Deposition Mechanism and Properties of Plasma-Enhanced Atomic Layer Deposited Gallium Nitride Films with Different Substrate Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lee, M.-L.; Wang, S.-S.; Yeh, Y.-H.; Liao, P.-H.; Sheu, J.-K. Light-Emitting Diodes with Surface Gallium Nitride p–n Homojunction Structure Formed by Selective Area Regrowth. Sci. Rep. 2019, 9, 3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, Y.; Chen, G.; Nie, J.; Que, S.; Song, S.-H.; Yu, Y.; Zhang, F.; Liu, H.; Zhou, X.; Zhang, Y.; et al. Hybrid Device of Blue GaN Light-Emitting Diodes and Organic Light-Emitting Diodes with Color Tunability for Smart Lighting Sources. ACS Omega 2022, 7, 5502–5509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-H.; Tan, S.T.; Liu, W.; Ju, Z.; Zheng, K.; Kyaw, Z.; Ji, Y.; Hasanov, N.; Sun, X.W.; Demir, H.V. Improved InGaN/GaN Light-Emitting Diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN Current-Spreading Layer. Opt. Express 2013, 21, 4958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, F.; An, J.; Zhou, G.; Li, W.; Wang, H.; Duan, T.; Jiang, L.; Yu, H. A Comprehensive Review of Recent Progress on GaN High Electron Mobility Transistors: Devices, Fabrication and Reliability. Electronics 2018, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Materials 2019, 12, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Liao, W.; Yang, S.; Wang, H.; Wei, Z.; Lu, G. Reliability Research of GaN-Based Blue Semiconductor Lasers. In Proceedings of the 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE), Harbin, China, 26–28 November 2021; IEEE: Harbin, China, 2021; pp. 67–72. [Google Scholar]
- Feng, M.; Liu, J.; Sun, Q.; Yang, H. III-Nitride Semiconductor Lasers Grown on Si. Prog. Quantum Electron. 2021, 77, 100323. [Google Scholar] [CrossRef]
- Lee, K.J.; Min, J.-W.; Turedi, B.; Alsalloum, A.Y.; Min, J.-H.; Kim, Y.J.; Yoo, Y.J.; Oh, S.; Cho, N.; Subedi, R.C.; et al. Nanoporous GaN/n-Type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 3295–3303. [Google Scholar] [CrossRef]
- Cheriton, R.; Sadaf, S.M.; Robichaud, L.; Krich, J.J.; Mi, Z.; Hinzer, K. Two-Photon Photocurrent in InGaN/GaN Nanowire Intermediate Band Solar Cells. Commun. Mater. 2020, 1, 63. [Google Scholar] [CrossRef]
- Ding, W.; Meng, X. High Performance Solar-Blind UV Detector Based on β-Ga2O3/GaN Nanowires Heterojunction. J. Alloys Compd. 2021, 866, 157564. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Ben, J.; Jiang, K.; Jia, Y.; Zhang, S.; Zang, H.; Shi, Z.; Duan, B.; Sun, X.; et al. A High-Response Ultraviolet Photodetector by Integrating GaN Nanoparticles with Graphene. J. Alloys Compd. 2021, 868, 159281. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Liu, K.; Si, J.; Ding, Y.; Li, L.; Lv, T.; Liu, J.; Fu, L. GaN in Different Dimensionalities: Properties, Synthesis, and Applications. Mater. Sci. Eng. R Rep. 2019, 138, 60–84. [Google Scholar] [CrossRef]
- Martínez-Ara, L.A.; Aguilar-Hernández, J.R.; Sastré-Hernández, J.; Hernández-Hernández, L.A.; Hernández-Pérez, M.Á.; Maldonado-Altamirano, P.; Mendoza-Pérez, R.; Contreras-Puente, G. Structural and Optical Properties of GaN Thin Films Grown on Si (111) by Pulsed Laser Deposition. Mat. Res. 2019, 22, e20180263. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Liu, Z.; Li, G. Effect of AlN Buffer Layer Thickness on the Properties of GaN Films Grown by Pulsed Laser Deposition. Mater. Sci. Semicond. Process. 2015, 39, 499–505. [Google Scholar] [CrossRef]
