First Example of a Heptazine-Porphyrin Dyad; Synthesis and Spectroscopic Properties
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouramtane, S.; Bretin, L.; Pinon, A.; Leger, D.; Liagre, B.; Richard, L.; Brégier, F.; Sol, V.; Chaleix, V. Porphyrins-xylan conjugated silica nanoparticles for anticancer photodynamic therapy. Carbohydr. Polym. 2019, 213, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Song, W.; Rieffel, J.; Lovell, J.F. Emerging applications of porphyrins in photomedicine. Front. Phys. 2015, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhu, W.-H.; Xie, Y. Development of ion chemosensors based on porphyrins analogues. Chem. Rev. 2017, 117, 2203–2256. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Lee, J.H.; Jang, W.-D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020, 407, 213157. [Google Scholar] [CrossRef]
- Song, H.; Liu, Q.; Xie, Y. Porphyrin-sensitized solar cells: Systematic molecular optimization, coadsorption and cosensitization. Chem. Commun. 2018, 54, 1811–1824. [Google Scholar] [CrossRef]
- Milot, R.L.; Schmuttenmaer, C.A. Electron injection dynamics in high-potential porphyrin photoanodes. Acc. Chem. Res. 2015, 48, 1423–1431. [Google Scholar] [CrossRef]
- Rao, H.; Bonin, J.; Robert, M. Non-sensitized selective photochemical reduction of CO2 to CO under visible light with an iron molecular catalyst. Chem. Commun. 2017, 53, 2830–2833. [Google Scholar] [CrossRef]
- Nikolaou, V.; Charalambidis, G.; Coutsolelos, A.G. Photocatalytic hydrogen production of porphyrin nanostructures: Spheres vs. fibrils, a case study. Chem. Commun. 2021, 57, 4055–4058. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Chen, D.; Zhong, J.; Yang, L.-X.; Wang, J.-J.; Yu, Z.-T.; Zou, Z.-G. Construction of a noble-metal-free photocatalytic H2 evolution system using MoS2/reduced graphene oxide catalyst and zinc porphyrin photosensitizer. J. Phys. Chem. C 2017, 121, 24452–24462. [Google Scholar] [CrossRef]
- Antonangelo, A.R.; Westrup, K.C.M.; Burt, L.A.; Bezzu, C.G.; Malewschik, T.; Machado, G.S.; Nunes, F.S.; McKeown, N.B.; Nakagaki, S. Synthesis, crystallographic characterization and homogeneous catalytic activity of novel unsymmetric porphyrins. RSC Adv. 2017, 7, 50610–50618. [Google Scholar] [CrossRef]
- Bhupathiraju, N.V.S.D.K.; Rizvi, W.; Batteas, J.D.; Drain, C.M. Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics. Org. Biomol. Chem. 2016, 14, 389–408. [Google Scholar] [CrossRef] [PubMed]
- Audebert, P.; Kroke, E.; Posern, C.; Lee, S.-H. State of the art in the preparation and properties of molecular monomeric s-heptazines: Syntheses, characteristics, and functional applications. Chem. Rev. 2021, 121, 2515–2544. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, A.; Saplinova, T.; Kroke, E. Tri-s-triazines (s-heptazines)-from a”mystery molecule” to industrially relevant carbon nitride materials. Coord. Chem. Rev. 2013, 257, 2032–2062. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, N.; Kailasam, K. Emergence of s-heptazines: From trichloro-s-heptazine building blocks to functional materials. J. Mater. Chem. A 2018, 6, 21719–21728. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Clavier, G.; Audebert, P. S-Tetrazines as building blocks for new functional molecules and molecular materials. Chem. Rev. 2010, 110, 3299–3314. [Google Scholar] [CrossRef]
