Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway
Abstract
:1. Introduction
2. Results
2.1. Effect of YEO against Ethanol-Induced Gastric Ulcers
2.1.1. Macroscopic Assessment of Gastric Necrotic Damage
2.1.2. Microscopic Evaluation
2.2. Effect of YEO on Gastric Ulcer Area and Mucus Content
2.3. Action of YEO on the Gastric Secretion Indices
2.4. Action of Yarrow Oil on the Nrf2/HO-1 Pathway
2.5. Action of YEO on Serum Inflammatory Cytokines
2.6. Action of YEO on Gastric Defensive Factors
2.7. Action of YEO on Serum and Gastric Levels of Oxidative Stress Markers
2.8. Effect of YEO on the Apoptosis Markers
3. Discussion
4. Materials and Methods
4.1. Plant Materials, and YEO Isolation
4.2. Experimental Animals and Ethical Issues
4.3. Experimental Design
4.4. Induction of Gastric Ulcer
4.5. Gastric Mucosal Lesion Macroscopic Examination
The inhibition percentage (I%) =
((ulcer area of control − ulcer area of treated)/ulcer area of control) × 100
4.6. Assessment of Gastric Indices
4.7. Gastric Barrier Mucus Quantitative Estimation
4.8. Histopathological and Immunohistochemistry (IHC) Microscopically Examinations
4.9. Gastric Homogenate Preparation
4.10. Gene Expression Experiments (Real-Time PCR)
4.11. The Assessment of Gastric Mucosa Defensive Factors
4.12. The Assessment of the Inflammatory Cytokines Markers
4.13. The Assessment of Oxidative Stress Status and Antioxidant Enzymes Activities
4.14. The Assessment of Apoptotic Markers
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.S.; Lin, S.C.; Chu, C.H.; Chang, Y.K.; Zhang, X.; Lin, C.C.; Tung, Y.T. The Gastroprotective Effect of Naringenin against Ethanol-Induced Gastric Ulcers in Mice through Inhibiting Oxidative and Inflammatory Responses. Int. J. Mol. Sci. 2021, 22, 11985. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.L. Physiologic, pathophysiologic, and pharmacologic regulation of gastric acid secretion. Curr. Opin. Gastroenterol. 2017, 33, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, N.; Lee, J.Y.; Nam, R.H.; Chang, H.; Seo, J.H.; Kang, K.K.; Kim, H.J.; Choi, Y.J.; Lee, H.S.; et al. Protective effects of garlic extract, PMK-S005, against nonsteroidal anti-inflammatory drugs-induced acute gastric damage in rats. Dig. Dis. Sci. 2014, 59, 2927–2934. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Mei, X.T.; Zheng, Y.P.; Xu, D.H. Gastroprotective effect of taurine zinc solid dispersions against absolute ethanol-induced gastric lesions is mediated by enhancement of antioxidant activity and endogenous PGE2 production and attenuation of NO production. Eur. J. Pharmacol. 2014, 740, 329–336. [Google Scholar] [CrossRef]
- Song, J.W.; Seo, C.S.; Kim, T.I.; Moon, O.S.; Won, Y.S.; Son, H.Y.; Son, J.K.; Kwon, H.J. Protective Effects of Manassantin A against Ethanol-Induced Gastric Injury in Rats. Biol. Pharm. Bull. 2016, 39, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Yanaka, A. Role of NRF2 in protection of the gastrointestinal tract against oxidative stress. J. Clin. Biochem. Nutr. 2018, 63, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Yang, Q.; Tian, T.; Chang, Y.; Li, Y.; Duan, L.R.; Li, H.; Wang, S.W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother. 2020, 126, 110075. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, J.; Ding, Y.; Ma, Y.; Shang, P.; Liu, T.; Hui, G.; Wang, L.; Wang, M.; Zhu, Z.; et al. Alpha-boswellic acid protects against ethanol-induced gastric injury in rats: Involvement of nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway. J. Pharm. Pharmacol. 2016, 68, 514–522. [Google Scholar] [CrossRef]
