Combination of an Oxindole Derivative with (−)-β-Elemene Alters Cell Death Pathways in FLT3/ITD+ Acute Myeloid Leukemia Cells
Abstract
:1. Introduction
2. Results
2.1. 4 × 4 Dose Matrix Cellular Inhibition Profile of β-Elemene and Compound 5a
2.2. Synergism Analysis of β-Elemene and Compound 5a
2.3. Cell Morphology Analysis
2.4. Multiple Protein Profiling to Analyze Alterations of Cell Death Targets
3. Discussion
4. Materials and Methods
4.1. Compounds
4.2. Cells and Culture Conditions
4.3. Drug Combination Assay
4.4. Observation of Cell Morphology
4.5. Human Apoptosis Antibody Array
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Malik, J.A.; Ahmed, S.; Jan, B.; Bender, O.; Al Hagbani, T.; Alqarni, A.; Anwar, S. Drugs Repurposed: An Advanced Step towards the Treatment of Breast Cancer and Associated Challenges. Biomed. Pharmacother. 2022, 145, 112375. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Jan, R.; Ahmed, S.; Anwar, S. Breast Cancer Drug Repurposing a Tool for a Challenging Disease; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Malik, J.A.; Ahmed, S.; Momin, S.S.; Shaikh, S.; Alafnan, A.; Alanazi, J.; Hajaj, M.; Almermesh, S.; Anwar, S. Drug Repurposing: A New Hope in Drug Discovery for Prostate Cancer. ACS Omega 2022, 8, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Malik, J.A.; Ahmed, S.; Kameshwar, V.A.; Alanazi, J.; Alamri, A.; Ahemad, N. Can Natural Products Targeting EMT Serve as the Future Anticancer Therapeutics? Molecules 2022, 27, 7668. [Google Scholar] [CrossRef]
- Anwar, S.; Saleem, H.; Khurshid, U.; Ansari, S.Y.; Alghamdi, S.; Al-Khulaidi, A.W.A.; Malik, J.A.; Ahemad, N.; Awadh Ali, N.A. Comparative Phytochemical Composition, Oleuropein Quantification, Antioxidant and Cytotoxic Properties of Olea europaea L. Leaves. Nat. Prod. Res. 2022, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alamri, A.; Rauf, A.; Khalil, A.A.; Alghamdi, A.; Alafnan, A.; Alshammari, A.; Alshammari, F.; Malik, J.A.; Anwar, S. In Silico Screening of Marine Compounds as an Emerging and Promising Approach against Estrogen Receptor Alpha-Positive Breast Cancer. BioMed Res. Int. 2021, 2021, 9734279. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.S.; Ahmed, S.; Malik, J.A.; Hani, U.; Khanam, A.; Ashraf Bhat, F.; Ahmad Mir, S.; Ghazwani, M.; Wahab, S.; Haider, N.; et al. Therapeutic Delivery of Tumor Suppressor MiRNAs for Breast Cancer Treatment. Biology 2023, 12, 467. [Google Scholar] [CrossRef]
- Bender, O.; Gunduz, M.; Cigdem, S.; Hatipoglu, O.F.; Acar, M.; Kaya, M.; Grenman, R.; Gunduz, E.; Ugur, K.S. Functional Analysis of ESM1 by siRNA Knockdown in Primary and Metastatic Head and Neck Cancer Cells. J. Oral Pathol. Med. 2018, 47, 40–47. [Google Scholar] [CrossRef]
- Sexauer, A.; Perl, A.; Yang, X.; Borowitz, M.; Gocke, C.; Rajkhowa, T.; Thiede, C.; Frattini, M.; Nybakken, G.E.; Pratz, K.; et al. Terminal Myeloid Differentiation In Vivo Is Induced by FLT3 Inhibition in FLT3/ITD AML. Blood 2012, 120, 4205. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- de Thé, H.; Lavau, C.; Marchio, A.; Chomienne, C.; Degos, L.; Dejean, A. The PML-RAR Alpha Fusion MRNA Generated by the t(15;17) Translocation in Acute Promyelocytic Leukemia Encodes a Functionally Altered RAR. Cell 1991, 66, 675–684. [Google Scholar] [CrossRef]
