Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size Distribution
2.2. ζ Potential
2.3. Surface Hydrophobicity
2.4. Protein Solubility
2.5. Rheological Properties of SPI
2.6. Visual Appearance and Microstructure of Gels
2.7. Texture Properties of Gels
2.8. Water-Holding Capacity of Gels
2.9. Chemical Interactions
2.10. Pearson Correlation Analysis
2.11. Schematic Mechanism for Salt Ion and Ultrasound Treatment-Induced Changes of SPI Gels
3. Materials and Methods
3.1. Materials
3.2. Preparation of Soy Protein Isolates
3.3. Ultrasound Treatment
3.4. Particle size and ζ Potential Analysis
3.5. Surface Hydrophobicity
3.6. Protein Solubility
3.7. Low-Amplitude Oscillatory Measurements
3.8. Heat-Induced Gel Preparation
3.9. Texture Analysis of Gels
3.10. Water-Holding Capacity of Gels
3.11. Microstructure of Gels
3.12. Chemical Interactions of Gels
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
NaCl Concentration (mM) | Ultrasound Time (min) | Size I (%) | Size II (%) | Size III (%) |
---|---|---|---|---|
0 | 0 | 80.8 | 19.2 | 0.0 |
5 | 80.2 | 19.8 | 0.0 | |
10 | 88.2 | 11.8 | 0.0 | |
20 | 87.8 | 12.2 | 0.0 | |
30 | 90.2 | 9.8 | 0.0 | |
50 | 0 | 84.5 | 15.5 | 0.0 |
5 | 89.1 | 10.9 | 0.0 | |
10 | 96.2 | 3.8 | 0.0 | |
20 | 94.4 | 5.6 | 0.0 | |
30 | 60.5 | 39.5 | 0.0 | |
100 | 0 | 38 | 53.4 | 8.6 |
5 | 43.8 | 56.2 | 0.0 | |
10 | 66.6 | 33.4 | 0.0 | |
20 | 73.3 | 26.7 | 0.0 | |
30 | 80.2 | 19.8 | 0.0 | |
200 | 0 | 50.3 | 33.6 | 16.1 |
5 | 42.7 | 55.0 | 2.3 | |
10 | 71.4 | 28.6 | 0.0 | |
20 | 73.0 | 27.0 | 0.0 | |
30 | 77.7 | 22.3 | 0.0 | |
300 | 0 | 41.6 | 57.1 | 1.3 |
5 | 67.8 | 32.2 | 0.0 | |
10 | 75.6 | 24.4 | 0.0 | |
20 | 73.2 | 26.8 | 0.0 | |
30 | 78.5 | 21.5 | 0.0 | |
600 | 0 | 53.5 | 43.8 | 2.6 |
5 | 65.7 | 33.2 | 1.1 | |
10 | 71.8 | 28.1 | 0.0 | |
20 | 77.0 | 23 | 0.0 | |
30 | 71.6 | 28.4 | 0.0 |
References
- Buhl, T.F.; Christensen, C.H.; H7ammershøj, M. Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocoll. 2019, 96, 354–364. [Google Scholar] [CrossRef]
- Liu, Q.; Geng, R.; Zhao, J.; Chen, Q.; Kong, B. Structural and Gel Textural Properties of Soy Protein Isolate When Subjected to Extreme Acid pH-Shifting and Mild Heating Processes. J. Agric. Food Chem. 2015, 63, 4853–4861. [Google Scholar] [CrossRef]
- Renkema, J.M.S.; Gruppen, H.; van Vliet, T. Influence of pH and Ionic Strength on Heat-Induced Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and Their Protein Compositions. J. Agric. Food Chem. 2002, 50, 6064–6071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, Y.; Acevedo, N.C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels. Food Chem. 2020, 318, 126421. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocoll. 2016, 61, 740–746. [Google Scholar] [CrossRef]
- Bryant, C.M.; McClements, D.J. Influence of NaCl and CaCl2 on Cold-Set Gelation of Heat-denatured Whey Protein. J. Food Sci. 2000, 65, 801–804. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase. Meat Sci. 2013, 93, 469–476. [Google Scholar] [CrossRef]
- Xiao, Y.; Kang, S.; Liu, Y.; Guo, X.; Li, M.; Xu, H. Effect and mechanism of calcium ions on the gelation properties of cellulose nanocrystals-whey protein isolate composite gels. Food Hydrocoll. 2021, 111, 106401. [Google Scholar] [CrossRef]
- Xu, H.-N.; Liu, Y.; Zhang, L. Salting-out and salting-in: Competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties. Soft Matter 2015, 11, 5926–5932. [Google Scholar] [CrossRef]
- Nakamura, T.; Utsumi, S.; Mori, T. Network structure formation in thermally-induced gelation of glycinin. J. Agric. Food Chem. 1984, 32, 349–352. [Google Scholar] [CrossRef]
- Collins, K.D. Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process. Methods 2004, 34, 300–311. [Google Scholar] [CrossRef]
