Correlating Sensory Assessment of Smoke-Tainted Wines with Inter-Laboratory Study Consensus Values for Volatile Phenols
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Methods
2.2. Study Accuracy
2.3. Inter-Laboratory Results
2.4. Bound Forms
2.5. Comparison of Sensory Profiles of Control and Smoke-Tainted Wines
3. Materials and Methods
3.1. Inter-Laboratory Study Design
3.2. Sensory Analysis of Wines
3.3. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ristic, R.; van Der Hulst, L.; Capone, D.L.; Wilkinson, K.L. Impact of bottle aging on smoke-tainted wines from different grape cultivars. J. Agric. Food Chem. 2017, 65, 4146–4152. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Chichester, UK, 2016. [Google Scholar] [CrossRef]
- Fontana, A.R. Analytical methods for determination of cork-taint compounds in wine. TrAC 2012, 37, 135–147. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Parker, M.; Baldock, G.A.; Pardon, K.H.; Black, C.A.; Jeffery, D.W.; Herderich, M.J. Assessing the impact of smoke exposure in grapes: Development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. J. Agric. Food Chem. 2013, 61, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of smoke application to field-grown Merlot grapevines at key phenological growth stages on wine sensory and chemical properties. Aust. J. Grape Wine Res. 2011, 17, S5–S12. [Google Scholar] [CrossRef]
- Maleknia, S.D.; Adams, M.A. Impact of volatile organic compounds from wildfires on crop production and quality. Asp. Appl. Biol. 2008, 88, 93–97. [Google Scholar]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef]
- Krstic, M.P.; Johnson, D.L.; Herderich, M.J. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 2015, 21, 537–553. [Google Scholar] [CrossRef]
- Riley, K.L.; Loehman, R.A. Mid-21st century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere 2016, 7, e01543. [Google Scholar] [CrossRef]
- Walpole, M. The Financial Impact of 2020 Summer Bushfires Smoke on the Wine Regions of North East Victoria, Report. The Australian Government National Landcare Program and Agriculture Victoria. Available online: https://www.tafco.com.au/farmsmart/r-d/143-bushfire-2020.html (accessed on 1 June 2022).
- Romano, A. The Impact of 2020’s Wildfires. Wine Spectator. Available online: https://www.winespectator.com/articles/the-impact-of-2020-s-wildfires-063021 (accessed on 1 June 2022).
- Kennison, K.R.; Wilkinson, K.L.; Williams, H.G.; Smith, J.S.; Gibberd, M. Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. J. Agric. Food Chem. 2007, 55, 10897–10901. [Google Scholar] [CrossRef]
- Kennison, K.R.; Gibberd, M.R.; Pollnitz, A.P.; Wilkinson, K.L. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 56, 7379–7383. [Google Scholar] [CrossRef]
