Structural Basis for (2R,3R)-Taxifolin Binding and Reaction Products to the Bacterial Chalcone Isomerase of Eubacterium ramulus
Abstract
:1. Introduction
2. Results
2.1. Crystal Structures
2.2. Common Structural Features of the Proteins
2.3. The Taxifolin Binding to CHI_H33A
2.4. The Taxifolin Binding to Native CHI
2.5. Minor Comments on CHI Folding
3. Discussion
4. Materials and Methods
4.1. Protein Preparation and Crystallisation
4.2. X-ray Data Collection Processing
4.3. Structure Determination and Refinement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Protein–Ligand | CHI_H33A– Taxifolin-Overload | CHI_H33A– Taxifolin | CHI–Taxifolin |
---|---|---|---|
PDB entry | 8B7Z | 8B7U | 8B7R |
Radiation source | Rigaku MSC | BESSY II | BESSY II |
beam line | MicroMax 007 | BL 14.1 | BL 14.1 |
Detector | Saturn 92 CCD | DECTRIS PILATUS 6M | DECTRIS PILATUS 6M |
Wavelength (Å) | 1.5418 | 0.9184 | 0.9184 |
Temperature (K) | 100 | 100 | 100 |
unit cell parameters | |||
a (Å) | 186.36 | 187.58 | 173.82 |
b (Å) | 204.68 | 203.74 | 193.15 |
c (Å) | 561.90 | 560.39 | 205.29 |
orthorhombic space group | I212121 | I212121 | I212121 |
Resolution range (highest shell) (Å) * | 33.93–2.95 | 49.42–2.78 | 48.82–2.13 |
(3.05–2.95) | (2.95–2.78) | (2.25–2.13) | |
Measured reflections | 871370 (65227) | 3660626 (562212) | 1447977 (229327) |
Unique reflections | 222025 (21202) | 266311 (42262) | 191642 (30350) |
Averaged Redundancy | 3.92 (3.06) | 13.7 (13.3) | 7.56 (7.56) |
Completeness (%) | 98.8 (95.1) | 99.3 (98.2) | 99.5 (98.3) |
Rmeas (%) | 28.9 (76) | 36.8 (158) | 18.8 (110) |
Mean I/σ(I) | 4.1 (1.0) | 9.3 (1.76) | 10.74 (1.93) |
CC ½ | 0.99 (0.24) | 1.0 (0.33) | |
Wilson B-factor (Å2) | 47.3 | 42.4 | 36.5 |
Protein–Ligand | CHI_H33A– Taxifolin-Overload | CHI_H33A– Taxifolin | CHI–Taxifolin |
---|---|---|---|
PDB entry | 8B7Z | 8B7U | 8B7R |
Resolution range | 33.95–3.00 | 49.42–2.80 | 48.82–2.15 |
Rcryst (%)/number of reflections | 24.9/206779 | 21.3/257795 | 16.3/183628 |
Rfree (%)/number of reflections | 26.8/4272 | 22.4/2736 | 19.0/2035 |
Number of non-hydrogen atoms: protein/solvent/ligands | 39253 all 38066/45/1142 | 39179 all 38164/233/782 | 14852 all 12890/1830/132 |
RMSD * bond lengths (Å) | 0.009 | 0.007 | 0.011 |
RMSD bond angles (°) | 1.50 | 1.33 | 1.54 |
RMSD torsion angles (°) | 7.77 | 8.01 | 7.73 |
Ramachandran parameters (%) favoured/allowed/outlier | |||
88.1/11.8/– | 87.5/12.5/– | 90.4/9.6/– | |
Average B-factors (Å2) | 58.1 | 66.9 | 35.3 |
Matthews coefficient VM (A3 Da−1) | 4.88 | 4.88 | 4.14 |
Corresponding solvent content (%) | 75 | 75 | 70 |
References
- Ferreyra, M.L.F.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [Green Version]
- Firmin, J.L.; Wilson, K.E.; Rossen, L.; Johnston, A.W.B. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 1986, 324, 90–92. [Google Scholar] [CrossRef]
- Romano, B.; Pagano, E.; Montanaro, V.; Fortunato, A.L.; Milic, N.; Borrelli, F. Novel Insights into the Pharmacology of Flavonoids. Phytother. Res. 2013, 27, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Gensheimer, M. Chalcone isomerase family and fold: No longer unique to plants. Protein Sci. 2004, 13, 540–544. [Google Scholar] [CrossRef] [Green Version]
- Schneider, H.; Blaut, M. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch. Microbiol. 2000, 173, 71–75. [Google Scholar] [CrossRef]
- Meinert, H.; Yi, D.; Zirpel, B.; Schuiten, E.; Geißler, T.; Gross, E.; Brückner, S.I.; Hartmann, B.; Röttger, C.; Ley, J.P.; et al. Discovery of Novel Bacterial Chalcone Isomerases by a Sequence-Structure-Function-Evolution Strategy for Enzymatic Synthesis of (S)-Flavanones. Angew. Chem. Int. Ed. 2021, 60, 16874–16879. [Google Scholar] [CrossRef]
- Nising, C.F.; Bräse, S. Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev. 2011, 41, 988–999. [Google Scholar] [CrossRef]
- Ngaki, M.N.; Louie, G.V.; Philippe, R.N.; Manning, G.; Pojer, F.; Bowman, M.E.; Li, L.; Larsen, E.; Wurtele, E.S.; Noel, J.P. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 2012, 485, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 2000, 7, 786–791. [Google Scholar] [CrossRef]
- Jez, J.M.; Bowman, M.E.; Noel, J.P. Role of Hydrogen Bonds in the Reaction Mechanism of Chalcone Isomerase. Biochemistry 2002, 41, 5168–5176. [Google Scholar] [CrossRef] [PubMed]
- Jez, J.M.; Noel, J.P. Reaction Mechanism of Chalcone Isomerase-pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 2002, 277, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Schneider, H.; Schwiertz, A.; Collins, M.D.; Blaut, M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch. Microbiol. 1999, 171, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Gütschow, M.; Engst, W.; Blaut, M. Degradation of Quercetin and Luteolin by Eubacterium ramulus. Appl. Environ. Microbiol. 2001, 67, 5558–5567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herles, C.; Braune, A.; Blaut, M. First bacterial chalcone isomerase isolated from Eubacterium ramulus. Arch. Microbiol. 2004, 181, 428–434. [Google Scholar] [CrossRef]
