Pesticide Residues in Mandarins: Three-Year Monitoring Results
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation Data
2.2. Pesticide Residues in Mandarins
3. Materials and Methods
3.1. Chemicals, Reagents, and Standards
3.2. Samples
3.3. Sample Preparation
3.4. LC-MS/MS Analysis
3.5. GC-MS/MS Analysis
3.6. Validation Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agricultural Organization). FAO Statistical Databases and Data Sets; FAO (Food and Agricultural Organization): Rome, Italy, 2022; Available online: https://www.fao.org/faostat/en/#data/QC/visualize (accessed on 25 March 2023).
- Lado, J.; Cuellar, F.; Rodrigo, M.J.; Zacarías, L. Nutritional composition of mandarins. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 419–443. [Google Scholar]
- Saito, S.; Xiao, C.L. Prevalence of postharvest diseases of mandarin fruit in California. Plant Health Prog. 2017, 18, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Turgutoğlu, E. Mandarin yetiştiriciliği T.C. Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Batı Akdeniz Tarımsal Araştırma Enstitüsü, Antalya. 2020. Available online: https://arastirma.tarimorman.gov.tr/batem/Belgeler/Kutuphane/Teknik%20Bilgiler/Mandarin%20Yetiştiriciliği.pdf (accessed on 26 October 2022).
- Aslantas, S.; Golge, O.; González-Curbelo, M.Á.; Kabak, B. Determination of 355 pesticides in lemon and lemon juice by LC-MS/MS and GC-MS/MS. Foods 2023, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Resmi Gazete. Türk Gıda Kodeksi Pestisitlerin Maksimum Kalıntı Limitleri Yönetmeliği; sayı: 31611; Resmi Gazete: Ankara, Turkey, 2021. [Google Scholar]
- European Commission. Regulation (EC) no 396/2005 of the European Parliament and of the council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Off. J. Eur. Union 2005, L70, 1–16. [Google Scholar]
- RASFF (Rapid Alert System for Food and Feed). RASFF Portal. Available online: https://webgate.ec.europa.eu/rasff-winndow/screen/search (accessed on 20 February 2023).
- European Commission. Commission implementing regulation (EU) 2019/1793 of 22 October 2019 on the temporary increase of official controls and emergency measures governing the entry into the Union of certain goods from certain third countries implementing Regulations (EU) 2017/625 and (EC) No 178/2002 of the European Parliament and of the Council and repealing Commission Regulations (EC) No 669/2009, (EU) No 884/2014, (EU) 2015/175, (EU) 2017/186 and (EU) 2018/1660. Off. J. Eur. Union 2019, L277, 89–129. [Google Scholar]
- Vu Duc, N.; Nguyen-Quang, T.; Le-Minh, T.; Nguyen-Thi, X.; Tran, T.M.; Vu, H.A.; Nguyen, L.-A.; Doan-Duy, T.; Hoi, B.V.; Vu, C.-T.; et al. Multiresidue pesticides analysis of vegetables in Vietnam by ultrahigh-performance liquid chromatography in combination with high-resolution mass spectrometry (UPLC-orbitrap MS). J. Anal. Methods Chem. 2019, 2019, 3489634. [Google Scholar] [CrossRef] [Green Version]
- Golge, O.; Cinpolat, S.; Kabak, B. Quantification of pesticide residues in gherkins by liquid and gas chromatography coupled to tandem mass spectrometry. J. Food Compos. Anal. 2021, 96, 103755. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-residue analysis in soils by the QuEChERS method: A review. Molecules 2022, 27, 4323. [Google Scholar] [CrossRef]
- Deveci, B.; Golge, O.; Kabak, B. Quantification of 363 pesticides in leafy vegetables (dill, rocket and parsley) in the Turkey market by using QuEChERS with LC-MS/MS and GC-MS/MS. Foods 2023, 12, 1034. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Liu, Y.; Wang, J.; Zhang, Y.; Dong, A.; Zhao, H.; Sun, C.; Cui, J. Multiresidue method for determination of 88 pesticides in berry fruits using solid phase extraction and gas-chromatography-mass spectrometry. Food Chem. 2011, 127, 855–865. [Google Scholar] [CrossRef]