- Pollnitz, A.P.; Pardon, K.H.; Sykes, M.; Sefton, M.A. The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses. J. Agric. Food Chem. 2004, 52, 3244–3252. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.; Madeira, I.; Coutinho, A.R.; Albergaria, H.; Malfeito-Ferreira, M. Growth and volatile phenol production by Brettanomyces bruxellensis in different grapevine varieties during fermentation and in finished wine. Eur. Food Res. Technol. 2016, 242, 487–494. [Google Scholar] [CrossRef]
- Noestheden, M.; Noyovitz, B.; Riordan-Short, S.; Dennis, E.G.; Zandberg, W.F. Smoke from simulated forest fire alters secondary metabolites in Vitis vinifera L. berries and wine. Planta 2018, 248, 1537–1550. [Google Scholar] [CrossRef]
- Ristic, R.; Osidacz, P.; Pinchbeck, K.A.; Hayasaka, Y.; Fudge, A.L.; Wilkinson, K.L. The effect of winemaking techniques on the intensity of smoke taint in wine. Aust. J. Grape Wine Res. 2011, 17, S29–S40. [Google Scholar] [CrossRef]
- Singh, D.P.; Chong, H.H.; Pitt, K.M.; Cleary, M.; Dokoozlian, N.K.; Downey, M.O. Guaiacol and 4-methylguaiacol accumulate in wines made from smoke-affected fruit because of hydrolysis of their conjugates. Aust. J. Grape Wine Res. 2011, 17, S13–S21. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, E.; Chen, A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J. Energy Inst. 2017, 90, 902–913. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Dungey, K.A.; Baldock, G.A.; Kennison, K.R.; Wilkinson, K.L. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal. Chim. Acta 2010, 660, 143–148. [Google Scholar] [CrossRef]
- Dungey, K.A.; Hayasaka, Y.; Wilkinson, K.L. Quantitative analysis of glycoconjugate precursors of guaiacol in smoke-affected grapes using liquid chromatography–tandem mass spectrometry based stable isotope dilution analysis. Food Chem. 2011, 126, 801–806. [Google Scholar] [CrossRef]
- Noestheden, M.; Dennis, E.G.; Romero-Montalvo, E.; DiLabio, G.A.; Zandberg, W.F. Detailed characterization of glycosylated sensory-active volatile phenols in smoke-exposed grapes and wine. Food Chem. 2018, 259, 147–156. [Google Scholar] [CrossRef]
- Caffrey, A.; Lerno, L.; Rumbaugh, A.; Girardello, R.; Zweigenbaum, J.; Oberholster, A.; Ebeler, S.E. Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. Am. J. Enol. Vitic. 2019, 70, 373–381. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma precursors in grapes and wine: Flavor release during wine production and consumption. J. Agric. Food Chem. 2018, 66, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Mayr, C.M.; Parker, M.; Baldock, G.A.; Black, C.A.; Pardon, K.H.; Williamson, P.O.; Herderich, M.J.; Francis, I.L. