Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities
Abstract
:1. Introduction
2. Cancer Overview and Treatment
3. Bovine Colostrum
4. Role of BC in the Treatment of Cancer
4.1. Role of Lactoferrin and Lactalbumin in Cancer Therapy
4.2. In Vitro Anti-Cancer Effects of BC Components
4.3. In Vivo Anti-Cancer Effects of BC Components in Humans and Animal Models
4.4. BC for Chemotherapy-Induced GI Toxicity in Acute Lymphoblastic Leukemia (ALL)
4.5. The Immunomodulatory Effects of BC on Colorectal Cancer
4.6. Targeted Oral Delivery of Paclitaxel through Exosomes Derived from BC
5. Future Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hulvat, M.C. Cancer incidence and trends. Surg. Clin. 2020, 100, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020, 25, 5319. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsayed, A.R.; Abuawad, A.; Daoud, S.; Mahmod, A.I. Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021, 26, 2506. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Alsayed, A.R.; Farhan, F.; Al Kury, L.T. Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets. Molecules 2020, 25, 4282. [Google Scholar] [CrossRef] [PubMed]
- Bagwe-Parab, S.; Yadav, P.; Kaur, G.; Tuli, H.S.; Buttar, H.S. Therapeutic Applications of Human and Bovine Colostrum in the Treatment of Gastrointestinal Diseases and Distinctive Cancer Types: The Current Evidence. Front. Pharmacol. 2020, 11, 01100. [Google Scholar] [CrossRef]
- Bagwe, S.; Tharappel, L.J.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef]
- Buttar, H.S.; Bagwe, S.M.; Bhullar, S.K.; Kaur, G. Health benefits of bovine colostrum in children and adults. In Dairy in Human Health and Disease across the Lifespan; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–20. [Google Scholar]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, S. Jaundice in the Newborn. Proc. Shaikh Zayed Postgrad. Med. Inst. 1991, 5, 55–64. [Google Scholar]
- Crittenden, R.; Little, C.; Georgiou, G.; Forsyth, S.; Bennett, L. Cow’s milk allergy: A complex disorder. In Proceedings of the Dairy Science World Series Conference (DSWS) 2007, Melbourne, Australia, 29–30 August 2007; pp. 62–71. [Google Scholar]
- de Almeida, M.F.B.; Draque, C.M. Neonatal jaundice and breastfeeding. NeoReviews 2007, 8, e282–e288. [Google Scholar] [CrossRef]
- Jacqmin, S.; Vleurick, L.; Renaville, R.; Portetelle, D. Modulation of the biological action of bovine growth hormone by passive immunization in hypophysectomised rat. Biotechnol. Agron. Société Et Environ. 2000, 3, 23–24. [Google Scholar]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87 (Suppl. 13), 3–9. [Google Scholar] [CrossRef] [PubMed]
- França-Botelho, A. Beneficial components of colostrum for cancer patients: A mini-review focused on oxidative aspects and properties of colostrinin. Asian Oncol. Res. J. 2019, 2, 1–6. [Google Scholar]
- Layman, D.K.; Lönnerdal, B.; Fernstrom, J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018, 76, 444–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godhia, M.L.; Patel, N. Colostrum–its Composition, Benefits as a Nutraceutical–A Review. Curr. Res. Nutr. Food Sci. J. 2013, 1, 37–47. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J Clin 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Seebacher, N.A.; Stacy, A.E.; Porter, G.M.; Merlot, A.M. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res. 2019, 38, 156. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Miolo, G.; Basile, D.; Carretta, A.; Santeufemia, D.A.; Steffan, A.; Corona, G. The metabolomic scent of cancer disease progression in soft tissue sarcoma: A case report. Int. J. Biol. Markers 2019, 34, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Rajyaguru, D.J.; Borgert, A.J.; Smith, A.L.; Thomes, R.M.; Conway, P.D.; Halfdanarson, T.R.; Truty, M.J.; Kurup, A.N.; Go, R.S. Radiofrequency Ablation Versus Stereotactic Body Radiotherapy for Localized Hepatocellular Carcinoma in Nonsurgically Managed Patients: Analysis of the National Cancer Database. J. Clin. Oncol. 