- Hatipoglu, O.F.; Bender, O.; Gunduz, E.; Gunduz, M. Pharmacogenomics in Acute Myeloid Leukemia. Omi. Pers. Med. 2013, 237–248. [Google Scholar] [CrossRef]
- Gary Gilliland, D.; Griffin, J.D. The Roles of FLT3 in Hematopoiesis and Leukemia. Blood 2002, 100, 1532–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, O.; Shoman, M.E.; Ali, T.F.S.; Dogan, R.; Celik, I.; Mollica, A.; Hamed, M.I.A.; Aly, O.M.; Alamri, A.; Alanazi, J.; et al. Discovery of Oxindole-Based FLT3 Inhibitors as a Promising Therapeutic Lead for Acute Myeloid Leukemia Carrying the Oncogenic ITD Mutation. Arch. Pharm. 2023, 356, 2200407. [Google Scholar] [CrossRef] [PubMed]
- Levis, M.; Small, D. FLT3: ITDoes Matter in Leukemia. Leukemia 2003, 17, 1738–1752. [Google Scholar] [CrossRef] [Green Version]
- Burchert, A. Maintenance Therapy for FLT3-ITD-Mutated Acute Myeloid Leukemia. Haematologica 2021, 106, 664. [Google Scholar] [CrossRef]
- Pratz, K.W.; Cortes, J.; Roboz, G.J.; Rao, N.; Arowojolu, O.; Stine, A.; Shiotsu, Y.; Shudo, A.; Akinaga, S.; Small, D.; et al. A Pharmacodynamic Study of the FLT3 Inhibitor KW-2449 Yields Insight into the Basis for Clinical Response. Blood 2009, 113, 3938–3946. [Google Scholar] [CrossRef]
- Rudzki, J.D.; Wolf, D. AML—Is It Time to Drive a CAR(-T)? Memo—Mag. Eur. Med. Oncol. 2020, 13, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, F.; Schiffer, C.A. Acute Myeloid Leukaemia in Adults. Lancet 2013, 381, 484–495. [Google Scholar] [CrossRef]
- Finn, L.; Dalovisio, A.; Foran, J. Older Patients with Acute Myeloid Leukemia: Treatment Challenges and Future Directions. Ochsner J. 2017, 17, 398. [Google Scholar] [CrossRef]
- Yokota, S.; Kiyoi, H.; Nakao, M.; Iwai, T.; Misawa, T.; Okuda, T.; Sonoda, Y.; Abe, T.; Kahsima, K.; Matsuo, Y.; et al. Internal Tandem Duplication of the FLT3 Gene Is Preferentially Seen in Acute Myeloid Leukemia and Myelodysplastic Syndrome among Various Hematological Malignancies. A Study on a Large Series of Patients and Cell Lines. Leukemia 1997, 11, 1605–1609. [Google Scholar] [CrossRef] [Green Version]
- Thiede, C.; Steudel, C.; Mohr, B.; Schaich, M.; Schäkel, U.; Platzbecker, U.; Wermke, M.; Bornhäuser, M.; Ritter, M.; Neubauer, A.; et al. Analysis of FLT3-Activating Mutations in 979 Patients with Acute Myelogenous Leukemia: Association with FAB Subtypes and Identification of Subgroups with Poor Prognosis. Blood 2002, 99, 4326–4335. [Google Scholar] [CrossRef] [Green Version]
- Daver, N.; Kantarjian, H. FLT3 Inhibition in Acute Myeloid Leukaemia. Lancet Oncol. 2017, 18, 988–989. [Google Scholar] [CrossRef]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef] [Green Version]
- Alafnan, A.; Dogan, R.; Bender, O.; Celik, I.; Mollica, A.; Malik, J.; Rengasamy, K.; Break, M.; Khojali, W.; Alharby, T.; et al. Beta Elemene Induces Cytotoxic Effects in FLT3 ITD-Mutated Acute Myeloid Leukemia by Modulating Apoptosis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3270–3287. [Google Scholar]
- Jiang, Z.; Jacob, J.A.; Loganathachetti, D.S.; Nainangu, P.; Chen, B. β-Elemene: Mechanistic Studies on Cancer Cell Interaction and Its Chemosensitization Effect. Front. Pharmacol. 2017, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Khetmalis, Y.M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K.V.G. Oxindole and Its Derivatives: A Review on Recent Progress in Biological Activities. Biomed. Pharmacother. 2021, 141, 111842. [Google Scholar] [CrossRef]