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. J. Agric. Food Chem. 2014, 62, 2327–2336. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Baldock, G.A.; Parker, M.; Pardon, K.H.; Black, C.A.; Herderich, M.J.; Jeffery, D.W. Glycosylation of smoke-derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. J. Agric. Food Chem. 2010, 58, 10989–10998. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.L.; Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Singh, D.P.; Pitt, K.M.; Downey, M.O.; Baldock, G.A.; Hayasaka, Y.; Parker, M.; et al. Comparison of methods for the analysis of smoke related phenols and their conjugates in grapes and wine. Aust. J. Grape Wine Res. 2011, 17, S22–S28. [Google Scholar] [CrossRef]
- Allen, D.; Bui, A.D.; Cain, N.; Rose, G.; Downey, M. Analysis of free and bound phenolics in wine and grapes by GC-MS after automated SPE. Anal. Bioanal. Chem. 2013, 405, 9869–9877. [Google Scholar] [CrossRef]
- De Vries, C.J.; Buica, A.; Brand, J.; Mckay, M. The impact of smoke from vegetation fires on sensory characteristics of Cabernet Sauvignon wines made from affected grapes. South African, J. Enol. Vitic. 2016, 37, 22–31. [Google Scholar] [CrossRef][Green Version]
- Noestheden, M.; Thiessen, K.; Dennis, E.G.; Zandberg, W.F. Quantitating organoleptic volatile phenols in smoke-exposed Vitis vinifera berries. J. Agric. Food Chem. 2017, 65, 8418–8425. [Google Scholar] [CrossRef]
- Dang, C.; Wilkinson, K.L.; Jiranek, V.; Taylor, D.K. Development and evaluation of a HS-SPME GC-MS method for determining the retention of volatile phenols by cyclodextrin in model wine. Molecules 2009, 24, 3432–3447. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.; Ezernieks, V.; Reddy, P.; Elkins, A.; Krill, C.; Murphy, K.; Rochfort, S.; Spangenberg, G. A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites 2020, 10, 294. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; González-Sanjosé, M.L.; González-Huerta, C. Consideration of the influence of aging process, type of wine and oenological classic parameters on the levels of wood volatile compounds present in red wines. Food Chem. 2007, 103, 1434–1448. [Google Scholar] [CrossRef]
- Kelly, D.; Zerihun, A.; Singh, D.P.; Vitzthum von Eckstaedt, C.; Gibberd, M.; Grice, K.; Downey, M. Exposure of grapes to smoke of vegetation with varying lignin composition and accretion of lignin derived putative smoke taint compounds in wine. Food Chem. 2012, 135, 787–798. [Google Scholar] [CrossRef][Green Version]
- Singh, D.P.; Zerihun, A.; Kelly, D.; Cain, N.; Nankervis, P.; Downey, M. A GC-MS based analytical method for detection of smoke taint associated phenols in smoke affected wines. Curr. Bioact. Compd. 2012, 8, 190–199. [Google Scholar] [CrossRef][Green Version]
