi, J.; Ojika, M.; Sakagami, Y. Termitomycesphins A-D, Novel Neuritogenic Cerebrosides from the Edible Chinese Mushroom Termitomyces albuminosus. Tetrahedron 2000, 56, 5835–5841. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, K.; Gao, L.; Sakagami, Y.; Kawagishi, H.; Ojika, M.; Qi, J. Termitomycesphins G and H, Additional Cerebrosides from the Edible Chinese Mushroom Termitomyces albuminosus. Biosci. Biotechnol. Biochem. 2012, 76, 791–793. [Google Scholar] [CrossRef]
- Paloi, S.; Kumla, J.; Paloi, B.P.; Srinuanpan, S.; Hoijang, S.; Karunarathna, S.C.; Acharya, K.; Suwannarach, N.; Lumyong, S. Termite Mushrooms (Termitomyces), a Potential Source of Nutrients and Bioactive Compounds Exhibiting Human Health Benefits: A Review. J. Fungi 2023, 90, 112. [Google Scholar] [CrossRef]
- Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. Mediat. Inflamm. 2014, 2014, 805841. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Gabr, M.T. Multitarget Therapeutic Strategies for Alzheimer’s Disease. Neural Regen. Res. 2019, 14, 437–440. [Google Scholar] [CrossRef]
- Yadav, S.K.; Ir, R.; Jeewon, R.; Doble, M.; Hyde, K.D.; Kaliappan, I.; Jeyaraman, R.; Reddi, R.N.; Krishnan, J.; Li, M.; et al. A Mechanistic Review on Medicinal Mushrooms-Derived Bioactive Compounds: Potential Mycotherapy Candidates for Alleviating Neurological Disorders. Planta Medica 2020, 86, 1161–1175. [Google Scholar] [CrossRef]
- Phan, C.W.; David, P.; Sabaratnam, V. Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases. J. Med. Food 2017, 20, 1–10. [Google Scholar] [CrossRef]
- Mori, K.; Inatomi, S.; Ouchi, K.; Azumi, Y.; Tuchida, T. Improving Effects of the Mushroom Yamabushitake (Hericium erinaceus) on Mild Cognitive Impairment: A Double-Blind Placebo-Controlled Clinical Trial. Phytother. Res. 2009, 23, 367–372. [Google Scholar] [CrossRef]
- Li, I.C.; Chang, H.H.; Lin, C.H.; Chen, W.P.; Lu, T.H.; Lee, L.Y.; Chen, Y.W.; Chen, Y.P.; Chen, C.C.; Lin, D.P.C. Prevention of Early Alzheimer’s Disease by Erinacine A-Enriched Hericium erinaceus Mycelia Pilot Double-Blind Placebo-Controlled Study. Front. Aging Neurosci. 2020, 12, 155. [Google Scholar] [CrossRef]
- Chan, Y.C.; Lin, T.C.; Chen, C.C.; Lee, L.Y.; Chen, W.P.; Liu, Y.Z.; Hwang, J.H. Effects of Erinacine A-Enriched Hericium Erinaceus on Elderly Hearing-Impaired Patients: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J. Funct. Foods 2022, 97, 105220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.M.; Preto, M.; Grosso, C.; Vieira, M.; Delerue-Matos, C.; Vasconcelos, V.; Reis, M.; Barros, L.; Martins, R. Tracing the Path between Mushrooms and Alzheimer’s Disease—A Literature Review. Molecules 2023, 28, 5614. https://doi.org/10.3390/molecules28145614
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer’s Disease—A Literature Review. Molecules. 2023; 28(14):5614. https://doi.org/10.3390/molecules28145614
Chicago/Turabian StyleSilva, Ana Margarida, Marco Preto, Clara Grosso, Mónica Vieira, Cristina Delerue-Matos, Vitor Vasconcelos, Mariana Reis, Lillian Barros, and Rosário Martins. 2023. "Tracing the Path between Mushrooms and Alzheimer’s Disease—A Literature Review" Molecules 28, no. 14: 5614. https://doi.org/10.3390/molecules28145614
APA StyleSilva, A. M., Preto, M., Grosso, C., Vieira, M., Delerue-Matos, C., Vasconcelos, V., Reis, M., Barros, L., & Martins, R. (2023). Tracing the Path between Mushrooms and Alzheimer’s Disease—A Literature Review. Molecules, 28(14), 5614. https://doi.org/10.3390/molecules28145614