- Iwafune, T.; Ogino, T.; Watanabe, E. Water-based extraction and liquid chromatography–tandem mass spectrometry analysis of neonicotinoid insecticides and their metabolites in green pepper/tomato samples. J. Agric. Food Chem. 2014, 62, 2790–2796. [Google Scholar] [CrossRef]
- Correia, M.; Delerue, C.; Alves, A. Development of a SPME-GC-ECD methodology for selected pesticides in must and wine samples. Fresenius’ J. Anal. Chem. 2001, 369, 647–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedessa, T.; Megersa, N.; Gure, A. Salting out assisted liquid-liquid extraction for the determination of multiresidue pesticides in alcoholic beverages by high performance liquid chromatography. Sci. J. Anal. Chem. 2017, 5, 38–45. [Google Scholar] [CrossRef] [Green Version]
- González-Curbelo, M.Á.; Hernández-Borges, J.; Borges-Miguel, T.M.; Rodríguez-Delgado, M.Á. Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection. J. Chromatogr. A 2013, 1313, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Adou, K.; Bontoyan, W.R.; Sweeney, P.J. Multiresidue method for the analysis of pesticide residues in fruits and vegetables by accelerated solvent extraction and capillary gas chromatography. J. Agric. Food Chem. 2001, 49, 4153–4160. [Google Scholar] [CrossRef] [PubMed]
- Rissato, S.R.; Galhaine, M.S.; Knoll, F.R.; Apon, P.M. Supercritical fluid extraction for pesticide multiresidue analysis in honey: Determination by gas chromatography with electron-capture and mass spectrometry detection. J. Chromatogr. A 2004, 1048, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Mirsadeghi, S.; Pourmortazavi, S.M. Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Crit. Rev. Anal. Chem. 2021, 51, 482–501. [Google Scholar] [CrossRef]
- Valsamaki, V.I.; Boti, V.I.; Sakkas, V.A.; Albanis, T.A. Determination of organochlorine pesticides and polychlorinated biphenyls in chicken eggs by matrix solid phase dispersion. Anal. Chim. Acta 2006, 573–574, 195–201. [Google Scholar] [CrossRef]
- Lozowicka, B.; Ilyasova, G.; Kaczynski, P.; Jankowska, M.; Rutkowska, E.; Hrynko, I.; Mojsak, P.; Szabunko, J. Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose content matrices by tandem mass spectrometry coupled with gas and liquid chromatography. Talanta 2016, 151, 51–61. [Google Scholar] [CrossRef]
- Singh, S.B.; Foster, G.D.; Khan, S.U. Microwave-assisted extraction for the simultaneous determination of thiamethoxam, imidacloprid, and carbendazim residues in fresh and cooked vegetable samples. J. Agric. Food Chem. 2004, 52, 105–109. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Anastassiades, M.; Kolberg, D.I.; Benkenstein, A.; Eichorn, E.; Zechmann, S.; Mack, D. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS Involving Simultaneous Extraction with Methanol (QuPPe Method)—Version 9.3; EU Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM): Stuttgart, Germany; CVUA: Stuttgart, Germany, 2017. [Google Scholar]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; Document No. SANTE 11312/2021; EC Directorate-General for Health and Food Safety: Brussels, Belgium, 2021. [Google Scholar]
- CVUA Stuttgart (Chemisches und Veterinäruntersuchungsamt). Residues and Contaminants in Fresh Fruit from Conventional Cultivation. 2018. Available online: https://www.ua-bw.de/pesticides/beitrag_en.asp?subid=1&Thema_ID=5&ID=2931&Pdf=No&lang=EN (accessed on 26 November 2022).
- Tarım ve Köy İşleri Bakanlığı. Turunçgil Hastalık ve Zararlıları ile Mücadele. Ankara. 2011. Available online: https://cadcom.com.tr/downloads/CsAgriMedya/documents/turuncgil_hastaliklari.pdf (accessed on 21 June 2023).