- Szeto, C.; Ristic, R.; Capone, D.; Puglisi, C.; Pagay, V.; Culbert, J.; Jiang, W.; Herderich, M.; Tuke, J.; Wilkinson, K. Uptake and glycosylation of smoke-derived volatile phenols by Cabernet Sauvignon grapes and their subsequent fate during winemaking. Molecules 2020, 25, 3720. [Google Scholar] [CrossRef]
- Ristic, R.; Fudge, A.L.; Pinchbeck, K.A.; De Bei, R.; Fuentes, S.; Hayasaka, Y.; Tyerman, S.D.; Wilkinson, K.L. Impact of grapevine exposure to smoke on vine physiology and the composition and sensory properties of wine. Theor. Exp. Plant Physiol. 2016, 28, 67–83. [Google Scholar] [CrossRef]
- Danner, L.; Crump, A.M.; Croker, A.; Gambetta, J.M.; Johnson, T.E.; Bastian, S.E.P. Comparison of rate-all-that-apply and descriptive analysis for the sensory profiling of wine. Am. J. Enol. Vitic. 2018, 69, 12–21. [Google Scholar] [CrossRef]
Lab ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
free VPs | processing | technique | LLE 2 | LLE | LLE | SPME | LLE | SPME | LLE | LLE | SPE |
extraction solvent | pentane: EA (1:1) | pentane: ether (2:1) | hexane: EA (1:1) | nr 1 | na 1 | na | pentane: EA (1:1) | nr | SPE | ||
NaCl added | no | no | yes | nr | no | yes | no | no | no | ||
sample vol. (mL) | 5 | 5 | 5 | nr | 5 | 10 | 5 | 30 | 3 | ||
conc. factor | 2.5 | 2.5 | 2.5 | nr | 2 | na | 2.5 | 15 | 2 | ||
analysis | separation | GC-MS | GC-MS | GC-MS/MS | GC-MS/MS | GC-MS | GC-MS/MS | GC-MS | GC-MS | GC-MS 3 | |
SPME fiber | na | na | na | PDMS/DVB | PDMS/DVB | nr | na | na | na | ||
GC column | DB5 | nr | DB5 | WAX | WAX | nr | WAX | WAX | DB-1701 | ||
inj. volume (µL) | 2 | 1 | 5 | na | na | na | 2 | 1 | 1 | ||
LOQs (ug/L) | 1 | 1 | 1 | 5 | na | 1 4 | 0.5 | na | 3–5 | ||
ISTDs | yes | yes | Yes | yes | yes | yes | yes | yes | yes | ||
total VPs (H+) | processing | extraction solvent | na | pentane: ether (2:1) | hexane: EA (1:1) | na | na | na | na | nr | SPE 5 |
salting out | na | no | Yes | na | no | na | na | na | na | ||
conc. factor | na | 2.5 | 2.5 | na | 2 | na | na | nr | 2 | ||
incubation time (h) | na | nr | 4 | na | 1 | na | na | na | 1 | ||
temperature (°C) | na | 100 | 100 | na | 100 | na | na | na | 100 | ||
incubation vessel | na | glass | PTFE | na | glass | na | na | na | glass | ||
acid; conc. | na | nr | HCl; 1 N | na | H2SO4; 1N | na | na | na | H2SO4; 5N | ||
enzyme(s) | na | na | na | na | na | na | na | na | na |
Wine ID | A | B | C | D | E | F | G | H | I | J | |
---|---|---|---|---|---|---|---|---|---|---|---|
vintage | 2018 | 2018 | 2018 | 2018 | 2018 | 2018 | 2019 | 2015 | 2105 | 2018 | |
varietal 1 | R.B. | Ch | Merlot | C.F. | P.B. | Rosé | P.N. | C.F. | R.B. | Syrah | |
VP | H+ 2 | concentration (μg/L) 3,4,5 | |||||||||
