Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Extraction Procedure: Number of Extractions
2.2. Optimization of the Extraction Prodecure: Effect of Different Salts
2.3. Method Validation
Application of the Method to Samples
3. Materials and Methods
3.1. Standards, Reagents, and Solvents
3.2. Wine Model
3.3. Samples
3.4. Sample Preparation
3.5. Analysis of SCFAs and MCFAs by Gas Chromatography Coupled to Flame Ionization Detection
3.6. Quantification and Method Validation
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Noronha, N.; Cronin, D.A.; Dolores O’Riordan, E.; O’Sullivan, M. Flavouring of imitation cheese with enzyme-modified cheeses (EMCs): Sensory impact and measurement of aroma active short chain fatty acids. Food Chem. 2008, 106, 905–913. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. Acetic acid bacteria spoilage of bottled red wine-A review. Int. J. Food Microbiol. 2008, 125, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Etiévant, P.X. Wine. Volatile Compounds in Food and Beverages, 1st ed.; Maarse, H., Ed.; Marcel Dekker, Inc: New York, NY, USA, 1991; pp. 483–533. ISBN 9780824783907. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Tratado de Enología II Química del Vino Estabilizaciόn y Tratamientos, 3rd ed.; Multi-Prensa: Buenos Aires, Argentina, 2002; Volume II. [Google Scholar]
- Jackson, R.S. Chemical constituents of grapes and wine. In Wine Science: Principles and Applications (Food Science and Technology), 3rd ed.; Jackson, R.S., Ed.; Elservier, Inc: San Diego, CA, USA, 1994; pp. 375–459. [Google Scholar]
- Marais, J.; Pool, H.P. Effect of storage and time and temperature on the volatile composition and quality of dry white table wines. Vitis 1980, 19, 151. [Google Scholar] [CrossRef]
- Zeppa, G.; Conterno, L.; Gerbi, V. Determination of Organic Acids, Sugars, Diacetyl, and Acetoin in Cheese by High-Performance Liquid Chromatography. J. Agric. Food Chem. 2001, 49, 2722–2726. [Google Scholar] [CrossRef] [PubMed]
- Arellano, M.; Jomard, P.; El Kaddouri, S.; Roques, C.; Nepveu, F.; Couderc, F. Routine analysis of short-chain fatty acids for anaerobic bacteria identification using capillary electrophoresis and indirect ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 2000, 741, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.M.; Deltimple, N.; van Velzen, E.; Van Dorsten, F.A.; Bingham, M.; Vaughan, E.E.; VamDuynhoven, J. 1H NMR metabolite profiling of feces as tool to assess the impact of nutrition on the human microbiome. NMR Biomed. 2008, 21, 615–626. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Q.; Wang, C.; Xiao, L.; Feng, S.; Li, N.; Chen, C.-P. Three-dimensional pompon-like Au/ZnO porous microspheres as solid phase microextraction coating for determination of volatile fatty acids from foot odor. Talanta 2020, 209, 120519. [Google Scholar] [CrossRef]