- Nemeth, E.; Bernath, J. Biological activities of yarrow species (Achillea spp.). Curr. Pharm. Des. 2008, 14, 3151–3167. [Google Scholar] [CrossRef]
- Mainka, M.; Czerwińska, M.E.; Osińska, E.; Ziaja, M.; Bazylko, A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants 2021, 10, 698. [Google Scholar] [CrossRef]
- Bader, A.; AlQathama, A.; Cioni, P.L.; Ceccarini, L.; Abdelhady, M.I.S.; Al-Shareef, W.; Ascrizzi, R.; Flamini, G. Essential Oil Biodiversity of Achillea ligustica All. Obtained from Mainland and Island Populations. Plants 2022, 11, 1054. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Elsayed, S.A.; Madkor, H.R.; Eldien, H.M.S.; Mohafez, O.M. Yarrow oil ameliorates ulcerative colitis in mice model via regulating the NF-κB and PPAR-γ pathways. Intest. Res. 2021, 19, 194–205. [Google Scholar] [CrossRef]
- Salehi, B.; Selamoglu, Z.; Sevindik, M.; Fahmy, N.M.; Al-Sayed, E.; El-Shazly, M.; Csupor-Löffler, B.; Csupor, D.; Yazdi, S.E.; Sharifi-Rad, J.; et al. Achillea spp.: A comprehensive review on its ethnobotany, phytochemistry, phytopharmacology and industrial applications. Cell. Mol. Biol. 2020, 66, 78–103. [Google Scholar] [CrossRef]
- Toplan, G.G.; Taşkın, T.; İşcan, G.; Göger, F.; Kürkçüoğlu, M.; Civaş, A.; Ecevit-Genç, G.; Mat, A.; Başer, K.H.C. Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey. Molecules 2022, 27, 1956. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Głowniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use. Molecules 2020, 25, 3368. [Google Scholar] [CrossRef]
- Tadić, V.; Arsić, I.; Zvezdanović, J.; Zugić, A.; Cvetković, D.; Pavkov, S. The estimation of the traditionally used yarrow (Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application. J. Ethnopharmacol. 2017, 199, 138–148. [Google Scholar] [CrossRef]
- Santos, A.O.; Santin, A.C.; Yamaguchi, M.U.; Cortez, L.E.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Nakamura, C.V. Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Ann. Trop. Med. Parasitol. 2010, 104, 475–483. [Google Scholar] [CrossRef]
- Bader, A.; Panizzi, L.; Cioni, P.L.; Flamini, G. Achillea ligustica: Composition and antimicrobial activity of essential oils from the leaves, flowers and some pure constituents. Cent. Eur. J. Biol. 2007, 2, 206–212. [Google Scholar] [CrossRef]
- Chagas-Paula, D.A.; Oliveira, T.B.; Faleiro, D.P.V.; Oliveira, R.B.; Da Costa, F.B. Outstanding anti-inflammatory potential of selected Asteraceae species through the potent dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. Planta Med. 2015, 81, 1296–1307. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, U.K.; Aka, C.; Oz, M.G. Plants Used in Anatolian Traditional Medicine for the Treatment of Hemorrhoid. Rec. Nat. Prod. 2017, 11, 235–250. [Google Scholar]
- Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H.A. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Shaheen, U.; Abdallah, Q.M.A.; Flamini, G.; Bkhaitan, M.M.; Abdelhady, M.I.S.; Ascrizzi, R.; Bader, A. Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells. Molecules 2020, 25, 1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, F.; Benzatti, F.; Junior, C.; Moreira, R.; Carlos, I. Effect of the essential oil of Achillea millefolium L. in the production of hydrogen peroxide and tumor necrosis factor-α in murine macrophages. Rev. Bras. Cienc. Farm. 2005, 41, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Komuro, Y.; Ishihara, K.; Ishii, K.; Ota, H.; Katsuyama, T.; Saigenji, K.; Hotta, K. A separating method for quantifying mucus glycoprotein localized in the different layer of rat gastric mucosa. Gastroenterol. Jpn 1992, 27, 466–472. [Google Scholar] [CrossRef]