2018, 36, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Meurer, M.; Floquet, A.; Italiano, A.; Auriche, M.; Mancini, J.; Penel, N.; Ray-Coquard, I.L.; Delannes, M.; Piperno-Neumann, S.; Bertucci, F. Undifferentiated endometrial sarcomas (UES): Results of a French sarcoma group (FSG) retrospective series of 52 patients (pts). Am. Soc. Clin. Oncol. 2017, 35, e17109. [Google Scholar] [CrossRef]
- Etienne, G.; Guilhot, J.; Rea, D.; Rigal-Huguet, F.; Nicolini, F.; Charbonnier, A.; Guerci-Bresler, A.; Legros, L.; Varet, B.; Gardembas, M. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J. Clin. Oncol. 2017, 35, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullinger, L.; Döhner, K.; Döhner, H. Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef]
- Tricoli, J.V.; Blair, D.G.; Anders, C.K.; Bleyer, W.A.; Boardman, L.A.; Khan, J.; Kummar, S.; Hayes-Lattin, B.; Hunger, S.P.; Merchant, M.; et al. Biologic and clinical characteristics of adolescent and young adult cancers: Acute lymphoblastic leukemia, colorectal cancer, breast cancer, melanoma, and sarcoma. Cancer 2016, 122, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.E.; Petrylak, D.P.; Van Der Heijden, M.S.; Necchi, A.; O’Donnell, P.H.; Loriot, Y.; Retz, M.; Perez-Gracia, J.L.; Bellmunt, J.; Grivas, P. PD-L1 expression, Cancer Genome Atlas (TCGA) subtype, and mutational load as independent predictors of response to atezolizumab (atezo) in metastatic urothelial carcinoma (mUC.; IMvigor210). Am. Soc. Clin. Oncol. 2016, 34, 104. [Google Scholar] [CrossRef]
- Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; Vocke, C.D.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar]
- Mitelman, F.; Heim, S. Cancer Cytogenetics; Wiley-Liss New-York: New York, NY, USA, 1995. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Shen, J.; Li, J.; Yu, P.; Du, G. Research Status and Hotspots of Anticancer Natural Products Based on the Patent Literature and Scientific Articles. Front. Pharmacol. 2022, 13, 903239. [Google Scholar] [CrossRef]
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.W.; Kirby, A.M. Cardiac Side-effects From Breast Cancer Radiotherapy. Clin. Oncol. 2015, 27, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Abelson, P.H. Biotechnology and Biological Frontiers; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Rugge, M.; Fassan, M.; Graham, D.; Strong, V. Gastric cancer: Principles and practice. In Epidemiology of Gastric Cancer; Springer International Publishing: Cham, Switzerland, 2015; pp. 23–34. [Google Scholar]
- Rathe, M.; De Pietri, S.; Wehner, P.S.; Frandsen, T.L.; Grell, K.; Schmiegelow, K.; Sangild, P.T.; Husby, S.; Müller, K. Bovine Colostrum Against Chemotherapy-Induced Gastrointestinal Toxicity in Children With Acute Lymphoblastic Leukemia: A Randomized, Double-Blind, Placebo-Controlled Trial. JPEN J. Parenter. Enter. Nutr. 2020, 44, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Farziyan, M.A.; Moradian, F.; Rafiei, A.R. Anticancer effect of bovine lactoferrin on human esophagus cancer cell line. Res. Mol. Med. 2016, 4, 18–23. [Google Scholar]
- Ottaviani, A.; Iacovelli, F.; Fiorani, P.; Desideri, A. Natural Compounds as Therapeutic Agents: The Case of Human Topoisomerase IB. Int. J. Mol. Sci. 2021, 22, 4138. [Google Scholar] [CrossRef]
- Thakkar, P.V.; Kita, K.; Castillo, U.D.; Galletti, G.; Madhukar, N.; Navarro, E.V.; Barasoain, I.; Goodson, H.V.; Sackett, D.; Díaz, J.F.; et al. CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engagement. Dev. Cell 2021, 56, 3264–3275.e7. [Google Scholar] [CrossRef]