- Salazar-López, N.J.; Aldana, L.; Silveira-Gramont, M.-I. Sprirotetramat-An alternative for the control of parasitic sucking insects and its fate in the environment. In Insecticides Resistance; Trdan, S., Ed.; IntechOpen: London, UK, 2016; 450p. [Google Scholar]
- EFSA (European Food Safety Authority). Modification of the existing maximum residue levels for spirotetramat in herbs and edible flowers. EFSA J. 2022, 20, 7668. [Google Scholar]
- EFSA (European Food Safety Authority). Reasoned opinion on the review of the existing maximum residue levels for spirotetramat according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2020, 18, 5960. [Google Scholar]
- Tağa, Ö. Determination of Pesticide Residue Levels on Citrus Fruits Grown on Aegean and Mediterranean Region in Turkey. Master’s Thesis, Namık Kemal University Graduate School of Natural and Applied Science, Tekirdağ, Turkey, 2007. [Google Scholar]
- Bakırcı, G.T.; Acay, D.B.Y.; Bakırcı, F.; Ötleş, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Al-Nasir, F.M.; Jiries, A.G.; Al-Rabadi, G.J.; Alu’datt, M.H.; Tranchant, C.C.; Al-Dalain, S.A.; Alrabadi, N.; Madanat, O.Y.; Al-Dmour, R.S. Determination of pesticide residues in selected citrus fruits and vegetables cultivated in the Jordan Valley. LWT Food Sci. Technol. 2020, 123, 109005. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhao, Q.; Wang, C.; Cui, Y.; Li, J.; Chen, A.; Liang, G.; Jiao, B. Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere 2020, 258, 127381. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15, 4791. [Google Scholar]
- European Commission. Commission Directive 2002/63/EC of 11 July 2002 establishing Community methods of sampling for the official control of pesticide residues in and on products of plant and animal origin and repealing Directive 79/700/EEC. Off. J. Eur. Communities 2002, 2, 30–43. [Google Scholar]
- AOAC International. Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulphate: AOAC Official Method 2007.01; AOAC International: Rockville, MD, USA, 2007. [Google Scholar]
- Gormez, E.; Golge, O.; Kabak, B. Quantification of fosetyl-aluminium /phosphonic acid and other highly polar residues in pomegranates using Quick Polar Pesticides method involving liquid chromatography-tandem mass spectrometry measurement. J. Chromatogr. A 2021, 1642, 4622038. [Google Scholar] [CrossRef] [PubMed]
- Gormez, E.; Golge, O.; González-Curbelo, M.Á.; Kabak, B. Monitoring and exposure assessment of fosetyl aluminium and other highly polar pesticide residues in sweet cherry. Molecules 2023, 28, 252. [Google Scholar] [CrossRef] [PubMed]
Pesticide | Type of Residue | EU MRL (mg kg−1) | % of Samples <LOQ | % of Samples between LOQ-MRL | % of Samples >MRL | Range (mg kg−1) | |
---|---|---|---|---|---|---|---|
Min.–Max. | Mean | ||||||
Acetamiprid | IN | 0.9 | 89.7 | 10.3 | - | 0.010–0.129 | 0.056 |
Buprofezin | IN | 0.01 | 96.6 | - | 3.4 | 0.013 | 0.013 |