- Prabaswara, A.; Birch, J.; Junaid, M.; Serban, E.A.; Hultman, L.; Hsiao, C.-L. Review of GaN Thin Film and Nanorod Growth Using Magnetron Sputter Epitaxy. Appl. Sci. 2020, 10, 3050. [Google Scholar] [CrossRef]
- Furqan, C.M.; Ho, J.Y.L.; Kwok, H.S. GaN Thin Film: Growth and Characterizations by Magnetron Sputtering. Surf. Interfaces 2021, 26, 101364. [Google Scholar] [CrossRef]
- Hentschel, R.; Gärtner, J.; Wachowiak, A.; Großer, A.; Mikolajick, T.; Schmult, S. Surface Morphology of AlGaN/GaN Heterostructures Grown on Bulk GaN by MBE. J. Cryst. Growth 2018, 500, 1–4. [Google Scholar] [CrossRef]
- Fernández-Garrido, S.; Ramsteiner, M.; Gao, G.; Galves, L.A.; Sharma, B.; Corfdir, P.; Calabrese, G.; de Souza Schiaber, Z.; Pfüller, C.; Trampert, A.; et al. Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene. Nano Lett. 2017, 17, 5213–5221. [Google Scholar] [CrossRef]
- Xiao-Yong, G.; Song-You, W.; Jing, L.; Yu-Xiang, Z.; Rong-Jun, Z.; Peng, Z.; Yue-Mei, Y.; Liang-Yao, C. Structural and Optical Investigation of GaN Grown by Metal-Organic Chemical Vapor Deposition. J. Korean Phys. Soc. 2004, 44, 765. [Google Scholar] [CrossRef]
- Zuo, R.; Yu, H.; Xu, N.; He, X. Influence of Gas Mixing and Heating on Gas-Phase Reactions in GaN MOCVD Growth. ECS J. Solid State Sci. Technol. 2012, 1, P46. [Google Scholar] [CrossRef]
- Banerjee, S.; Aarnink, A.A.I.; Gravesteijn, D.J.; Kovalgin, A.Y. Thermal Atomic Layer Deposition of Polycrystalline Gallium Nitride. J. Phys. Chem. C 2019, 123, 23214–23225. [Google Scholar] [CrossRef]
- He, Y.-F.; Li, M.-L.; Liu, S.-J.; Wei, H.-Y.; Ye, H.-Y.; Song, Y.-M.; Qiu, P.; An, Y.-L.; Peng, M.-Z.; Zheng, X.-H. Growth of Gallium Nitride Films on Multilayer Graphene Template Using Plasma-Enhanced Atomic Layer Deposition. Acta Metall. Sin. 2019, 32, 1530–1536. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Elam, J.W.; Stair, P.C. Atomic Layer Deposition—Sequential Self-Limiting Surface Reactions for Advanced Catalyst “Bottom-up” Synthesis. Surf. Sci. Rep. 2016, 71, 410–472. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.E.; Kessels, W.M.M. Energy-Enhanced Atomic Layer Deposition for More Process and Precursor Versatility. Coord. Chem. Rev. 2013, 257, 3254–3270. [Google Scholar] [CrossRef]
- Kim, O.H.; Kim, D.; Anderson, T. Atomic Layer Deposition of GaN Using GaCl3 and NH3. J. Vac. Sci. Technol. A 2009, 27, 6. [Google Scholar] [CrossRef]
- Ozgit, C.; Donmez, I.; Alevli, M.; Biyikli, N. Atomic Layer Deposition of GaN at Low Temperatures. J. Vac. Sci. Technol. A 2012, 30, 5. [Google Scholar] [CrossRef]
- Shih, H.-Y.; Lin, M.-C.; Chen, L.-Y.; Chen, M.-J. Uniform GaN Thin Films Grown on (100) Silicon by Remote Plasma Atomic Layer Deposition. Nanotechnology 2015, 26, 014002. [Google Scholar] [CrossRef]
- Alevli, M.; Gungor, N.; Haider, A.; Kizir, S.; Leghari, S.A.; Biyikli, N. Substrate Temperature Influence on the Properties of GaN Thin Films Grown by Hollow-Cathode Plasma-Assisted Atomic Layer Deposition. J. Vac. Sci. Technol. A 2016, 34, 01A125. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Zhang, R.; Wang, L.; Yan, J.; Zhang, J.; Guo, H. Plasma-Triggered CH4/NH3 Coupling Reaction for Direct Synthesis of Liquid Nitrogen-Containing Organic Chemicals. ACS Omega 2017, 2, 9199–9210. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Wang, L.; Guo, Y.; Sun, S.; Guo, H. Plasma-Assisted Ammonia Decomposition over Fe–Ni Alloy Catalysts for COx-Free Hydrogen. AIChE J. 2019, 65, 691–701. [Google Scholar] [CrossRef]