- Zhu, D.; Lyu, M.; Jiang, W.; Suo, M.; Huang, Q.; Li, K. A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy. J. Mater. Chem. B 2020, 8, 5312–5319. [Google Scholar] [CrossRef]
- Lei, X.; Zhong, Y.; Huang, L.; Li, S.; Fu, J.; Zhang, L.; Zhang, Y.; Deng, Q.; Yu, X. Identification of a novel tumor angiogenesis inhibitor targeting Shh/Gli1 signaling pathway in Non-small cell lung cancer. Cell Death Dis. 2020, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Neophytou, C.M.; Trougakos, I.P.; Erin, N.; Papageorgis, P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers 2021, 13, 4363. [Google Scholar] [CrossRef]
- Wayne, J.; Brooks, T.; Landras, A.; Massey, A.J. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS J. 2021, 288, 4507–4540. [Google Scholar] [CrossRef]
- Rathe, M.; Müller, K.; Sangild, P.T.; Husby, S. Clinical applications of bovine colostrum therapy: A systematic review. Nutr. Rev. 2014, 72, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Alsayed, A.; Al-Doori, A.; Al-Dulaimi, A.; Alnaseri, A.; Abuhashish, J.; Aliasin, K.; Alfayoumi, I. Influences of bovine colostrum on nasal swab microbiome and viral upper respiratory tract infections—A case report. Respir. Med. Case Rep. 2020, 31, 101189. [Google Scholar] [CrossRef] [PubMed]
- Rathe, M.; Shen, R.L.; Sangild, P.T. Trophic factors in the treatment and prevention of alimentary tract mucositis. Curr. Opin. Support. Palliat. Care 2018, 12, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000, 72, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Støy, A.C.; Heegaard, P.M.; Thymann, T.; Bjerre, M.; Skovgaard, K.; Boye, M.; Stoll, B.; Schmidt, M.; Jensen, B.B.; Sangild, P.T. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs. Clin. Nutr. 2014, 33, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Bjornvad, C.R.; Thymann, T.; Deutz, N.E.; Burrin, D.G.; Jensen, S.K.; Jensen, B.B.; Mølbak, L.; Boye, M.; Larsson, L.I.; Schmidt, M.; et al. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G1092–G1103. [Google Scholar] [CrossRef]
- Jensen, M.L.; Sangild, P.T.; Lykke, M.; Schmidt, M.; Boye, M.; Jensen, B.B.; Thymann, T. Similar efficacy of human banked milk and bovine colostrum to decrease incidence of necrotizing enterocolitis in preterm piglets. Am. J. Physiol. Integr. Comp. Physiol. 2013, 305, R4–R12. [Google Scholar] [CrossRef]
- Pontoppidan, P.E.; Shen, R.L.; Cilieborg, M.S.; Jiang, P.; Kissow, H.; Petersen, B.L.; Thymann, T.; Heilmann, C.; Müller, K.; Sangild, P.T. Bovine Colostrum Modulates Myeloablative Chemotherapy-Induced Gut Toxicity in Piglets. J. Nutr. 2015, 145, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Shen, R.L.; Pontoppidan, P.E.; Rathe, M.; Jiang, P.; Hansen, C.F.; Buddington, R.K.; Heegaard, P.M.; Müller, K.; Sangild, P.T. Milk diets influence doxorubicin-induced intestinal toxicity in piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G324–G333. [Google Scholar] [CrossRef] [Green Version]
- Chandwe, K.; Kelly, P. Colostrum Therapy for Human Gastrointestinal Health and Disease. Nutrients 2021, 13, 1956. [Google Scholar] [CrossRef]
- Ulfman, L.H.; Leusen, J.H.W.; Savelkoul, H.F.J.; Warner, J.O.; van Neerven, R.J.J. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front. Nutr. 2018, 5, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pammi, M.; Abrams, S.A. Oral lactoferrin for the prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2015, Cd007137. [Google Scholar] [CrossRef]
- Donovan, S.M. The Role of Lactoferrin in Gastrointestinal and Immune Development and Function: A Preclinical Perspective. J. Pediatr. 2016, 173, S16–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieper, R.; Scharek-Tedin, L.; Zetzsche, A.; Röhe, I.; Kröger, S.; Vahjen, W.; Zentek, J. Bovine milk-based formula leads to early maturation-like morphological, immunological, and functional changes in the jejunum of neonatal piglets. J. Anim. Sci. 2016, 94, 989–999. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, F.J.; Santos, H.O.; Howell, S.L.; Pimentel, G.D. Whey protein in cancer therapy: A narrative review. Pharmacol. Res. 2019, 144, 245–256. [Google Scholar] [CrossRef]