- Sun, X.D.; Holley, R.A. Factors Influencing Gel Formation by Myofibrillar Proteins in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2011, 10, 33–51. [Google Scholar] [CrossRef]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Cheng, Y.; Donkor, P.O.; Ren, X.; Wu, J.; Agyemang, K.; Ayim, I.; Ma, H. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocoll. 2019, 89, 434–442. [Google Scholar] [CrossRef]
- Hu, H.; Cheung, I.W.Y.; Pan, S.; Li-Chan, E.C.Y. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocoll. 2015, 45, 102–110. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. The functional modification of legume proteins by ultrasonication: A review. Trends Food Sci. Technol. 2020, 98, 107–116. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Tang, C.H.; Wang, X.Y.; Yang, X.Q.; Lin, L. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. J. Food Eng. 2009, 92, 432–437. [Google Scholar] [CrossRef]
- Wang, J.; Na, X.; Navicha, W.B.; Wen, C.; Ma, W.; Xu, X.; Wu, C.; Du, M. Concentration-dependent improvement of gelling ability of soy proteins by preheating or ultrasound treatment. LWT 2020, 134, 110170. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, W.-F.; Zhang, Y.; Tang, C.-H. New insights into the NaCl impact on emulsifying properties of globular proteins. Food Hydrocoll. 2022, 124, 107342. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrason. Sonochem. 2017, 38, 835–842. [Google Scholar] [CrossRef]
- Alavi, F.; Chen, L.; Emam-Djomeh, Z. Effect of ultrasound-assisted alkaline treatment on functional property modifications of faba bean protein. Food Chem. 2021, 354, 129494. [Google Scholar] [CrossRef] [PubMed]
- Buell, A.K.; Hung, P.; Salvatella, X.; Welland, M.E.; Dobson, C.M.; Knowles, T.P.J. Electrostatic Effects in Filamentous Protein Aggregation. Biophys. J. 2013, 104, 1116–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, M.; Ramachandran, D.; Sankar, T. V Functional properties of Rohu (Labeo rohita) proteins during iced storage. Food Res. Int. 2006, 39, 847–854. [Google Scholar] [CrossRef]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.E.; Pilosof, A.M.R. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Nazari, B.; Mohammadifar, M.A.; Shojaee-Aliabadi, S.; Feizollahi, E.; Mirmoghtadaie, L. Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrason. Sonochem. 2018, 41, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Fan, X.; Zhou, Z.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S.; Zhu, L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem. 2013, 20, 187–195. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, W.; Yi, J.; Liu, N.; Cao, Y.; Lu, J.; Decker, E.; Mcclements, D.J. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int. 2018, 106, 853–861. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, K.; Bai, Y.; Li, B.; Xu, W. Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT 2020, 129, 109563. [Google Scholar] [CrossRef]
- Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.F.; Kasapis, S. Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem. 2011, 129, 1513–1522. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Tang, C.-H.; Wen, Q.-B.; Yang, X.-Q.; Li, L.; Deng, W.-L. Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength. Food Hydrocoll. 2010, 24, 266–274. [Google Scholar] [CrossRef]
- Madadlou, A.; Emam-Djomeh, Z.; Mousavi, M.E.; Mohamadifar, M.; Ehsani, M. Acid-induced gelation behavior of sonicated casein solutions. Ultrason. Sonochem. 2010, 17, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, F.; Wu, M.; Li, J.; Bai, Y.; Xu, W.; Qiu, S. Synergistic effect of pH shifting and mild heating in improving heat induced gel properties of peanut protein isolate. LWT 2020, 131, 109812. [Google Scholar] [CrossRef]