- Ovanesyan, R.A.; Hausmann, D.M.; Agarwal, S. A Three-Step Atomic Layer Deposition Process for SiNx Using Si2Cl6, CH3 NH2, and N2 Plasma. ACS Appl. Mater. Interfaces 2018, 10, 19153–19161. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.S.; Yun, H.J.; Ryu, S.Y.; Choi, B.J. Effect of Growth Temperature on AlN Thin Films Fabricated by Atomic Layer Deposition. Ceram. Int. 2018, 44, 17447–17452. [Google Scholar] [CrossRef]
- Dendooven, J.; Detavernier, C. Basics of Atomic Layer Deposition: Growth Characteristics and Conformality. In Atomic Layer Deposition in Energy Conversion Applications; Bachmann, J., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 1–40. ISBN 978-3-527-69482-2. [Google Scholar]
- Liu, S.; Zhao, G.; He, Y.; Li, Y.; Wei, H.; Qiu, P.; Wang, X.; Wang, X.; Cheng, J.; Peng, M.; et al. Baking and Plasma Pretreatment of Sapphire Surfaces as a Way to Facilitate the Epitaxial Plasma-Enhanced Atomic Layer Deposition of GaN Thin Films. Appl. Phys. Lett. 2020, 116, 211601. [Google Scholar] [CrossRef]
- Lee, W.-H.; Yin, Y.-T.; Cheng, P.-H.; Shyue, J.-J.; Shiojiri, M.; Lin, H.-C.; Chen, M.-J. Nanoscale GaN Epilayer Grown by Atomic Layer Annealing and Epitaxy at Low Temperature. ACS Sustain. Chem. Eng. 2019, 7, 487–495. [Google Scholar] [CrossRef]
- Motamedi, P.; Cadien, K. Structure–Property Relationship and Interfacial Phenomena in GaN Grown on C-Plane Sapphire via Plasma-Enhanced Atomic Layer Deposition. RSC Adv. 2015, 5, 57865–57874. [Google Scholar] [CrossRef]
- Gungor, N.; Alevli, M. Role of Film Thickness on the Structural and Optical Properties of GaN on Si (100) Grown by Hollow-Cathode Plasma-Assisted Atomic Layer Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 021514. [Google Scholar] [CrossRef]
- Moldovan, G.; Roe, M.J.; Harrison, I.; Kappers, M.; Humphreys, C.J.; Brown, P.D. Effects of KOH Etching on the Properties of Ga-Polar n-GaN Surfaces. Philos. Mag. 2006, 86, 2315–2327. [Google Scholar] [CrossRef]
- Ozgit-Akgun, C.; Goldenberg, E.; Okyay, A.K.; Biyikli, N. Hollow Cathode Plasma-Assisted Atomic Layer Deposition of Crystalline AlN, GaN and AlxGa1−xN Thin Films at Low Temperatures. J. Mater. Chem. C 2014, 2, 2123–2136. [Google Scholar] [CrossRef] [Green Version]
- Ozgit, C.; Donmez, I.; Biyikli, N. Self-Limiting Growth of GaN at Low Temperatures. Acta Phys. Pol. A 2011, 120, A–55–A–57. [Google Scholar] [CrossRef]
- Li, D.; Sumiya, M.; Fuke, S.; Yang, D.; Que, D.; Suzuki, Y.; Fukuda, Y. Selective Etching of GaN Polar Surface in Potassium Hydroxide Solution Studied by X-Ray Photoelectron Spectroscopy. J. Appl. Phys. 2001, 90, 4219–4223. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.; Krishna, T.C.S.; Aggarwal, N.; Kaur, M.; Singh, S.; Gupta, G. Pit Assisted Oxygen Chemisorption on GaN Surfaces. Phys. Chem. Chem. Phys. 2015, 17, 15201–15208. [Google Scholar] [CrossRef]
- Qiu, P.; Wei, H.; An, Y.; Wu, Q.; Du, W.; Jiang, Z.; Zhou, L.; Gao, C.; Liu, S.; He, Y.; et al. Plasma-Enhanced Atomic Layer Deposition of Gallium Nitride Thin Films on Fluorine-Doped Tin Oxide Glass Substrate for Future Photovoltaic Application. Ceram. Int. 2020, 46, 5765–5772. [Google Scholar] [CrossRef]
- Tekcan, B.; Ozgit-Akgun, C.; Bolat, S.; Biyikli, N.; Okyay, A.K. Metal-Semiconductor-Metal Ultraviolet Photodetectors Based on Gallium Nitride Grown by Atomic Layer Deposition at Low Temperatures. Opt. Eng. 2014, 53, 107106. [Google Scholar] [CrossRef] [Green Version]
- Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Kizir, S.; Haider, A.; Biyikli, N. Substrate Impact on the Low-Temperature Growth of GaN Thin Films by Plasma-Assisted Atomic Layer Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2016, 34, 041511. [Google Scholar] [CrossRef]