- Rosenstock, S.; Jørgensen, T.; Bonnevie, O.; Andersen, L. Risk factors for peptic ulcer disease: A population based prospective cohort study comprising 2416 Danish adults. Gut 2003, 52, 186–193. [Google Scholar] [CrossRef]
- Chou, S.P. An Examination of the Alcohol Consumption and Peptic Ulcer Association—Results of a National Survey. Alcohol. Clin. Exp. Res. 1994, 18, 149–153. [Google Scholar] [CrossRef]
- Park, H.; Cho, D.; Huang, E.; Seo, J.Y.; Kim, W.G.; Todorov, S.D.; Ji, Y.; Holzapfel, W.H. Amelioration of Alcohol Induced Gastric Ulcers Through the Administration of Lactobacillus plantarum APSulloc 331261 Isolated From Green Tea. Front. Microbiol. 2020, 11, 420. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Fde, A.; Andrade, L.N.; de Sousa, E.B.; de Sousa, D.P. Anti-ulcer activity of essential oil constituents. Molecules 2014, 19, 5717–5747. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, M.; Hoseinsalari, A.; Mansourian, M.; Farjadmand, F.; Shams Ardekani, M.R.; Sharifzadeh, M.; Hassanzadeh, G.; Khanavi, M.; Gholami, M. Trachyspermum ammi (L.) Sprague, superb essential oil and its major components on peptic ulcers: In vivo combined in silico studies. Daru 2019, 27, 317–327. [Google Scholar] [CrossRef]
- Caldas, G.F.R.; Oliveira, A.R.d.S.; Araújo, A.V.; Quixabeira, D.C.A.; Silva-Neto, J.d.C.; Costa-Silva, J.H.; de Menezes, I.R.A.; Ferreira, F.; Leite, A.C.L.; da Costa, J.G.M.; et al. Gastroprotective and Ulcer Healing Effects of Essential Oil of Hyptis martiusii Benth. (Lamiaceae). PLoS ONE 2014, 9, e84400. [Google Scholar] [CrossRef]
- Adinortey, M.B.; Ansah, C.; Galyuon, I.; Nyarko, A. In vivo models used for evaluation of potential antigastroduodenal ulcer agents. Ulcers 2013, 2013, 796405. [Google Scholar] [CrossRef]
- Hajrezaie, M.; Golbabapour, S.; Hassandarvish, P.; Gwaram, N.S.; A. Hadi, A.H.; Mohd Ali, H.; Majid, N.; Abdulla, M.A. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Copper (II) Complex against Ethanol-Induced Acute Gastric Lesions in Rats. PLoS ONE 2012, 7, e51537. [Google Scholar] [CrossRef] [Green Version]
- Hajrezaie, M.; Salehen, N.; Karimian, H.; Zahedifard, M.; Shams, K.; Batran, R.A.; Majid, N.A.; Khalifa, S.A.M.; Ali, H.M.; El-Seedi, H.; et al. Biochanin A Gastroprotective Effects in Ethanol-Induced Gastric Mucosal Ulceration in Rats. PLoS ONE 2015, 10, e0121529. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.; Dwivedi, D.K.; Jena, G.B. Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: Involvement of Nrf2/HO-1 signalling pathway. Hum. Exp. Toxicol. 2020, 39, 547–562. [Google Scholar] [CrossRef]
- Lebda, M.A.; Mostafa, R.E.; Taha, N.M.; Abd El-Maksoud, E.M.; Tohamy, H.G.; Al Jaouni, S.K.; El-Far, A.H.; Elfeky, M.S. Commiphora myrrh Supplementation Protects and Cures Ethanol-Induced Oxidative Alterations of Gastric Ulceration in Rats. Antioxidants 2021, 10, 1836. [Google Scholar] [CrossRef]
- Chou, S.T.; Peng, H.Y.; Hsu, J.C.; Lin, C.C.; Shih, Y. Achillea millefolium L. essential oil inhibits LPS-induced oxidative stress and nitric oxide production in RAW 264.7 Macrophages. Int. J. Mol. Sci. 2013, 14, 12978–12993. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Hobani, Y.H.; Shaheen, E.; Abou-Elhamd, A.S.; Abdelhaleem, A.; Alhazmi, H.A.; Abdelwahab, S.I. Ameliorative effect of Boesenbergin A, a chalcone isolated from Boesenbergia rotunda (Fingerroot) on oxidative stress and inflammation in ethanol-induced gastric ulcer in vivo. J. Ethnopharmacol. 2020, 261, 113104. [Google Scholar] [CrossRef]