Carbendazim * | FU | 0.7 | 96.6 | 3.4 | - | 0.038 | 0.038 |
Chlorpyrifos-methyl * | IN/AC | 0.01 | 96.6 | 3.4 | - | 0.010 | 0.010 |
Deltamethrin | IN | 0.04 | 96.6 | 3.4 | - | 0.015 | 0.015 |
Fludioxonil | FU | 10 | 96.6 | 3.4 | - | 0.627 | 0.627 |
Fluopyram | FU | 0.9 | 96.6 | 3.4 | - | 0.013 | 0.013 |
Fosetyl ** | FU | 150 | 93.1 | 6.9 | - | 0.006–0.351 | 0.179 |
Imazalil | FU | 5 | 96.6 | 3.4 | - | 0.801 | 0.801 |
Imidacloprid * | IN | 0.9 | 96.6 | 3.4 | - | 0.012 | 0.012 |
Lambda-cyhalothrin | IN | 0.2 | 93.1 | 6.9 | - | 0.029–0.190 | 0.110 |
Malathion | IN | 2 | 65.5 | 34.5 | - | 0.014–0.716 | 0.141 |
Phosmet * | IN/AC | 0.5 | 96.6 | 3.4 | - | 0.014 | 0.014 |
Phosphonic acid ** | FU | 150 | 27.6 | 72.4 | - | 0.028–3.835 | 0.826 |
Pirimicarb | IN | 3 | 96.6 | 3.4 | - | 0.037 | 0.037 |
Propiconazole * | FU | 0.01 | 96.6 | - | 3.4 | 1.008 | 1.008 |
Pyrimethanil | FU | 8 | 96.6 | 3.4 | - | 0.701 | 0.701 |
Pyriproxyfen | IN | 0.6 | 96.6 | 3.4 | - | 0.028 | 0.028 |
Spirotetramat | IN | 0.5 | 82.8 | 17.2 | - | 0.017–0.112 | 0.052 |
Sulfoxaflor | IN | 0.8 | 82.8 | 17.2 | - | 0.010–0.015 | 0.012 |
Tau-fluvalinate | IN | 0.4 | 89.7 | 10.3 | - | 0.063–0.228 | 0.135 |
Thiophanate-methyl * | FU | 6 | 96.6 | 3.4 | - | 0.022 | 0.022 |
Pesticide | Type of Residue | EU MRL (mg kg−1) | % of Samples <LOQ | % of Samples between LOQ-MRL | % of Samples >MRL | Range (mg kg−1) | |
---|---|---|---|---|---|---|---|
Min.–Max. | Mean | ||||||
2-Phenylphenol | FU | 10 | 55.9 | 44.1 | - | 0.584–2.667 | 0.993 |
Acetamiprid | IN | 0.9 | 89.2 | 10.8 | - | 0.019–0.318 | 0.067 |
Azoxystrobin | FU | 15 | 98.9 | 1.1 | 0.010 | 0.010 | |
Buprofezin | IN | 0.01 | 90.3 | 2.2 | 7.5 | 0.010–0.109 | 0.042 |
Chlorpyrifos * | IN/AC | 0.01 | 94.6 | - | 5.4 | 0.038–0.418 | 0.149 |
Cypermethrin | IN | 2 | 98.9 | 1.1 | - | 0.512 | 0.512 |
Deltamethrin | IN | 0.04 | 97.8 | 2.2 | - | 0.012–0.037 | 0.025 |
Difenoconazole | FU | 0.6 | 98.9 | 1.1 | - | 0.378 | 0.378 |
Esfenvalerate | IN | 0.02 | 98.9 | 1.1 | - | 0.017 | 0.017 |
Fenbutatin-oxide * | AC | 0.01 | 92.5 | 1.1 | 6.5 | 0.010–0.047 | 0.028 |
Fludioxonil | FU | 10 | 53.8 | 46.2 | - | 0.011–0.648 | 0.131 |
Imazalil | FU | 5 | 53.8 | 46.2 | - | 0.408–1.006 | 0.675 |
Lambda-cyhalothrin | IN | 0.2 | 98.9 | 1.1 | - | 0.111 | 0.111 |
Malathion | IN | 2 | 82.8 | 16.1 | 1.1 | 0.011–2.855 | 0.493 |
Phosphonic acid ** | FU | 150 | 41.9 | 58.1 | - | 0.039–39.386 | 2.917 |
Pirimicarb | IN | 3 | 83.9 | 16.1 | - | 0.040–0.165 | 0.084 |
Propiconazole * | FU | 0.01 | 91.4 | - | 8.6 | 0.020–0.171 | 0.044 |
Pyrimethanil | FU | 8 | 53.8 | 46.2 | - | 0.329–1.200 | 0.588 |
Pyriproxyfen | IN | 0.6 | 89.2 | 10.8 | - | 0.021–0.140 | 0.053 |
Spirodiclofen * | AC | 0.4 | 93.5 | 6.5 | - | 0.010–0.166 | 0.049 |
Spirotetramat | IN | 0.5 | 44.1 | 55.9 | - | 0.011–0.324 | 0.061 |
Sulfoxaflor | IN | 0.8 | 89.2 | 10.8 | - | 0.011–0.131 | 0.040 |
Tau-fluvalinate | IN | 0.4 | 91.4 | 8.6 | - | 0.029–0.385 | 0.156 |
Tetraconazole | FU | 0.02 | 97.8 | 2.2 | 0.016–0.019 | 0.018 |