- Tsuda, H.; Fukamachi, K.; Xu, J.; Sekine, K.; Ohkubo, S.; Takasuka, N.; Iigo, M. Prevention of carcinogenesis and cancer metastasis by bovine lactoferrin. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006, 82, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
- Sharma, A.; Shandilya, U.K.; Sodhi, M.; Mohanty, A.K.; Jain, P.; Mukesh, M. Evaluation of Milk Colostrum Derived Lactoferrin of Sahiwal (Bos indicus) and Karan Fries (Cross-Bred) Cows for Its Anti-Cancerous Potential. Int. J. Mol. Sci. 2019, 20, 6318. [Google Scholar] [CrossRef] [Green Version]
- Amiri, F.; Moradian, F.; Rafiei, A. Anticancer effect of lactoferrin on gastric cancer cell line AGS. Res. Mol. Med. 2015, 3, 11–16. [Google Scholar]
- Shahzad, M.M.K.; Felder, M.; Ludwig, K.; Van Galder, H.R.; Anderson, M.L.; Kim, J.; Cook, M.E.; Kapur, A.K.; Patankar, M.S. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS ONE 2018, 13, e0189524. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, Y.; Zuo, X.; Takata, T.; Jin, S.; Miyauti, M.; Isikado, A.; Imanaka, H.; Tatsuka, M.; Qi, G.; Shimamoto, F. Inhibition of DMH-DSS-induced colorectal cancer by liposomal bovine lactoferrin in rats. Oncol. Lett. 2017, 14, 5688–5694. [Google Scholar] [CrossRef] [PubMed]
- Abu-Serie, M.M.; El-Fakharany, E.M. Efficiency of novel nanocombinations of bovine milk proteins (lactoperoxidase and lactoferrin) for combating different human cancer cell lines. Sci. Rep. 2017, 7, 16769. [Google Scholar] [CrossRef] [Green Version]
- Niezgoda, N.; Gliszczyńska, A.; Kempińska, K.; Wietrzyk, J.; Wawrzeńczyk, C. Synthesis and evaluation of cytotoxic activity of conjugated linoleic acid derivatives (esters, alcohols, and their acetates) toward cancer cell lines. Eur. J. Lipid Sci. Technol. 2017, 119, 1600470. [Google Scholar] [CrossRef]
- Tung, Y.T.; Chen, H.L.; Yen, C.C.; Lee, P.Y.; Tsai, H.C.; Lin, M.F.; Chen, C.M. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J. Dairy Sci. 2013, 96, 2095–2106. [Google Scholar] [CrossRef] [Green Version]
- McGowan, M.M.; Eisenberg, B.L.; Lewis, L.D.; Froehlich, H.M.; Wells, W.A.; Eastman, A.; Kuemmerle, N.B.; Rosenkrantz, K.M.; Barth, R.J., Jr.; Schwartz, G.N.; et al. A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue. Breast Cancer Res. Treat. 2013, 138, 175–183. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Faramarzi, E.; Mahdavi, R.; Nasirimotlagh, B.; Asghari Jafarabadi, M. Effect of conjugated linoleic acid supplementation on inflammatory factors and matrix metalloproteinase enzymes in rectal cancer patients undergoing chemoradiotherapy. Integr. Cancer Ther. 2013, 12, 496–502. [Google Scholar] [CrossRef]
- Kuemmerle, N.B.; Rysman, E.; Lombardo, P.S.; Flanagan, A.J.; Lipe, B.C.; Wells, W.A.; Pettus, J.R.; Froehlich, H.M.; Memoli, V.A.; Morganelli, P.M.; et al. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther. 2011, 10, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Arab, A.; Akbarian, S.A.; Ghiyasvand, R.; Miraghajani, M. The effects of conjugated linoleic acids on breast cancer: A systematic review. Adv. Biomed. Res. 2016, 5, 115. [Google Scholar]
- Hunger, S.P.; Mullighan, C.G. Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2015, 373, 1541–1552. [Google Scholar] [CrossRef]