- Tang, J.; Wennerberg, K.; Aittokallio, T. What Is Synergy? The Saariselkä Agreement Revisited. Front. Pharmacol. 2015, 6, 181. [Google Scholar] [CrossRef]
- Hemalswarya, S.; Doble, M. Potential Synergism of Natural Products in the Treatment of Cancer. Phyther. Res. 2006, 20, 239–249. [Google Scholar] [CrossRef]
- Panina, S.B.; Pei, J.; Baran, N.; Konopleva, M.; Kirienko, N.V. Utilizing Synergistic Potential of Mitochondria-Targeting Drugs for Leukemia Therapy. Front. Oncol. 2020, 10, 435. [Google Scholar] [CrossRef] [Green Version]
- Bender, O.; Atalay, A. Polyphenol Chlorogenic Acid, Antioxidant Profile, and Breast Cancer. In Cancer; Elsevier: Amsterdam, The Netherlands, 2021; pp. 311–321. [Google Scholar] [CrossRef]
- Ianevski, A.; Giri, A.K.; Aittokallio, T. SynergyFinder 3.0: An Interactive Analysis and Consensus Interpretation of Multi-Drug Synergies across Multiple Samples. Nucleic Acids Res. 2022, 50, W739–W743. [Google Scholar] [CrossRef]
- Ianevski, A.; He, L.; Aittokallio, T.; Tang, J. SynergyFinder: A Web Application for Analyzing Drug Combination Dose–Response Matrix Data. Bioinformatics 2017, 33, 2413–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalkan, F.N.; Temamogullari Wood, E.; Farid, M.; Yildiz, M.S.; Chung, S.S.; Toprak, E. Drug Combinations on AML Cell Lines’ Treatment. Blood 2022, 140, 12999–13000. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, R.; Xu, L.; Dong, J.; Jing, Y. N-(β-Elemene-13-Yl)Tryptophan Methyl Ester Induces Apoptosis in Human Leukemia Cells and Synergizes with Arsenic Trioxide through a Hydrogen Peroxide Dependent Pathway. Cancer Lett. 2008, 269, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Cai, X.; Wu, S.; Liu, Z.; Shi, Y.; Zhou, W. Enhancing Effect of β-Elemene Emulsion on Chemotherapy with Harringtonine, Aclacinomycin, and Ara-c in Treatment of Refractory/Relapsed Acute Myeloid Leukemia. Pak. J. Med. Sci. 2014, 30, 1270. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, G.; Zhang, M.; Cuff, C.F.; Huang, L.; Reed, E. β-Elemene, a Novel Plant-Derived Antineoplastic Agent, Increases Cisplatin Chemosensitivity of Lung Tumor Cells by Triggering Apoptosis. Oncol. Rep. 2009, 22, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Stickles, X.B.; Marchion, D.C.; Bicaku, E.; Al Sawah, E.; Abbasi, F.; Xiong, Y.; Zgheib, N.B.; Boac, B.M.; Orr, B.C.; Judson, P.L.; et al. BAD-Mediated Apoptotic Pathway Is Associated with Human Cancer Development. Int. J. Mol. Med. 2015, 35, 1081. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.A.; Kirby, R. Apoptosis: A Review of Pro-apoptotic and Anti-apoptotic Pathways and Dysregulation in Disease. J. Vet. Emerg. Crit. Care 2008, 18, 572. [Google Scholar] [CrossRef]
- Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.-Y.; Lin, L.-T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P. Broad Targeting of Resistance to Apoptosis in Cancer. In Proceedings of the Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 35, pp. S78–S103. [Google Scholar]
- Eliopoulos, A.G.; Davies, C.; Knox, P.G.; Gallagher, N.J.; Afford, S.C.; Adams, D.H.; Young, L.S. CD40 Induces Apoptosis in Carcinoma Cells through Activation of Cytotoxic Ligands of the Tumor Necrosis Factor Superfamily. Mol. Cell. Biol. 2000, 20, 5503. [Google Scholar] [CrossRef] [Green Version]