4-MG | − | 4.75 (0.73) | 1.58 (1.27) | 9.26 (1.15) | 11.6 (1.29) | 1.39 (0.39) | 1.99 (0.22) | 10.9 (1.46) | 11.12(2.05) | 19.0 (3.51) | 4.11 (1.33) |
4-MG | + | 7.52 (3.41) | 5.93 (2.28) | 20.6 (8.62) | 12.8 (5.24) | 1.39 (0.53) | 13.7 (4.35) | 16.4 (6.05) | 7.49 (3.39) | 5 (0) # | 6.32 (2.83) |
4-MS | − | 4.58 (0.79) | nd | 8.46 (1.33) | 5.22 (1.12) | 1.66 (0.39) | nd | 4.49 (0.76) | 6.25 (0.93) | 32.5 (2.87) | 5.26 (0.85) |
4-MS | + | 3 (0) # | |||||||||
guaiacol | − | 19.3 (3.21) | 3.11 (0.39) | 31.1 (6.24) | 42.3 (4.53) | 1.98 (0.34) | 9.45 (1.13) | 34.1 (5.13) | 39.3 (5.06) | 50.5 (10.3) | 24.2 (4.21) |
guaiacol | + | 46.4 (36.4) | 22.1 (10.8) | 82.4 (48.8) | 98.6 (106) | 19.54(24.5) | 60.7 (22.7) | 47.4 (18.7) | 39.5 (22.5) | 39.8 (36.3) | 64.2 (38.5) |
m-cresol | − | 7.17 (2.99) | 1.96 (1.22) | 11.1 (6.41) | 13.7 (6.82) | 2.14 (1.22) | 3.69 (1.85) | 16.9 (6.90) | 13.3 (4.46) | 8.26 (4.09) | 4.13 (2.49) |
m-cresol | + | 23.5 (34.5) | 17.8 (22.6) | 49.8 (68.1) | 40.3 (63.4) | 15.7 (26.7) | 34.8 (46.5) | 24.1 (26.9) | 15.2 (21.9) | 13.0 (17.4) | 20.8 (29.1) |
o-cresol | − | 5.86 (1.54) | 1.02 (0.14) | 8.02 (2.33) | 9.86 (2.97) | 1.17 (0.41) | 3.02 (0.75) | 11.3 (3.11) | 7.53 (2.52) | 4.85 (1.92) | 3.70 (1.51) |
o-cresol | + | 34.4 (51.0) | 9.15 (7.24) | 33.8 (48.0) | 95.3 (151) | 5.00 (1.41) | 19.7 (22.8) | 14.8 (12.0) | 12.7 (13.3) | 3 (0) # | 20.0 (30.2) |
p-cresol | − | 6.31 (1.84) | 6.00 (4.36) | 10.7 (2.27) | 13.6 (2.41) | 2.15 (1.30) | 3.79 (1.88) | 10.1 (1.98) | 7.09 (1.92) | 6.46 (1.72) | 3.49 (1.41) |
p-cresol | + | 9.33 (7.23) | 8.00 (5.29) | 19.0 (14.8) | 9.00 (6.56) | 5.00 (3.46) | 14.0 (10.2) | 8.33 (6.66) | 7.33 (6.03) | 6.50 (0.71) | 9.67 (6.81) |
phenol | − | 28.5 (3.72) | 7.39 (4.28) | 36.3 (11.9) | 52.5 (15.3) | 8.06 (1.07) | 13.5 (1.86) | 48.6 (5.73) | 47.2 (2.57) | 41.1 (9.55) | 18.2 (2.04) |
phenol | + | 236 (203) | 97.0 (59.4) | 337 (291) | 397 (404) | 84.5 (88.4) | 142 (113) | 137 (87.0) | 115 (83.4) | 202 (150) | 335 (211) |
syringol | − | 20.5 (3.88) | 1.08 (0.70) | 28.8 (4.29) | 22.5 (8.22) | 1.60 (0.42) | 3.84 (3.20) | 19.2 (4.81) | 53.1 (7.20) | 113 (18.4) | 49.0 (7.58) |
syringol | + | 11.0 (3.61) | 6.81 (5.63) | 19.0 (11.5) | 18.0 (11.6) | 8.50 (10.6) | 4.38 (2.56) | 19.0 (9.17) | 31.5 (13.7) | 24.7 (10.5) | 12.3 (7.80) |
Lab ID | phenol | o-cresol | m-cresol | p-cresol | guaiacol | 4-MG |
---|---|---|---|---|---|---|
678 | 121 | 100 | 88 | 107 | 100 | 122 |
675 | 79 | 93 | 114 | 100 | 78 | |
314 | 86 | 117 | 136 | 83 | 67 | |
782 | 93 | 96 | 95 | 95 | 113 | 96 |
428 | 64 | 64 | 54 | 95 | 61 | |
407 | 44 | 59 | 52 | - (4) | 48 | 51 |
703 | 109 | 91 | 84 | - (4) | 84 | 98 |
660 | 87 | 84 | 77 | 95 | 78 | |
101 | 79 | 80 | 79 | 83 | 78 | |
mean | 108 | 85 | 88 | 94 | 94 | 85 |