- Schmiegelow, K.; Forestier, E.; Hellebostad, M.; Heyman, M.; Kristinsson, J.; Söderhäll, S.; Taskinen, M. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia 2010, 24, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Hunger, S.P.; Loh, M.L.; Whitlock, J.A.; Winick, N.J.; Carroll, W.L.; Devidas, M.; Raetz, E.A. Children’s Oncology Group’s 2013 blueprint for research: Acute lymphoblastic leukemia. Pediatr. Blood Cancer 2013, 60, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmiegelow, K.; Müller, K.; Mogensen, S.S.; Mogensen, P.R.; Wolthers, B.O.; Stoltze, U.K.; Tuckuviene, R.; Frandsen, T. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy. F1000Reserach 2017, 6, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathe, M.; Sorensen, G.L.; Wehner, P.S.; Holmskov, U.; Sangild, P.T.; Schmiegelow, K.; Müller, K.; Husby, S. Chemotherapeutic treatment reduces circulating levels of surfactant protein-D in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2017, 64, e26253. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, N.S.; Rings, E.H.; Tissing, W.J. Risk analysis, diagnosis and management of gastrointestinal mucositis in pediatric cancer patients. Crit. Rev. Oncol. Hematol. 2015, 94, 87–97. [Google Scholar] [CrossRef]
- Al-Dasooqi, N.; Sonis, S.T.; Bowen, J.M.; Bateman, E.; Blijlevens, N.; Gibson, R.J.; Logan, R.M.; Nair, R.G.; Stringer, A.M.; Yazbeck, R.; et al. Emerging evidence on the pathobiology of mucositis. Support. Care Cancer 2013, 21, 3233–3241. [Google Scholar] [CrossRef] [Green Version]
- Sonis, S.T.; Elting, L.S.; Keefe, D.; Peterson, D.E.; Schubert, M.; Hauer-Jensen, M.; Bekele, B.N.; Raber-Durlacher, J.; Donnelly, J.P.; Rubenstein, E.B. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 2004, 100 (Suppl. S9), 1995–2025. [Google Scholar] [CrossRef]
- van der Velden, W.J.; Herbers, A.H.; Netea, M.G.; Blijlevens, N.M. Mucosal barrier injury, fever and infection in neutropenic patients with cancer: Introducing the paradigm febrile mucositis. Br. J. Haematol. 2014, 167, 441–452. [Google Scholar] [CrossRef]
- Blijlevens, N.M.; Donnelly, J.P.; DePauw, B.E. Inflammatory response to mucosal barrier injury after myeloablative therapy in allogeneic stem cell transplant recipients. Bone Marrow Transplant. 2005, 36, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Kissow, H. Glucagon-like peptides 1 and 2: Intestinal hormones implicated in the pathophysiology of mucositis. Curr. Opin. Support. Palliat. Care 2015, 9, 196–202. [Google Scholar] [CrossRef]
- Jordan, K.; Pontoppidan, P.; Uhlving, H.H.; Kielsen, K.; Burrin, D.G.; Weischendorff, S.; Christensen, I.J.; Jørgensen, M.H.; Heilmann, C.; Sengeløv, H.; et al. Gastrointestinal Toxicity, Systemic Inflammation, and Liver Biochemistry in Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Weischendorff, S.; Kielsen, K.; Sengeløv, H.; Jordan, K.; Nielsen, C.H.; Pedersen, A.E.; Ryder, L.P.; Juul, A.; Müller, K.G. Associations between levels of insulin-like growth factor 1 and sinusoidal obstruction syndrome after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transpl. 2017, 52, 863–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonis, S.T.; Oster, G.; Fuchs, H.; Bellm, L.; Bradford, W.Z.; Edelsberg, J.; Hayden, V.; Eilers, J.; Epstein, J.B.; LeVeque, F.G.; et al. Oral mucositis and the clinical and economic outcomes of hematopoietic stem-cell transplantation. J. Clin. Oncol. 2001, 19, 2201–2205. [Google Scholar] [CrossRef]
- Elting, L.S.; Cooksley, C.; Chambers, M.; Cantor, S.B.; Manzullo, E.; Rubenstein, E.B. The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 2003, 98, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.; Glenny, A.M.; Worthington, H.V.; Littlewood, A.; Fernandez Mauleffinch, L.M.; Clarkson, J.E.; McCabe, M.G. Interventions for preventing oral mucositis in patients with cancer receiving treatment: Cytokines and growth factors. Cochrane Database Syst. Rev. 2017, 11, Cd011990. [Google Scholar] [CrossRef] [Green Version]