Pesticide | Type of Residue | EU MRL (mg kg−1) | % of Samples <LOQ | % of Samples between LOQ-MRL | % of Samples >MRL | Range (mg kg−1) | |
---|---|---|---|---|---|---|---|
Min.–Max. | Mean | ||||||
2-Phenylphenol | FU | 10 | 88.5 | 11.5 | - | 0.809–1.258 | 0.979 |
Acetamiprid | IN | 0.9 | 75.0 | 25.0 | - | 0.010–0.121 | 0.032 |
Bifenthrin * | IN | 0.05 | 99.0 | 1.0 | - | 0.017 | 0.017 |
Boscalid | FU | 2 | 99.0 | 1.0 | - | 0.012 | 0.012 |
Buprofezin | IN | 0.01 | 84.6 | - | 15.4 | 0.011–0.164 | 0.063 |
Chlorpyrifos * | IN/AC | 0.01 | 98.1 | 1.0 | 1.0 | 0.010–0.013 | 0.012 |
Chlorpyrifos-methyl * | IN/AC | 0.01 | 99.0 | - | 1.0 | 0.012 | 0.012 |
Cyantraniliprole | IN | 0.9 | 97.1 | 2.9 | - | 0.010–0.106 | 0.044 |
Cypermethrin | IN | 2 | 96.2 | 3.8 | - | 0.011–0.024 | 0.019 |
Difenoconazole | FU | 0.6 | 92.3 | 7.7 | - | 0.010–0.119 | 0.062 |
Etoxazole | IN | 0.1 | 97.1 | 2.9 | - | 0.013–0.032 | 0.021 |
Fenbutatin-oxide * | AC | 0.01 | 95.2 | - | 4.8 | 0.013–0.359 | 0.102 |
Flonicamid | IN | 0.15 | 99.0 | 1.0 | - | 0.018 | 0.018 |
Fludioxonil | FU | 10 | 87.5 | 12.5 | - | 0.201–0.413 | 0.313 |
Fosetyl ** | FU | 150 | 94.2 | 5.8 | - | 0.110–0.164 | 0.135 |
Imazalil | FU | 5 | 89.4 | 10.6 | - | 0.436–0.702 | 0.605 |
Imidacloprid * | IN | 0.9 | 98.1 | 1.9 | - | 0.015–0.029 | 0.022 |
Malathion | IN | 2 | 80.8 | 19.2 | - | 0.010–1.596 | 0.256 |
Novaluron * | IGR | 0.01 | 98.1 | - | 1.9 | 0.019–0.111 | 0.065 |
Phosphonic acid ** | FU | 150 | 66.3 | 33.7 | - | 0.026–5.342 | 1.844 |
Pirimicarb | IN | 3 | 95.2 | 4.8 | - | 0.015–0.182 | 0.073 |
Propiconazole * | FU | 0.01 | 93.3 | - | 6.7 | 0.031–0.086 | 0.054 |
Pyridaben | IN/AC | 0.3 | 86.5 | 12.5 | 1.0 | 0.011–0.318 | 0.113 |
Pyrimethanil | FU | 8 | 88.5 | 11.5 | - | 0.271–0.601 | 0.473 |
Pyriproxyfen | IN | 0.6 | 78.8 | 21.2 | - | 0.010–0.166 | 0.072 |
Spinosad | IN | 0.3 | 99.0 | 1.0 | - | 0.012 | 0.012 |
Spirodiclofen * | AC | 0.4 | 85.6 | 14.4 | - | 0.018–0.385 | 0.064 |
Spirotetramat | IN | 0.5 | 53.8 | 42.3 | 3.8 | 0.010–1.485 | 0.155 |
Sulfoxaflor | IN | 0.8 | 93.3 | 6.7 | - | 0.012–0.231 | 0.066 |
Tau-fluvalinate | IN | 0.4 | 79.8 | 20.2 | - | 0.010–0.358 | 0.090 |
Thiacloprid * | IN | 0.01 | 98.1 | - | 1.9 | 0.013–0.033 | 0.023 |
Thiophanate-methyl * | FU | 6.0 | 99.0 | 1.0 | - | 0.017 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gormez, E.; Golge, O.; González-Curbelo, M.Á.; Kabak, B. Pesticide Residues in Mandarins: Three-Year Monitoring Results. Molecules 2023, 28, 5611. https://doi.org/10.3390/molecules28145611
Gormez E, Golge O, González-Curbelo MÁ, Kabak B. Pesticide Residues in Mandarins: Three-Year Monitoring Results. Molecules. 2023; 28(14):5611. https://doi.org/10.3390/molecules28145611
Chicago/Turabian StyleGormez, Emrah, Ozgur Golge, Miguel Ángel González-Curbelo, and Bulent Kabak. 2023. "Pesticide Residues in Mandarins: Three-Year Monitoring Results" Molecules 28, no. 14: 5611. https://doi.org/10.3390/molecules28145611