- Voorzanger-Rousselot, N.; Alberti, L.; Blay, J.Y. CD40L Induces Multidrug Resistance to Apoptosis in Breast Carcinoma and Lymphoma Cells through Caspase Independent and Dependent Pathways. BMC Cancer 2006, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Davies, C.C.; Mason, J.; Wakelam, M.J.O.; Young, L.S.; Eliopoulos, A.G. Inhibition of Phosphatidylinositol 3-Kinase- and ERK MAPK-Regulated Protein Synthesis Reveals the Pro-Apoptotic Properties of CD40 Ligation in Carcinoma Cells. J. Biol. Chem. 2004, 279, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Hatipoglu, O.F.; Yaykasli, K.O.; Dogan, M.; Yaykasli, E.; Bender, O.; Yasar, T.; Tapan, S.; Gunduz, M. NF-KB and MAPKs Are Involved in Resistin-Caused ADAMTS-5 Induction in Human Chondrocytes. Clin. Investig. Med. 2015, 38, E248. [Google Scholar]
- Zhan, Y.H.; Liu, J.; Qu, X.J.; Hou, K.Z.; Wang, K.F.; Liu, Y.P.; Wu, B. β-Elemene Induces Apoptosis in Human Renal-Cell Carcinoma 786-0 Cells through Inhibition of MAPK/ERK and PI3K/Akt/ MTOR Signalling Pathways. Asian Pac. J. Cancer Prev. 2012, 13, 2739–2744. [Google Scholar] [CrossRef] [Green Version]
- Nogami, A.; Oshikawa, G.; Okada, K.; Fukutake, S.; Umezawa, Y.; Nagao, T.; Kurosu, T.; Miura, O. FLT3-ITD Confers Resistance to the PI3K/Akt Pathway Inhibitors by Protecting the MTOR/4EBP1/Mcl-1 Pathway through STAT5 Activation in Acute Myeloid Leukemia. Oncotarget 2015, 6, 9189. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Yang, J.; Jones, D.P. Mitochondrial Control of Apoptosis: The Role of Cytochrome C. Biochim. Biophys. Acta 1998, 1366, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Li, T.; Xu, D.C.; Liu, J.; Mao, G.; Cui, M.Z.; Fu, X.; Xu, E. Death Receptor 6 Induces Apoptosis Not through Type I or Type II Pathways, but via a Unique Mitochondria-Dependent Pathway by Interacting with Bax Protein. J. Biol. Chem. 2012, 287, 29125–29133. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, Y.; Hui, C.; Xi, Y.; Liu, X.; Qi, F.; Liu, H.; Wang, Z.; Niu, S. Mechanisms of Heshouwuyin in Regulating Apoptosis of Testicular Cells in Aging Rats through Mitochondrial Pathway. BMC Complement. Altern. Med. 2016, 16, 337. [Google Scholar] [CrossRef] [Green Version]
- Diaz Arguello, O.A.; Haisma, H.J. Apoptosis-Inducing TNF Superfamily Ligands for Cancer Therapy. Cancers 2021, 13, 1543. [Google Scholar] [CrossRef]
- Chien, J.; Campioni, M.; Shridhar, V.; Baldi, A.; Chien, J. HtrA Serine Proteases as Potential Therapeutic Targets in Cancer. Curr. Cancer Drug Targets 2009, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a Mitochondrial Protein That Promotes Cytochrome c-Dependent Caspase Activation by Eliminating IAP Inhibition. Cell 2000, 102, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Hu, C.; Li, H. Survivin as a Novel Target Protein for Reducing the Proliferation of Cancer Cells (Review). Biomed. Rep. 2018, 8, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Gajan, A.; Chu, Q.; Xiong, H.; Wu, K.; Wu, G.S. Developing TRAIL/TRAIL-Death Receptor-Based Cancer Therapies. Cancer Metastasis Rev. 2018, 37, 733. [Google Scholar] [CrossRef] [PubMed]