- Al-Sayed, E.; El-Naga, R.N. Protective role of ellagitannins from Eucalyptus citriodora against ethanol-induced gastric ulcer in rats: Impact on oxidative stress, inflammation and calcitonin-gene related peptide. Phytomedicine 2015, 22, 5–15. [Google Scholar] [CrossRef]
- Guslandi, M. Effects of Ethanol on the Gastric Mucosa. Dig. Dis. 1987, 5, 21–32. [Google Scholar] [CrossRef]
- Yu, L.; Li, R.; Liu, W.; Zhou, Y.; Li, Y.; Qin, Y.; Chen, Y.; Xu, Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020, 12, 2355. [Google Scholar] [CrossRef]
- Shin, M.S.; Lee, J.; Lee, J.W.; Park, S.H.; Lee, I.K.; Choi, J.A.; Lee, J.S.; Kang, K.S. Anti-Inflammatory Effect of Artemisia argyi on Ethanol-Induced Gastric Ulcer: Analytical, In Vitro and In Vivo Studies for the Identification of Action Mechanism and Active Compounds. Plants 2021, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Tarnawski, A.S. Cellular and Molecular Mechanisms of Gastrointestinal Ulcer Healing. Dig. Dis. Sci. 2005, 50, S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Boby, N.; Abbas, M.A.; Lee, E.B.; Im, Z.E.; Hsu, W.H.; Park, S.C. Protective Effect of Pyrus ussuriensis Maxim. Extract against Ethanol-Induced Gastritis in Rats. Antioxidants 2021, 10, 439. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mendoza, M.E.; López-Lorenzo, Y.; Cruz-Antonio, L.; Matus-Meza, A.-S.; Sánchez-Mendoza, Y.; Arrieta, J. Gastroprotection of Calein D against Ethanol-Induced Gastric Lesions in Mice: Role of Prostaglandins, Nitric Oxide and Sulfhydryls. Molecules 2019, 24, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Quraishy, S.; Othman, M.S.; Dkhil, M.A.; Abdel Moneim, A.E. Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities. Biomed. Pharmacother. 2017, 91, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.A.; Reza, A.; Ahmed, A.M.A.; Islam, M.K.; Jahan, I.; Hossain, R.; Khan, M.F.; Maruf, M.R.A.; Haque, M.A.; Rahman, M.A. Pretreatment of Blumea lacera leaves ameliorate acute ulcer and oxidative stress in ethanol-induced Long-Evan rat: A combined experimental and chemico-biological interaction. Biomed. Pharmacother. 2021, 135, 111211. [Google Scholar] [CrossRef]
- Song, S.H.; Kim, J.E.; Sung, J.E.; Lee, H.A.; Yun, W.B.; Lee, Y.H.; Song, H.; Hwang, D. Anti-ulcer effect of Gallarhois extract with anti-oxidant activity in an ICR model of ethanol/hydrochloride acid-induced gastric injury. J. Tradit. Complement. Med. 2019, 9, 372–382. [Google Scholar] [CrossRef]
- Hu, J.; Liu, R.; Yu, X.; Li, Z.; Liu, X.; Hao, Y.; Zhu, N.; Kang, J.; Li, Y. Protective Effects of Small-Molecule Oligopeptides Isolated from Tilapia Fish Scale on Ethanol-Induced Gastroduodenal Injury in Rats. Nutrients 2021, 13, 2078. [Google Scholar] [CrossRef]
- Gamal El-Din, M.I.; Youssef, F.S.; Ashour, M.L.; Eldahshan, O.A.; Singab, A.N.B. New γ-pyrone glycoside from Pachira glabra and assessment of its gastroprotective activity using an alcohol-induced gastric ulcer model in rats. Food Funct. 2020, 11, 1958–1965. [Google Scholar] [CrossRef]
- Kan, J.; Hood, M.; Burns, C.; Scholten, J.; Chuang, J.; Tian, F.; Pan, X.; Du, J.; Gui, M. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms. Nutrients 2017, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- Farooq, U.; Khan, T.; Shah, S.A.; Hossain, M.S.; Ali, Y.; Ullah, R.; Raziq, N.; Shahid, M.; Capasso, R. Isolation, Characterization and Neuroprotective Activity of Folecitin: An In Vivo Study. Life 2021, 11, 825. [Google Scholar] [CrossRef]
- Safayhi, H.; Sabieraj, J.; Sailer, E.R.; Ammon, H.P. Chamazulene: An antioxidant-type inhibitor of leukotriene B4 formation. Planta Med. 1994, 60, 410–413. [Google Scholar] [CrossRef]