- Lalla, R.V.; Bowen, J.; Barasch, A.; Elting, L.; Epstein, J.; Keefe, D.M.; McGuire, D.B.; Migliorati, C.; Nicolatou-Galitis, O.; Peterson, D.E.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2014, 120, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Perrone, A.C.; Barbosa, T.R.; da Silva, F.L.; Perrone, Í.T.; de Carvalho, A.F.; Stephani, R.; Dos Santos, K.B.; Atalla, Â.; Hallack Neto, A.E. Supplementation with concentrated milk protein in patients undergoing hematopoietic stem cell transplantation. Nutrition 2017, 37, 1–6. [Google Scholar] [CrossRef]
- Howarth, G.S.; Francis, G.L.; Cool, J.C.; Xu, X.; Byard, R.W.; Read, L.C. Milk growth factors enriched from cheese whey ameliorate intestinal damage by methotrexate when administered orally to rats. J. Nutr. 1996, 126, 2519–2530. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.; Butler, R.; Howarth, G.; Read, L.; Regester, G. Exposure of oral mucosa to bioactive milk factors reduces severity of chemotherapy-induced mucositis in the hamster. Oral Oncol. 2002, 38, 478–485. [Google Scholar] [CrossRef]
- Chatterton, D.E.; Nguyen, D.N.; Bering, S.B.; Sangild, P.T. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int. J. Biochem. Cell Biol. 2013, 45, 1730–1747. [Google Scholar] [CrossRef]
- Shen, R.L.; Rathe, M.; Jiang, P.; Pontoppidan, P.E.; Heegaard, P.M.; Müller, K.; Sangild, P.T. Doxorubicin-Induced Gut Toxicity in Piglets Fed Bovine Milk and Colostrum. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Bakhshi, S.; Padmanjali, K.S.; Arya, L.S. Infections in childhood acute lymphoblastic leukemia: An analysis of 222 febrile neutropenic episodes. Pediatr. Hematol. Oncol. 2008, 25, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Stabell, N.; Nordal, E.; Stensvold, E.; Gammelsrud, K.W.; Lund, B.; Taxt, A.; Buhring, F.; Greve-Isdahl, M.; Fornebo, H.P.; Simonsen, G.S.; et al. Febrile neutropenia in children with cancer: A retrospective Norwegian multicentre study of clinical and microbiological outcome. Scand. J. Infect. Dis. 2008, 40, 301–307. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, W.J.; Blijlevens, N.M.; Feuth, T.; Donnelly, J.P. Febrile mucositis in haematopoietic SCT recipients. Bone Marrow Transpl. 2009, 43, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Pontoppidan, P.L.; Jordan, K.; Carlsen, A.L.; Uhlving, H.H.; Kielsen, K.; Christensen, M.; Ifversen, M.; Nielsen, C.H.; Sangild, P.; Heegaard, N.H.; et al. Associations between gastrointestinal toxicity, micro RNA and cytokine production in patients undergoing myeloablative allogeneic stem cell transplantation. Int. Immunopharmacol. 2015, 25, 180–188. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, W.J.; Herbers, A.H.; Feuth, T.; Schaap, N.P.; Donnelly, J.P.; Blijlevens, N.M. Intestinal damage determines the inflammatory response and early complications in patients receiving conditioning for a stem cell transplantation. PLoS ONE 2010, 5, e15156. [Google Scholar] [CrossRef]
- Cheng, K.K.; Lee, V.; Li, C.H.; Yuen, H.L.; Epstein, J.B. Oral mucositis in pediatric and adolescent patients undergoing chemotherapy: The impact of symptoms on quality of life. Support. Care Cancer 2012, 20, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Stiff, P.J.; Emmanouilides, C.; Bensinger, W.I.; Gentile, T.; Blazar, B.; Shea, T.C.; Lu, J.; Isitt, J.; Cesano, A.; Spielberger, R. Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J. Clin. Oncol. 2006, 24, 5186–5193. [Google Scholar] [CrossRef]
- Francis, D.K.; Smith, J.; Saljuqi, T.; Watling, R.M. Oral protein calorie supplementation for children with chronic disease. Cochrane Database Syst. Rev. 2015, 2015, Cd001914. [Google Scholar] [CrossRef] [Green Version]
- Grass, F.; Bertrand, P.C.; Schäfer, M.; Ballabeni, P.; Cerantola, Y.; Demartines, N.; Hübner, M. Compliance with preoperative oral nutritional supplements in patients at nutritional risk--only a question of will? Eur. J. Clin. Nutr. 2015, 69, 525–529. [Google Scholar] [CrossRef]