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 Mutations in Acute Myeloid Leukemia: Therapeutic Paradigm beyond Inhibitor Development. Cancer Sci. 2020, 111, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, O.; Atalay, A. Evaluation of Anti-Proliferative and Cytotoxic Effects of Chlorogenic Acid on Breast Cancer Cell Lines by Real-Time, Label-Free and High-Throughput Screening. Marmara Pharm. J. 2018, 22, 173–179. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, W.; Aldahdooh, J.; Malyutina, A.; Shadbahr, T.; Tanoli, Z.; Pessia, A.; Tang, J. SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets. Genom. Proteom. Bioinform. 2022, 20, 587–596. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Atalay, A.; Nancy Picot, M.C.; Bender, O.; Celebi, E.; Mollica, A.; Zengin, G. Chemical, Biological and Molecular Modelling Analyses to Probe into the Pharmacological Potential of Antidesma Madagascariense Lam.: A Multifunctional Agent for Developing Novel Therapeutic Formulations. J. Pharm. Biomed. Anal. 2018, 161, 425–435. [Google Scholar] [CrossRef]
- Bender, O.; Celik, I.; Dogan, R.; Atalay, A.; Shoman, M.E.; Ali, T.F.S.; Beshr, E.A.M.; Mohamed, M.; Alaaeldin, E.; Shawky, A.M.; et al. Vanillin-Based Indolin-2-One Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity. ACS Omega 2023, 8, 6968–6981. [Google Scholar] [CrossRef]
- Yildirim, D.; Bender, O.; Karagoz Firat, Z.; Helvacioglu, F.; Bilgic, M.A.; Akcay, A.; Bavbek Ruzgaresen, N. Role of Autophagy and Evaluation the Effects of MicroRNAs 214, 132, 34c and Prorenin Receptor in a Rat Model of Focal Segmental Glomerulosclerosis. Life Sci. 2021, 280, 119671. [Google Scholar] [CrossRef]
Target Name | 2.25 µM Compound 5a | 25 µg/mL β-Elemene | Combination |
---|---|---|---|
Bad | NC | NC | ↑ |
CD40 | ↑ | ↑ | ↑ |
CD40 ligand | NC | NC | ↑ |
CytoC | NC | NC | ↑ |
DR6 | ↑ | ↑ | ↑ |
Fas | NC | ↑ | ↑ |
Fas ligand | ↑ | ↑ | ↑ |
HSP27 | NC | ↑ | NC |
IGFBP-2 | NC | ↑ | NC |
IGF-II | ↑ | ↑ | NC |
sTNF-R1 | ↑ | NC | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, J.; Bender, O.; Dogan, R.; Malik, J.A.; Atalay, A.; Ali, T.F.S.; Beshr, E.A.M.; Shawky, A.M.; Aly, O.M.; Alqahtani, Y.N.H.; et al. Combination of an Oxindole Derivative with (−)-β-Elemene Alters Cell Death Pathways in FLT3/ITD+ Acute Myeloid Leukemia Cells. Molecules 2023, 28, 5253. https://doi.org/10.3390/molecules28135253
Alanazi J, Bender O, Dogan R, Malik JA, Atalay A, Ali TFS, Beshr EAM, Shawky AM, Aly OM, Alqahtani YNH, et al. Combination of an Oxindole Derivative with (−)-β-Elemene Alters Cell Death Pathways in FLT3/ITD+ Acute Myeloid Leukemia Cells. Molecules. 2023; 28(13):5253. https://doi.org/10.3390/molecules28135253
Chicago/Turabian StyleAlanazi, Jowaher, Onur Bender, Rumeysa Dogan, Jonaid Ahmad Malik, Arzu Atalay, Taha F. S. Ali, Eman A. M. Beshr, Ahmed M. Shawky, Omar M. Aly, Yasir Nasser H. Alqahtani, and et al. 2023. "Combination of an Oxindole Derivative with (−)-β-Elemene Alters Cell Death Pathways in FLT3/ITD+ Acute Myeloid Leukemia Cells" Molecules 28, no. 13: 5253. https://doi.org/10.3390/molecules28135253
APA StyleAlanazi, J., Bender, O., Dogan, R., Malik, J. A., Atalay, A., Ali, T. F. S., Beshr, E. A. M., Shawky, A. M., Aly, O. M., Alqahtani, Y. N. H., & Anwar, S. (2023). Combination of an Oxindole Derivative with (−)-β-Elemene Alters Cell Death Pathways in FLT3/ITD+ Acute Myeloid Leukemia Cells. Molecules, 28(13), 5253. https://doi.org/10.3390/molecules28135253