- Kao, F.-J.; Su, N.-W.; Lee, M.-H. Effect of Calcium Sulfate Concentration in Soymilk on the Microstructure of Firm Tofu and the Protein Constitutions in Tofu Whey. J. Agric. Food Chem. 2003, 51, 6211–6216. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M.A.; Soper, A.K. Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure Maker/Breaker. J. Phys. Chem. B 2007, 111, 13570–13577. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, X.; Liu, W.; Liu, Q.; Zhang, L.; Hu, H. Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. Ultrason. Sonochem. 2022, 85, 105969. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Zhai, J.; Gu, L.; Su, Y.; Chang, C.; Yang, Y. Improving gelling properties of diluted whole hen eggs with sodium chloride and sodium tripolyphosphate: Study on intermolecular forces, water state and microstructure. Food Chem. 2021, 358, 129823. [Google Scholar] [CrossRef]
- HEGG, P.-O. Conditions for the Formation of Heat-Induced Gels of Some Globular Food Proteins. J. Food Sci. 1982, 47, 1241–1244. [Google Scholar] [CrossRef]
- Hermansson, A.-M. Structure of soya glycinin and conglycinin gels. J. Sci. Food Agric. 1985, 36, 822–832. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.; He, Z.; Zeng, M.; Qin, F.; Chen, J. Effect of heat-induced aggregation of soy protein isolate on protein-glutaminase deamidation and the emulsifying properties of deamidated products. LWT 2022, 154, 112328. [Google Scholar] [CrossRef]
- Zhong, Z.; Xiong, Y.L. Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrason. Sonochem. 2020, 62, 104908. [Google Scholar] [CrossRef]
- Kato, A.; Nakai, S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim. Biophys. Acta-Protein Struct. 1980, 624, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Chen, W.; Qie, X.; Zeng, M.; Qin, F.; He, Z.; Chen, J. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties. Food Hydrocoll. 2020, 105, 105764. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Damgaard, H.; Greve-Poulsen, M.; Sunds, A.V.; Larsen, L.B.; Hammershøj, M. Gel properties of potato protein and the isolated fractions of patatins and protease inhibitors—Impact of drying method, protein concentration, pH and ionic strength. Food Hydrocoll. 2019, 96, 246–258. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, L.; Tang, T.; Li, J.; Gu, L.; Chang, C.; Zhang, M.; Yang, Y.; Su, Y. Gel properties of soy protein isolate-potato protein-egg white composite gel: Study on rheological properties, microstructure, and digestibility. Food Hydrocoll. 2023, 135, 108223. [Google Scholar] [CrossRef]
- Min, C.; Ma, W.; Kuang, J.; Huang, J.; Xiong, Y.L. Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocoll. 2022, 126, 107482. [Google Scholar] [CrossRef]
Size I | Size II | Size III | ζ Potential | Surface Hydrophobicity | Protein Solubility | Gel Strength | WHC | |
---|---|---|---|---|---|---|---|---|
Size I | 1 | |||||||
Size II | −0.998 ** | 1 | ||||||
Size III | −0.832 ** | 0.794 ** | 1 | |||||
ζ potential | −0.047 ** | 0.04 | 0.096 | 1 | ||||
Surface hydrophobicity | 0.704 ** | −0.719 ** | −0.452 * | 0.323 | 1 | |||
Protein solubility | 0.716 ** | −0.723 ** | −0.523 ** | 0.239 | 0.502 ** | 1 | ||
Gel strength | 0.748 ** | −0.738 ** | −0.692 ** | −0.387 * | 0.908 ** | 0.592 ** | 1 | |
WHC | 0.687 ** | −0.697 ** | −0.471 ** | −0.256 | 0.581 ** | 0.704 ** | 0.679 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zeng, L.; Fu, L.; Chen, Q.; He, Z.; Zeng, M.; Qin, F.; Chen, J. Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment. Molecules 2022, 27, 8221. https://doi.org/10.3390/molecules27238221
Wang Z, Zeng L, Fu L, Chen Q, He Z, Zeng M, Qin F, Chen J. Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment. Molecules. 2022; 27(23):8221. https://doi.org/10.3390/molecules27238221
Chicago/Turabian StyleWang, Zhaojun, Lin Zeng, Liwei Fu, Qiuming Chen, Zhiyong He, Maomao Zeng, Fang Qin, and Jie Chen. 2022. "Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment" Molecules 27, no. 23: 8221. https://doi.org/10.3390/molecules27238221
APA StyleWang, Z., Zeng, L., Fu, L., Chen, Q., He, Z., Zeng, M., Qin, F., & Chen, J. (2022). Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment. Molecules, 27(23), 8221. https://doi.org/10.3390/molecules27238221