- Gasser, M.; Lissner, R.; Nawalaniec, K.; Hsiao, L.L.; Waaga-Gasser, A.M. KMP01D Demonstrates Beneficial Anti-inflammatory Effects on Immune Cells: An ex vivo Preclinical Study of Patients With Colorectal Cancer. Front. Immunol. 2020, 11, 684. [Google Scholar] [CrossRef]
- Reyes-Portillo, K.A.; Quintero-Lira, A.; Piloni-Martini, J.; Fajardo-Espinoza, F.S.; Hernández-Sánchez, H.; Soto-Simental, S. Using BAMLET complex in a functional spreadable cheese elaborated with bovine colostrum. J. Food Sci. Technol. 2021, 58, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Nili, H.; Bouzari, M.; Attaran, H.R.; Ghalegolab, N.; Rabani, M.; Mahmoudian, A. Hyper-Immune Bovine Milk as an Immunological and Nutritional Supplement for COVID-19. Front. Nutr. 2022, 9, 868964. [Google Scholar] [CrossRef] [PubMed]
- Uusküla, A.; Keis, A.; Toompere, K.; Planken, A.; Rebrov, K. Cluster randomised, controlled, triple-blind trial assessing the efficacy of intranasally administered virus-neutralising bovine colostrum supplement in preventing SARS-CoV-2 infection in household contacts of SARS-CoV-2-positive individuals: A study protocol. Trials 2022, 23, 92. [Google Scholar] [PubMed]
Components | Function | Anti-Cancer Effect | BC (mg/mL) | Reference |
---|---|---|---|---|
Vitamins (A, B1, B2, B6, B12, D, E) | Promote growth and health | [14] | ||
Minerals (Na, K, Ca, P, S, Mg, Mn, Zn, Cu, Fe) | Promote growth and health | [14] | ||
Amino acids | Promote growth and health | [14] | ||
Essential fatty acids | Promote growth and health | [14] | ||
Immune factors Proline-rich polypeptide (PR) | Regulate function of the thymus gland, and reduce oxidative stress | [15] | ||
Proline-rich polypeptides, conjugated linolenic acid (CLA) | Enhance T cell and natural killer (NK) cell activation | Ovaria, breast, rectal | [16,17] | |
Immunoglobulins | [15] | |||
IgG | Neutralizes toxins and microbes | 47.6 | [6,18] | |
IgM | Destroy bacteria and highly anti-viral | 4.2 | [6,18] | |
IgA | Destroy bacteria and highly anti-viral | 3.9 | [6,18] | |
IgD, IgE | Destroy bacteria and highly anti-viral | [15] | ||
Lactoferrin | Has anti-inflammatory, anti-bacterial, and anti-viral iron-binding glycoprotein with potential therapeutic use in cancer | Gastric, lung, colorectal, breast | 100 | [15,16,17] |
Growth factors | Stimulate DNA synthesis, and promote the growth of cell and tissue | [15] | ||
Epidermal growth factor | 30–50 μg/L | [6,18] | ||
Growth hormone | Stimulate DNA synthesis, and promote the growth of cell and tissue | <0.03 ng/L | [6,15,18] | |
Platelet-derived growth factor | Stimulate DNA synthesis, and promote the growth of cell and tissue | [15] | ||
Insulin-like growth factor | 10 | [6,18] | ||
Fat | Stimulate DNA synthesis, and promote the growth of cell and tissue Fat content in BC (6.7%) is higher than in human colostrum (3–5%). | [6,7,15] | ||
Protein | Stimulate DNA synthesis, and promote the growth of cell and tissue Protein content in BC (14.9%) is significantly higher than human colostrum (0.8–0.9%). | [6,7,15] | ||
Lactose | Stimulate DNA synthesis, and promote the growth of cell and tissue Lactose content in BC (2.5%) is significantly lower than human colostrum (6.9–7.2%). | [6,7,15] | ||
Alpha-lactalbumin | Anti-viral, anti-tumor | Breast | [16,17] |
BC Component | Cancer Type | Dose | Result | Reference |
---|---|---|---|---|
Lactoferrin | Gastric cancer (AGS human stomach carcinoma cell) | 500 μg/mL | 80% cytotoxicity in AGS cell line | [64] |
Lactoferrin | Human esophagus cancer cell (KYSE-30 esophageal squamous cell carcinoma) | 500 μg/mL | After 20 and 62 h, the growth of azoxymethane (AOM)-induced aberrant crypt foci (ACF) was inhibited by 53% and 80%, respectively. | [39] |