- Le, T.; Galmiche, L.; Masson, G.; Allain, C.; Audebert, P. A straightforward synthesis of a new family of molecules: 2,5,8-trialkoxyheptazines. Application to photoredox catalyzed tarnsformations. Chem. Commun. 2020, 56, 10742–10745. [Google Scholar] [CrossRef]
- Lim, G.N.; Obondi, C.O.; D’Souza, F. A high-energy charge-separated state of 1.70 eV from a high-potential donor-acceptor dyad: A catalyst for energy-demanding photochemical reactions. Angew. Chem. Int. Ed. 2016, 55, 11517–11521. [Google Scholar] [CrossRef]
- Regulska, E.; Rivera-Nazario, D.M.; Karpinska, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Zinc porphyrin-functionalized fullerenes for the sensitization of titania as a visible-light active photocatalyst: River waters and wastewaters remediation. Molecules 2019, 24, 1118. [Google Scholar] [CrossRef]
- Fathalla, M.; Barnes, J.C.; Young, R.M.; Hartlieb, K.J.; Dyar, S.M.; Eaton, S.W.; Sarjeant, A.A.; Co, D.T.; Wasielewski, M.R.; Stoddart, J.F. Photoinduced electron transfer within a zinc porphyrin-cyclobis(paraquat-p-phenylene) donor-acceptor dyad. Chem.-A Eur. J. 2014, 20, 14690–14697. [Google Scholar] [CrossRef]
- Auras, B.L.; Meller, S.D.; da Silva, M.P.; Neves, A.; Cocca, L.H.Z.; De Boni, L.; Da Silveira, C.H.; Iglesias, B.A. Synthesis, spectroscopic/electrochemical characterization and DNA interaction study of novel ferrocenyl-substituted porphyrins. Appl. Organometallic. Chem. 2018, 32, e4318. [Google Scholar] [CrossRef]
- Wan, Z.; Jia, C.; Zhang, J.; Yao, X.; Shi, Y. Highly conjugated donor-acceptor dyad based on tetrathiafulvalene covalently attached to porphyrin unit. Dye. Pigment. 2012, 93, 1456–1462. [Google Scholar] [CrossRef]
- Galmiche, L.; Allain, C.; Le, T.; Guillot, R.; Audebert, P. Renewing accessible heptazine chemistry: 2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine, a new highly soluble heptazine derivative with exchangeable groups, and examples of newly heptazines and their physical chemistry. Chem. Sci. 2019, 10, 5513–5518. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.H.; Venkatesh, Y.; Siva, D.; Ramakrishna, B.; Bangal, P.R. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy. J. Phys. Chem. A 2015, 119, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Prashanthi, S.; Kumar, P.H.; Wang, L.; Perepogu, A.K.; Bangal, P.R. Reductive fluorescence quenching of the photoexcited free base meso-tetrakis(pentafluorophenyl)porphyrin by amines. J. Fluoresc. 2010, 20, 571–580. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brégier, F.; Sol, V.; Champavier, Y.; Galmiche, L.; Allain, C.; Audebert, P. First Example of a Heptazine-Porphyrin Dyad; Synthesis and Spectroscopic Properties. Molecules 2022, 27, 6698. https://doi.org/10.3390/molecules27196698
Brégier F, Sol V, Champavier Y, Galmiche L, Allain C, Audebert P. First Example of a Heptazine-Porphyrin Dyad; Synthesis and Spectroscopic Properties. Molecules. 2022; 27(19):6698. https://doi.org/10.3390/molecules27196698
Chicago/Turabian StyleBrégier, Frédérique, Vincent Sol, Yves Champavier, Laurent Galmiche, Clémence Allain, and Pierre Audebert. 2022. "First Example of a Heptazine-Porphyrin Dyad; Synthesis and Spectroscopic Properties" Molecules 27, no. 19: 6698. https://doi.org/10.3390/molecules27196698
APA StyleBrégier, F., Sol, V., Champavier, Y., Galmiche, L., Allain, C., & Audebert, P. (2022). First Example of a Heptazine-Porphyrin Dyad; Synthesis and Spectroscopic Properties. Molecules, 27(19), 6698. https://doi.org/10.3390/molecules27196698