- Cantwell, F.F.; Losier, M. Liquid-liquid extraction. In Sampling and Sample Preparation for Field and Laboratory: Fundamentals and New Directions in Sample Preparation, 1st ed.; Pawliszyn, J., Ed.; Elsevier Science & Technology: Oxford, UK, 2002; Volume 37, pp. 297–340. ISBN 978-0-444-50510-1. [Google Scholar]
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef]
- Jiang, B.; Xi, Z.; Meijuan, L.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Fiorini, D.; Boarelli, M.C.; Gabbianelli, R.; Ballini, R.; Pacetti, D. A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces. Anal. Biochem. 2016, 508, 12–14. [Google Scholar] [CrossRef]
- Shinohara, T. Gas Chromatographic Analysis of Volatile Fatty Acids in Wine. Agric. Biol. Chem. 1985, 49, 2211–2212. [Google Scholar] [CrossRef]
- Gallart, M.; Lόpez-Tamames, E.; Suberbiola, G.; Buxaderas, S. Influence of Fatty Acids on Wine Foaming. J. Agric. Food Chem. 2002, 50, 7042–7045. [Google Scholar] [CrossRef]
- Calleja, E.; Falqué, E. Volatile composition of Mencía wines. Food Chem. 2005, 90, 357–363. [Google Scholar] [CrossRef]
- Furkídová, K.; Makyšová, K.; Špánik, I. Effect of Indigenous S. cerevisiae Strains on Higher Alcohols, Volatile Acids and Esters in Wine. Czech J. Food Sci. 2017, 35, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Gallart, M.; Francioli, S.; Lόpez-Tamames, E.; Suberbiola, G.; Buxaderas, S. Determination of free Fatty acids and their ethyl esters in musts and wines. J. Chromatogr. A 1997, 776, 283–291. [Google Scholar] [CrossRef]
- Scortichini, S.; Boarelli, M.C.; Silvi, S.; Fiorini, D. Development and Validation of a GC-FID Method for the Analysis of Short Chain Fatty Acids in Rat and Human Faeces and in Fermentation Fluid. J. Chromatogr. B 2020, 1143, 121972. [Google Scholar] [CrossRef]
- Qian, M.; Reineccius, G. Identification of Aroma Compounds in Parmigiano-Reggiano Cheese by Gas Chromatography/Olfactometry. J. Dairy Sci. 2002, 85, 1362–1369. [Google Scholar] [CrossRef]
- Cresci, A.; Orpianesi, C.; Silvi, S.; Mastrancrea, V.; Dolara, P. The effect of sucrose or starch-based diet on short-chain fatty acids and faecal microflora in rats. Appl. Microbiol. Int. 2001, 86, 245–250. [Google Scholar] [CrossRef]
- Zhao, G.; Nyman, M.; Jönsson, J.A. Rapid determination of short chain fatty acids in colonic contents and feaces of humans and rats by acidified water and direct injection gas chromatography. Biom. Chromatogr. 2005, 20, 674–682. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR Fundamentals and Applications in Chemistry and Biology, Hydrophobic, Electronic, and Steric Constants, Volume 2. J. Am. Chem. Soc. 1995, 117, 9782. [Google Scholar]
- Louw, L.; Roux, K.; Tredoux, A.; Tomic, O.; Naes, T.; Nieuwoudt, H.H.; van Rensburg, P. Characterization of Selected South African Young Cultivar Wines Using FTMIR Spectroscopy, Gas Chromatography, and Multivariate Data Analysis. J. Agric. Food Chem. 2009, 57, 2623–2632. [Google Scholar] [CrossRef]
- Sáenz-Barrio, C.; Cedrόn-Fernández, T. Microextraction of Volatile Compounds from Wine Samples and their Determination by GC-FID. The Effect of the Salts and Extraction Solvents Used. Chromatographia 2000, 51, 221–225. [Google Scholar] [CrossRef]