Lactoferrin | Lung cancer (human lung cancer cell line, A549) | 0.9375–15 mg/mL | Lactoferrin lung cancer (human lung cancer cell line, A549) 0.9375 to 0.1 mg/mL Concentration-dependent suppression of VEGF mRNA and VEGF protein expression. | [65] |
Liposomal bovine lactoferrin | Colorectal cancer (RKO and RCN-9 human CRC cells) | ≥10 μg/mL | Significant (p < 0.01) inhibition of colon aberrant crypt foci growth occurred in the RKO and RCN-9 cells. | [66] |
Bovine lactoperoxidase (LPO) and lactoferrin (LF) nanoparticles | Colorectal cancer (Caco-2), liver cancer (HepG-2), breast cancer (MCF-7), and prostate cancer (PC-3). | 315–1388 μg/mL | NF-kB expression was inhibited by a factor of ten in Caco-2, HepG-2, and MCF-7 cells; NF-B mRNA levels were reduced by four in PC-3 cells, and Bcl-2 levels were reduced by a factor of fifteen in comparison to 5-fluorouracil treatment. | [67] |
CLA | Ovarian cancer cells (SKOV-3 and A2780 cells) | 7 μM CLA for 48 to 72 h | Reduction in E2F induces a ninefold increase in autophagolysosomes and a G1 cell cycle arrest in SKOV-3 and A2780 cell lines. | [65] |
Breast cancer cell line (MCF-7), colon cancer cell line (HT-29), (mouse fibroblast cell line Balb/3T3) | 0.1–100 µg/mL | Reduced anti-apoptotic Bcl-2 expression | [68] |
BC Components | Cancer Type | Dose | Results of the Pre-Clinical/Clinical Study | Reference |
---|---|---|---|---|
Lactoferrin | Lung cancer (12 transgenic mice) | 300 mg/kg, 3 times a week | The expression of hVEGF-A165 was significantly reduced and suppressed tumor formation. | [69] |
Liposomal lactoferrin | Colorectal cancer (thirty-six F344 male rats, 5-weeks-old, were used in the experiment) | 1000 mg/kg/day in drinking water | Around a 43% decrease was observed in the colon tumor. | [66] |
CLA | Breast cancer (24 women) | 7.5 g/day in the form of capsules for 20 days | The decrease in FAS and LPL enzymes provides fatty acids for breast tumor growth. | [70,72,73] |
Rectal cancer (33 human volunteers) | 3 g/day in the form of capsules for six weeks. | Significant changes occurred in TNF-α (p = 0.04), hs-CRP (p = 0.030), and MMP-9 (p = 0.040) | [71] |
Role of BC | Anti-Cancer Effect of BC |
---|---|
Antagonizes the effect of a potent DNA methylating agent dimethylhydrazine | Prohibits tumor angiogenesis |
Blocks the NF-kB pathway | Stops tumor formation and proliferation and induces apoptosis |
Inhibits the formation of the carcinogen azoxymethane | Prevents the formation of aberrant crypt foci and subsequently reduces the number of viable colon precancerous cells. |
Halts E2F2 transcription factor expression | Promotes cell cycle arrest and tumor formation |
Conjugated linolenic acid in bovine colostrum inhibits fatty acid synthetase and lipoprotein lipase expression | Suppresses fatty acid synthesis and impairs breast cancer growth |
Decreases the levels of MMP-2/9 enzymes | Inhibits tumor progression |
Inhibits hVEGF expression | Hinders tumor angiogenesis (ex. Bovine lactoferrin inhibits lung cancer growth) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsayed, A.R.; Hasoun, L.Z.; Khader, H.A.; Basheti, I.A.; Permana, A.D. Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities. Molecules 2022, 27, 8641. https://doi.org/10.3390/molecules27248641
Alsayed AR, Hasoun LZ, Khader HA, Basheti IA, Permana AD. Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities. Molecules. 2022; 27(24):8641. https://doi.org/10.3390/molecules27248641
Chicago/Turabian StyleAlsayed, Ahmad R., Luai Z. Hasoun, Heba A. Khader, Iman A. Basheti, and Andi Dian Permana. 2022. "Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities" Molecules 27, no. 24: 8641. https://doi.org/10.3390/molecules27248641
APA StyleAlsayed, A. R., Hasoun, L. Z., Khader, H. A., Basheti, I. A., & Permana, A. D. (2022). Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities. Molecules, 27(24), 8641. https://doi.org/10.3390/molecules27248641