SD | 14 | 11 | 15 | 27 | 11 | 20 |
Lab ID | A | B | C | D | E | F | G | H | I | J | A | B | C | D | E | F | G | H | I | J | Lab ID | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
678 | phenol | 0.8 | 6.7 | 3.3 | −1.6 | 1.6 | 0.1 | −0.6 | −1.1 | −1.7 | 2.2 | 1.4 | 1.2 | 1.4 | 2.0 | 1.7 | 1.8 | 1.3 | guaiacol | 678 | |||
675 | −0.6 | −0.3 | −0.6 | −0.5 | 0.1 | −0.4 | −1.1 | −0.7 | −0.1 | −1.7 | 675 | ||||||||||||
314 | −1.0 | −0.3 | 2.2 | 0.8 | 0.1 | −0.4 | −1.1 | 0.1 | 1.0 | 0.6 | 314 | ||||||||||||
782 | 0.2 | −0.9 | −0.1 | −1.3 | 0.9 | 0.2 | 0.0 | −0.1 | 1.0 | −1.0 | 0.8 | 1.4 | 0.7 | 2.3 | 1.9 | 0.9 | 0.7 | 0.6 | 782 | ||||
428 | −1.2 | −0.4 | −1.4 | −0.9 | −2.7 | −0.5 | −1.3 | −1.6 | −2.9 | −1.7 | 428 | ||||||||||||
407 | −1.7 | 0.0 | −3.7 | 3.8 | 0.4 | −0.7 | −1.3 | 0.2 | −0.6 | 2.9 | −0.5 | 1.6 | −2.7 | 0.9 | 0.0 | −0.3 | 1.3 | −0.2 | 2.8 | 407 | |||
703 | 0.7 | −5.7 | 0.5 | −0.9 | −1.3 | −1.1 | 1.2 | 0.5 | 0.6 | −0.2 | 2.5 | 2.4 | 1.0 | 0.2 | 2.0 | 0.3 | 1.9 | 1.5 | 703 | ||||
660 | −1.1 | −1.6 | −0.8 | −0.9 | −0.8 | −0.8 | −0.5 | −0.9 | −0.9 | −1.4 | 660 | ||||||||||||
101 | −1.0 | −0.3 | −1.2 | −0.7 | 0.1 | −1.4 | −0.8 | −1.0 | −1.2 | −1.5 | 101 | ||||||||||||
678 | o-cresol | 3.2 | 2.2 | 2.8 | 2.9 | 4.5 | 5.2 | 3.1 | 3.9 | 7.9 | 4.1 | 2.8 | 4-methylguaiacol | 678 | |||||||||
675 | −1.3 | −1.1 | −2.6 | −0.1 | −1.0 | −0.6 | −1.7 | −1.5 | 0.5 | −0.2 | 0.3 | 3.9 | 0.1 | −0.7 | −0.1 | −0.2 | −1.4 | 675 | |||||
314 | 3.2 | 4.4 | 3.7 | 6.2 | 2.9 | 1.4 | 1.7 | 5.5 | 5.7 | −1.4 | 0.7 | −1.2 | −2.5 | 0.1 | −1.5 | −1.7 | −0.2 | −0.4 | 314 | ||||
782 | 1.6 | 0.7 | 0.4 | 2.1 | −0.6 | 1.7 | 1.2 | 1.1 | 1.7 | 1.7 | 1.4 | 1.5 | 1.7 | 0.7 | 0.9 | 1.3 | 1.0 | −0.4 | 0.4 | 782 | |||
428 | −1.6 | −1.9 | −0.2 | −3.3 | −1.3 | −1.3 | −4.0 | −2.1 | −1.5 | −2.3 | −1.1 | −1.4 | −1.6 | −2.9 | −4.6 | −2.4 | 428 | ||||||
407 | 0.6 | −0.5 | 2.4 | −4.8 | −1.0 | −2.7 | −0.1 | 0.3 | 2.1 | −3.6 | 2.1 | −2.0 | 0.1 | 0.3 | 2.6 | 1.7 | 0.7 | 2.2 | 1.3 | −0.6 | 407 | ||
703 | −3.6 | 1.6 | −3.7 | −0.9 | −1.0 | −0.6 | −4.6 | −5.9 | −5.8 | −5.1 | 0.5 | 0.3 | 0.8 | −1.3 | −0.6 | 1.4 | 1.0 | 4.1 | 0.5 | 703 | |||
660 | −0.8 | −1.7 | −1.5 | −0.2 | −2.3 | −0.6 | 0.1 | 0.1 | 0.8 | 0.7 | −0.2 | −5.8 | 0.2 | −0.4 | −0.9 | −0.8 | 0.2 | 0.5 | −1.6 | 2.0 | 660 | ||
101 | −1.3 | −0.2 | −1.1 | 0.1 | −1.3 | −0.1 | −0.2 | −0.6 | −1.7 | 0.3 | −1.4 | −0.2 | −0.5 | −2.5 | 0.1 | 0.1 | −0.1 | −2.4 | −0.9 | 101 | |||
678 | m-cresol | −1.4 | −4.1 | −3.7 | −1.6 | −2.6 | −2.9 | −0.3 | −3.5 | 2.4 | 1.9 | 0.6 | 2.2 | −1.9 | 1.3 | 1.1 | 1.8 | 1.3 | syringol | 678 | |||
675 | −1.4 | 0.2 | −2.5 | −3.7 | −0.6 | 0.8 | −2.0 | −0.9 | −2.4 | −2.4 | −0.2 | 0.1 | −2.9 | 2.2 | −1.9 | −0.5 | −0.2 | −0.2 | −1.1 | 675 | |||