- Fiorini, D.; Pacetti, D.; Gabbianelli, R.; Gabrielli, S.; Ballini, R. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids. J. Chromatogr. A 2015, 1409, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Olivero, S.J.; Pérez Trujillo, J.P. A new method for the determination of short-chain fatty acids from the aliphatic series in wines by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry. Anal. Chim. Acta 2011, 696, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Rebière, L.; Clark, A.C.; Schmidtke, L.M.; Prenzler, P.D.; Scollary, G.R. A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC-MS-Application on Semillon wines. Anal. Chim. Acta 2010, 660, 149–157. [Google Scholar] [CrossRef]
- Gil, M.; Cabellos, J.M.; Arroyo, T.; Prodanov, M. Characterization of the volatile fraction of young wines from the Denomination of Origin “Vinos de Madrid” (Spain). Anal. Chim. Acta 2006, 563, 145–153. [Google Scholar] [CrossRef]
- Guth, H. Identification of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma—A review. S. Afr. J. Enol. Vitic. 2000, 21, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Lopéz, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Lenti, L.; Scortichini, S.; Pacetti, D.; Cespi, M.; Fiorini, D. Polydimethylsiloxane/divinylbenzene overcoated fiber and its application to extract and analyse wine volatile compounds by solid-phase microextraction and gas chromatography coupled to mass spectrometry: Direct immersion, headspace or both? Food Res. Int. 2021, 148I, 110632. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 2001, 4, 1–9, ID: 130201729. [Google Scholar]
Compound | 1st extr | 2nd extr | 3rd extr |
---|---|---|---|
acetic acid | 493.7 ± 5.4 a | 429.8 ± 3.6 b | 400.4 ± 3.4 c |
propionic acid | 0.8 ± 0.0 a | 0.6 ± 0.0 b | 0.4 ± 0.0 c |
isobutyric acid | 2.5 ± 0.3 a | 1.5 ± 0.0 b | 1.3 ± 0.1 b |
isovaleric acid | 1.2 ± 0.0 a | 1.1 ± 0.1 b | 0.9 ± 0.0 c |
hexanoic acid | 2.4 ± 0.1 a | 1.5 ± 0.1 b | 1.1 ± 0.1 c |
octanoic acid | 3.3 ± 0.0 a | 2.0 ± 0.2 b | 1.3 ± 0.1 c |
Compound | No Salt | NaCl | (NH4)2SO4 | (NH4)2SO4/ NaH2PO4 | NaH2PO4 |
---|---|---|---|---|---|
acetic acid | 490.2 ± 2.6 a | 633.3 ± 3.7 a | 742.0 ± 10.5 b | 775.7 ± 1.3 b | 777.7 ± 5.8 b |
propionic acid | 0.7 ± 0.1 a | 1.3 ± 0.1 a | 1.2 ± 0.1 a | 1.3 ± 0.2 a | 2.0 ± 0.3 b |
isobutyric acid | 2.4 ± 0.0 a | 2.3 ± 0.0 a | 2.4 ± 0.3 a | 2.8 ± 0.1 a,b | 3.5 ± 0.3 b |
isovaleric acid | 1.3 ± 0.1 a | 1.2 ± 0.0 a,b | 1.1 ± 0.0 b | 1.1 ± 0.0 b | 1.2 ± 0.0 a,b |
hexanoic acid | 2.5 ± 0.2 a | 2.0 ± 0.2 a | 2.3 ± 0.0 a | 2.3 ± 0.1 a | 2.2 ± 0.1 a |
octanoic acid | 2.9 ± 0.1 a | 2.5 ± 0.2 a | 2.8 ± 0.2 a | 1.8 ± 0.2 b | 2.7 ± 0.1 a |
Compound | Linearity Range (mg L−1) | R2 | LOD | LOQ | Recovery (%) | Repeatability (%) (n = 5) | |
---|---|---|---|---|---|---|---|
(mg L−1) | Intraday | Interday | |||||
acetic acid | 262.5–3024 | 0.997 | 0.51 | 1.70 | 96.8 | 2.5 | 8.5 |