- Gall, D.M.; Thomsen, D.M.; Peters, D.C.; Pavlidis, I.V.; Jonczyk, M.S.P.; Grünert, M.S.P.P.; Beutel, S.; Scheper, T.; Gross, E.; Backes, M.; et al. Enzymatic Conversion of Flavonoids using Bacterial Chalcone Isomerase and Enoate Reductase. Angew. Chem. Int. Ed. 2013, 53, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Schoefer, L.; Braune, A.; Blaut, M. Cloning and Expression of a Phloretin Hydrolase Gene from Eubacterium ramulus and Characterization of the Recombinant Enzyme. Appl. Environ. Microbiol. 2004, 70, 6131–6137. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.; Tuukkanen, A.; Dickerhoff, J.; Palm, G.J.; Kratzat, H.; Svergun, D.I.; Weisz, K.; Bornscheuer, U.T.; Hinrichs, W. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 907–917. [Google Scholar] [CrossRef]
- Elsinghorst, P.W.; Cavlar, T.; Müller, A.; Braune, A.; Blaut, M.; Gütschow, M. The Thermal and Enzymatic Taxifolin–Alphitonin Rearrangement. J. Nat. Prod. 2011, 74, 2243–2249. [Google Scholar] [CrossRef]
- Braune, A.; Engst, W.; Elsinghorst, P.W.; Furtmann, N.; Bajorath, J.; Gütschow, M.; Blaut, M. Chalcone Isomerase from Eubacterium ramulus Catalyzes the Ring Contraction of Flavanonols. J. Bacteriol. 2016, 198, 2965–2974. [Google Scholar] [CrossRef]
- Berkholz, D.S.; Driggers, C.M.; Shapovalov, M.V.; Dunbrack, R.L.; Karplus, P.A. Nonplanar peptide bonds in proteins are common and conserved but not biased toward active sites. Proc. Natl. Acad. Sci. USA 2012, 109, 449–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- Volkers, G.; Damas, J.M.; Palm, G.J.; Panjikar, S.; Soares, C.; Hinrichs, W. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1758–1767. [Google Scholar] [CrossRef]
- Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. Sect. D Biol. Crystallogr. 1999, 55, 1718–1725. [Google Scholar] [CrossRef] [Green Version]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; et al. Overview of theCCP4 suite and current developments. Acta Crystallogr. Sect. D-Struct. Biol. 2011, 67, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Mueller, U.; Darowski, N.; Fuchs, M.; Förster, R.; Hellmig, M.; Paithankar, K.; Pühringer, S.; Steffien, M.; Zocher, G.; Weiss, M.S. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 2012, 19, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Krug, M.; Weiss, M.S.; Heinemann, U.; Mueller, U. XDSAPP: A graphical user interface for the convenient processing of diffraction data usingXDS. J. Appl. Crystallogr. 2012, 45, 568–572. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phasercrystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef]
- Kovalevskiy, O.; Nicholls, R.A.; Long, F.; Carlon, A.; Murshudov, G.N. Overview of refinement procedures withinREFMAC5: Utilizing data from different sources. Acta Crystallogr. Sect. D-Biol. Crystallogr. 2018, 74, 215–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D-Struct. Biol. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.B.; Arendall, W.B., III.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sec. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol molecular viewer: Updates and refinements. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2009. [Google Scholar]
- Schulz, E.C.; Yorke, B.A.; Pearson, A.R.; Mehrabi, P. Best practices for time-resolved serial synchrotron crystallography. Acta Crystallogr. Sect. D Struct. Biol. 2022, 78, 14–29. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palm, G.J.; Thomsen, M.; Berndt, L.; Hinrichs, W. Structural Basis for (2R,3R)-Taxifolin Binding and Reaction Products to the Bacterial Chalcone Isomerase of Eubacterium ramulus. Molecules 2022, 27, 7909. https://doi.org/10.3390/molecules27227909
Palm GJ, Thomsen M, Berndt L, Hinrichs W. Structural Basis for (2R,3R)-Taxifolin Binding and Reaction Products to the Bacterial Chalcone Isomerase of Eubacterium ramulus. Molecules. 2022; 27(22):7909. https://doi.org/10.3390/molecules27227909
Chicago/Turabian StylePalm, Gottfried J., Maren Thomsen, Leona Berndt, and Winfried Hinrichs. 2022. "Structural Basis for (2R,3R)-Taxifolin Binding and Reaction Products to the Bacterial Chalcone Isomerase of Eubacterium ramulus" Molecules 27, no. 22: 7909. https://doi.org/10.3390/molecules27227909
APA StylePalm, G. J., Thomsen, M., Berndt, L., & Hinrichs, W. (2022). Structural Basis for (2R,3R)-Taxifolin Binding and Reaction Products to the Bacterial Chalcone Isomerase of Eubacterium ramulus. Molecules, 27(22), 7909. https://doi.org/10.3390/molecules27227909