314 | 10 | 4.1 | 6.3 | 3.7 | 314 | ||||||||||||||||||
782 | −0.9 | −2.3 | −1.6 | −2.6 | −2.1 | −1.4 | −0.7 | −2.0 | 0.4 | 1.6 | 1.1 | 3.9 | 1.1 | 1.3 | 1.4 | 782 | |||||||
428 | −2.7 | −3.6 | −3.2 | −3.7 | −3.5 | −2.1 | −4.1 | −2.5 | −0.8 | 4.0 | −1.3 | −1.1 | −0.4 | −2.5 | −1.2 | −1.4 | −1.6 | −0.9 | 428 | ||||
407 | 6.9 | 7.3 | 5.5 | 7.8 | 8.5 | 8.4 | 5.2 | 5.5 | 11 | 7.7 | 407 | ||||||||||||
703 | 4.7 | −1.7 | 3.2 | 5.0 | 3.2 | 4.8 | 2.0 | 1.6 | 4.9 | 5.8 | 6.1 | 15 | 1.3 | 1.8 | 703 | ||||||||
660 | −2.4 | −5.8 | −3.1 | −2.4 | −3.8 | −2.5 | −2.0 | −2.0 | −2.6 | −2.0 | −1.1 | −4.0 | −0.3 | −0.8 | −0.7 | −4.2 | −1.5 | −0.7 | −0.1 | −0.6 | 660 | ||
101 | −2.7 | −3.3 | −2.4 | −4.7 | −4.0 | −2.0 | −2.2 | −4.5 | −3.5 | −1.9 | −1.5 | −1.8 | −3.3 | −4.2 | −1.9 | −1.3 | −1.3 | −1.7 | 101 | ||||
678 | p-cresol | 3.8 | −4.4 | 1.9 | 1.6 | 3.5 | 2.8 | 2.5 | 3.6 | 3.8 | 3.5 | 4-methylsyringol | 678 | ||||||||||
675 | 2.4 | −2.9 | 2.7 | 2.2 | 7.6 | 7.5 | 1.7 | 2.4 | 3.8 | 2.1 | 0.8 | 0.6 | −2.1 | 1.8 | 1.0 | 1.1 | 1.2 | −0.1 | 675 | ||||
314 | 7.3 | 314 | |||||||||||||||||||||
782 | 0.0 | −0.6 | −0.1 | −2.3 | −1.4 | −0.6 | −1.0 | 0.3 | −0.5 | 0.4 | 782 | ||||||||||||
428 | −2.8 | −0.7 | −0.8 | −4.4 | −0.4 | −1.5 | −5.6 | −2.7 | 0.7 | −0.6 | 1.9 | −1.3 | 0.2 | −0.5 | −1.1 | 0.6 | 428 | ||||||
407 | − | − | − | − | − | − | − | − | − | − | 407 | ||||||||||||
703 | − | − | − | − | − | − | − | − | − | − | 703 | ||||||||||||
660 | −1.5 | −1.9 | −1.2 | −4.1 | −2.7 | −1.4 | −2.2 | −1.0 | −1.7 | −2.3 | −1.6 | −1.1 | −2.2 | −2.2 | −1.7 | −1.4 | −1.3 | 660 | |||||
101 | −1.8 | −1.4 | −1.7 | −4.7 | −1.8 | −1.8 | −1.4 | −1.2 | −0.6 | 0.8 | 1.6 | 1.3 | 1.8 | 1.0 | 1.1 | 1.2 | 0.4 | 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favell, J.W.; Wilkinson, K.L.; Zigg, I.; Lyons, S.M.; Ristic, R.; Puglisi, C.J.; Wilkes, E.; Taylor, R.; Kelly, D.; Howell, G.; et al. Correlating Sensory Assessment of Smoke-Tainted Wines with Inter-Laboratory Study Consensus Values for Volatile Phenols. Molecules 2022, 27, 4892. https://doi.org/10.3390/molecules27154892
Favell JW, Wilkinson KL, Zigg I, Lyons SM, Ristic R, Puglisi CJ, Wilkes E, Taylor R, Kelly D, Howell G, et al. Correlating Sensory Assessment of Smoke-Tainted Wines with Inter-Laboratory Study Consensus Values for Volatile Phenols. Molecules. 2022; 27(15):4892. https://doi.org/10.3390/molecules27154892
Chicago/Turabian StyleFavell, James W., Kerry L. Wilkinson, Ieva Zigg, Sarah M. Lyons, Renata Ristic, Carolyn J. Puglisi, Eric Wilkes, Randell Taylor, Duane Kelly, Greg Howell, and et al. 2022. "Correlating Sensory Assessment of Smoke-Tainted Wines with Inter-Laboratory Study Consensus Values for Volatile Phenols" Molecules 27, no. 15: 4892. https://doi.org/10.3390/molecules27154892