propionic acid | 0.5–5.9 | 0.995 | 0.04 | 0.14 | 86.4 | 0.4 | 2.1 |
isobutyric acid | 0.5–4.3 | 0.999 | 0.06 | 0.19 | 96.6 | 1.6 | 1.6 |
isovaleric acid | 0.5–4.1 | 0.996 | 0.04 | 0.13 | 81.9 | 0.0 | 1.1 |
hexanoic acid | 0.6–7.4 | 0.997 | 0.05 | 0.18 | 101 | 2.9 | 0.5 |
octanoic acid | 1.4–14.6 | 0.994 | 0.06 | 0.21 | 96 | 4.9 | 2.3 |
C2 | OAV | C3 | OAV | iC4 | OAV | iC5 | OAV | C6 | OAV | C8 | OAV | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
white wines | Table wine | 320.1 ± 4.7 | 1.6 | 1.1 ± 0.1 | 0.06 | 1.5 ± 0.0 | 0.6 | 0.3 ± 0.0 | 9.1 | 4.6 ± 0.4 | 10.9 | 1.8 ± 0.0 | 3.6 |
Passerina 1 | 347.6 ± 4.9 | 1.7 | 0.9 ± 0.1 | 0.04 | 1.2 ± 0.1 | 0.6 | 0.3 ± 0.0 | 8.7 | 5.6 ± 0.3 | 13.1 | 6.3 ± 0.1 | 12.6 | |
Passerina 2 | 341.9 ± 1.4 | 1.7 | 0.6 ± 0.1 | 0.03 | 1.5 ± 0.1 | 0.6 | 1.0 ± 0.0 | 30.3 | 5.6 ± 0.1 | 13.2 | 9.8 ± 0.3 | 19.6 | |
Pecorino 1 | 380.3 ± 8.5 | 1.9 | 0.8 ± 0.0 | 0.04 | 1.7 ± 0.0 | 0.7 | 1.1 ± 0.0 | 33.3 | 3.2 ± 0.1 | 7.8 | 4.2 ± 0.6 | 8.4 | |
Pecorino 2 | 367.4 ± 4.9 | 1.8 | 1.0 ± 0.0 | 0.05 | 1.3 ± 0.0 | 0.6 | 1.0 ± 0.0 | 30.0 | 4.5 ± 0.3 | 11.7 | 8.3 ± 0.1 | 16.6 | |
Range | 320.1–381.5 | 0.7–1.1 | 1.4–1.8 | 0.3–1.1 | 3.3–5.6 | 1.8–10.3 | |||||||
Mean values | 351.5 ± 21.2 a | 0.9 ± 0.1 a | 1.5 ± 0.2 a | 0.7 ± 0.4 a | 4.7 ± 0.8 a | 6.1 ± 3.0 a | |||||||
red wines | Lacrima Morro d’Alba | 440.0 ± 1.5 | 2.2 | 1.8 ± 0.3 | 0.1 | 1.9 ± 0.0 | 0.8 | 0.4 ± 0.0 | 12.2 | 3.0 ± 0.4 | 7.1 | 3.8 ± 0.1 | 7.6 |
Nero d’Avola | 718.7 ± 1.2 | 3.6 | 1.6 ± 0.1 | 0.1 | 2.4 ± 0.2 | 1.0 | 0.3 ± 0.0 | 9.1 | 2.4 ± 0.1 | 5.7 | 3.2 ± 0.3 | 6.4 | |
Offida Rosso 1 | 802.5 ± 12.4 | 4.0 | 2.4 ± 0.2 | 0.1 | 3.0 ± 0.0 | 1.3 | 1.3 ± 0.0 | 39.4 | 1.9 ± 0.0 | 4.5 | 1.7 ± 0.0 | 3.4 | |
Offida Rosso 2 | 822.1 ± 7.8 | 4.1 | 1.0 ± 0.0 | 0.1 | 3.1 ± 0.0 | 1.3 | 1.5 ± 0.0 | 45.4 | 2.2 ± 0.0 | 5.2 | 2.2 ± 0.0 | 4.4 | |
Conero | 795.4 ± 6.0 | 3.9 | 0.6 ± 0.0 | 0.0 | 2.8 ± 0.2 | 1.2 | 1.5 ± 0.0 | 45.4 | 2.5 ± 0.3 | 5.9 | 2.2 ± 0.0 | 4.4 | |
Range | 440.0–821.6 | 0.7–2.5 | 1.9–3.1 | 0.3–1.6 | 1.8–3.0 | 1.6–3.8 | |||||||
Mean values | 715.7 ± 142.3 b | 1.5 ± 0.7 b | 2.6 ± 0.5 b | 1.0 ± 0.5 a | 2.4 ± 0.4 b | 2.6 ± 0.8 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenti, L.; Nartea, A.; Orhotohwo, O.L.; Pacetti, D.; Fiorini, D. Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine. Molecules 2022, 27, 8195. https://doi.org/10.3390/molecules27238195
Lenti L, Nartea A, Orhotohwo OL, Pacetti D, Fiorini D. Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine. Molecules. 2022; 27(23):8195. https://doi.org/10.3390/molecules27238195
Chicago/Turabian StyleLenti, Lucia, Ancuta Nartea, Oghenetega Lois Orhotohwo, Deborah Pacetti, and Dennis Fiorini. 2022. "Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine" Molecules 27, no. 23: 8195. https://doi.org/10.3390/molecules27238195
APA StyleLenti, L., Nartea, A., Orhotohwo, O. L., Pacetti, D., & Fiorini, D. (2022). Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine. Molecules, 27(23), 8195. https://doi.org/10.3390/molecules27238195