- Lee, M.; Lee, D.; Baik, H.; Kim, H.; Jeong, Y.; Yang, M.; Lee, H.U.; Hahm, M.G.; Kim, J. Highly Efficient Excitonic Recombination of Non-polar (1120) GaN Nanocrystals for Visible Light Emitter by Hydride Vapour Phase Epitaxy. Sci. Rep. 2020, 10, 2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santana, G.; de Melo, O.; Aguilar-Hernández, J.; Mendoza-Pérez, R.; Monroy, B.; Escamilla-Esquivel, A.; López-López, M.; de Moure, F.; Hernández, L.; Contreras-Puente, G. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport. Materials 2013, 6, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Paskova, T.; Arnaudov, B.; Paskov, P.P.; Goldys, E.M.; Hautakangas, S.; Saarinen, K.; Södervall, U.; Monemar, B. Donor-Acceptor Pair Emission Enhancement in Mass-Transport-Grown GaN. J. Appl. Phys. 2005, 98, 033508. [Google Scholar] [CrossRef]
- Yang, Y.; Leppert, V.J.; Risbud, S.H.; Twamley, B.; Power, P.P.; Lee, H.W.H. Blue Luminescence from Amorphous GaN Nanoparticles Synthesized in Situ in a Polymer. Appl. Phys. Lett. 1999, 74, 2262–2264. [Google Scholar] [CrossRef]
- Ravash, R.; Bläsing, J.; Hempel, T.; Noltemeyer, M.; Dadgar, A.; Christen, J.; Krost, A. Metal Organic Vapor Phase Epitaxy Growth of Single Crystalline GaN on Planar Si (211) Substrates. Appl. Phys. Lett. 2009, 95, 242101. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Visconti, P.; Morkoç, H. Blue Photoluminescence Activated by Surface States in GaN Grown by Molecular Beam Epitaxy. Appl. Phys. Lett. 2001, 78, 177. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
TMG bubbler temperature (°C) | 0 |
Substrate temperature (°C) | 200–450 |
TMG pulse time (s) | 0.1 |
TMG purge time (s) | 4 |
TMG carrier gas flow rate (sccm) | 120 |
NH3 pulse time (s) | 13 |
NH3 purge time (s) | 6 |
NH3 flow rate (sccm) | 30 |
NH3 plasma power (W) | 2500 |
Ar flow rate (sccm) | 160 |
Substrate Temperature (°C) | Ga (at.%) | N (at.%) | O (at.%) |
---|---|---|---|
200 | 47.52 | 34.74 | 17.74 |
250 | 47.81 | 35.13 | 17.06 |
300 | 48.65 | 35.4 | 15.95 |
350 | 48.91 | 35.93 | 15.16 |
400 | 53.01 | 32.82 | 14.17 |
450 | 54.54 | 33.18 | 12.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.-B.; Jiang, S.-C.; Hsu, C.-H.; Zhang, X.-Y.; Gao, P.; Wu, W.-Y.; Chiu, Y.-J.; Lien, S.-Y.; Zhu, W.-Z. Deposition Mechanism and Properties of Plasma-Enhanced Atomic Layer Deposited Gallium Nitride Films with Different Substrate Temperatures. Molecules 2022, 27, 8123. https://doi.org/10.3390/molecules27238123
Ren F-B, Jiang S-C, Hsu C-H, Zhang X-Y, Gao P, Wu W-Y, Chiu Y-J, Lien S-Y, Zhu W-Z. Deposition Mechanism and Properties of Plasma-Enhanced Atomic Layer Deposited Gallium Nitride Films with Different Substrate Temperatures. Molecules. 2022; 27(23):8123. https://doi.org/10.3390/molecules27238123
Chicago/Turabian StyleRen, Fang-Bin, Shi-Cong Jiang, Chia-Hsun Hsu, Xiao-Ying Zhang, Peng Gao, Wan-Yu Wu, Yi-Jui Chiu, Shui-Yang Lien, and Wen-Zhang Zhu. 2022. "Deposition Mechanism and Properties of Plasma-Enhanced Atomic Layer Deposited Gallium Nitride Films with Different Substrate Temperatures" Molecules 27, no. 23: 8123. https://doi.org/10.3390/molecules27238123
APA StyleRen, F. -B., Jiang, S. -C., Hsu, C. -H., Zhang, X. -Y., Gao, P., Wu, W. -Y., Chiu, Y. -J., Lien, S. -Y., & Zhu, W. -Z. (2022). Deposition Mechanism and Properties of Plasma-Enhanced Atomic Layer Deposited Gallium Nitride Films with Different Substrate Temperatures. Molecules, 27(23), 8123. https://doi.org/10.3390/molecules27238123