- Tambe, Y.; Tsujiuchi, H.; Honda, G.; Ikeshiro, Y.; Tanaka, S. Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, beta-caryophyllene. Planta Med. 1996, 62, 469–470. [Google Scholar] [CrossRef]
- Del-Vechio-Vieira, G.; Sousa, O.; Miranda, M.; Senna-Valle, L.; Kaplan, M. Analgesic and Anti-inflammatory Properties of Essential Oil from Ageratum fastigiatum. Braz. Arch. Biol. Technol. 2009, 52, 1115–1121. [Google Scholar] [CrossRef]
- Sitarek, P.; Rijo, P.; Garcia, C.; Skała, E.; Kalemba, D.; Białas, A.J.; Szemraj, J.; Pytel, D.; Toma, M.; Wysokińska, H.; et al. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. and Their Chemical Composition. Oxid. Med. Cell. Longev. 2017, 2017, 7384061. [Google Scholar] [CrossRef] [Green Version]
- Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol. 2013, 62, 349–354. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, Y.; Li, W.; Zhang, J.; Wang, D.; Fu, J.; Wang, P. Comparison of Chemical Profiles, Anti-Inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol. Molecules 2017, 22, 1446. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; Bandyopadhyay, U.; Chattopadhyay, I.; Varadaraj, A.; Ali, E.; Banerjee, R.K. A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical. J. Biol. Chem. 2003, 278, 10993–11001. [Google Scholar] [CrossRef] [Green Version]
- Corne, S.J.; Morrissey, S.M.; Woods, R.J. Proceedings: A method for the quantitative estimation of gastric barrier mucus. J. Physiol. 1974, 242, 116–117. [Google Scholar]
- Mohamed, M.E.; Kandeel, M.; Abd El-Lateef, H.M.; El-Beltagi, H.S.; Younis, N.S. The Protective Effect of Anethole against Renal Ischemia/Reperfusion: The Role of the TLR2,4/MYD88/NFκB Pathway. Antioxidants 2022, 11, 535. [Google Scholar] [CrossRef]
Animal’s Group | Ulcer Area (mm2) | Inhibition (%) | mg Alcian Blue/g Tissue |
---|---|---|---|
Control | - | - | 620.75 ± 15.23 |
Ethanol | 735.8 ± 30.7 # | - | 156.35 ± 10.41 # |
YEO (100 mg/kg) + ethanol | 360.49 ± 10.76 * | 52.6% * | 340.95 ± 13.72 * |
YEO (200 mg/kg) + ethanol | 241.56 ±13.68 * | 64.28% * | 448.93 ± 13.6 * |
Lansoprazole + ethanol | 192.45 ±15.32 *€ | 70.16% *€ | 571.8 ± 21.5 *€ |
Animal’s Group | Gastric pH | Gastric Volume (mL) | Pepsin Activity (U/mL) |
---|---|---|---|
Control | 6.3 ± 1.59 | 0.14 ± 0.03 | 2857.50 ± 202.84 |
Ethanol | 4.35 ± 0.47 # | 2.85 ± 0.74 # | 1046.33 ± 178.03 # |
YEO (100 mg/kg) + ethanol | 5.39 ± 2.23 * | 2.01 ± 0.24 * | 1352.00 ± 140.94 * |
YEO (200 mg/kg) + ethanol | 5.7 ± 2.43 * | 1.81 ± 0.31 * | 1727.76 ± 151.09 * |
Lansoprazole + ethanol | 6.01 ± 0.51 *€ | 1.27 ± 0.42 *€ | 2092.13 ± 145.82 *€ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomair, M.K.; Alabduladheem, L.S.; Almajed, M.A.; Alobaid, A.A.; Alkhalifah, E.A.R.; Younis, N.S.; Mohamed, M.E. Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway. Molecules 2022, 27, 7908. https://doi.org/10.3390/molecules27227908
Alomair MK, Alabduladheem LS, Almajed MA, Alobaid AA, Alkhalifah EAR, Younis NS, Mohamed ME. Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway. Molecules. 2022; 27(22):7908. https://doi.org/10.3390/molecules27227908
Chicago/Turabian StyleAlomair, Manar K., Lama S. Alabduladheem, Marwah A. Almajed, Amjad A. Alobaid, Essraa A. R. Alkhalifah, Nancy S. Younis, and Maged E. Mohamed. 2022. "Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway" Molecules 27, no. 22: 7908. https://doi.org/10.3390/molecules27227908
APA StyleAlomair, M. K., Alabduladheem, L. S., Almajed, M. A., Alobaid, A. A., Alkhalifah, E. A. R., Younis, N. S., & Mohamed, M. E. (2022). Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway. Molecules, 27(22), 7908. https://doi.org/10.3390/molecules27227908