Neuroprotective Effect of Caffeine in Alzheimer’s Disease
Abstract
:1. Introduction
2. Methods
3. Clinical Studies Investigating the Relationship between Caffeine and Cognition
3.1. Longitudinal Epidemiological Studies
3.2. Cross-Sectional Studies
3.3. Randomized Control Studies
Study | Study Design | Participants | Treatment | Main Outcomes | ||||
---|---|---|---|---|---|---|---|---|
Population Groups | Size | Age (yrs.) | Caffeine | Cognition | ||||
Follow Up | Tests | |||||||
[20] (Cao et al., 2012) | Longitudinal epidemiological study |
| 124 subjects’ total Tampa cohort (n = 81) Miami cohort (n = 43) | 65–88 yrs | Baseline Plasma caffeine concentration measured | Between 2–4 yrs. Average 2 ½–3 yrs |
|
|
[21] (Solfrizzi et al., 2015) | Longitudinal epidemiological study |
| 1445 cognitively normal at baseline subjects | 65–84 yrs | FFQ at 1st = 1992–1993 2nd = 1995–1996 | Median 3.5 yrs |
|
|
[22] (Driscoll et al., 2016) | Longitudinal epidemiological study |
| 6467 only female subjects | 65–80 yrs | FFQ at baseline | 10 yrs. Or less Above or below median caffeine intake = 7.2 and 6.9 yrs. resp |
|
|
[23] (Paganini-Hill et at., 2016) | Longitudinal epidemiological study |
| 587 cognitively normal at baseline subjects | 90–103 yrs. Mean = 93 ± 2.6 | Self-reported Questionnaire at enrolment and Leisure World Cohort health survey (1981–1985) | 36 months. |
|
|
[24] (Sugiyama et al., 2016) | Longitudinal epidemiological study |
| 13,137 non-cognitive disabled at baseline | >65 yrs | FFQ at baseline | 5.7 yrs |
|
|
[25] (Haller et al., 2017) | Longitudinal epidemiological study |
| 45 elderly controls, 18 with MCI | sCON = 70.0 ± 4.3 dCON = 73.4 ± 5.9 MCI = 71.6 ± 4.7 | Self-reported chronic coffee consumers (1–3 cups/day) | 18 months |
|
|
[26] (Haller et al., 2018) | Longitudinal epidemiological study |
| 145 subjects | sCON = 73 ± 3 dCON = 74 ± 4 iCON = 73 ± 3 | Substance questionnaire at baseline | 3 yrs |
|
|
[27] (Vercambre et al., 2013) | Longitudinal epidemiological study |
| 2475 cognitive healthy female health professional with CVD risk | 65+ yrs | Willett semi-quantitative food questionnaire at baseline | 5 yrs |
|
|
[18] (Eskelinen et al., 2009) | Longitudinal epidemiological study |
| 1409 individuals | 65–79 yrs | Survey questionnaire at baseline | 21 yrs |
|
|
[28] (Ritchie et al., 2007) | Longitudinal epidemiological study |
| 7017 dementia free subjects. Men(M) = 2820. Female(F) = 4197 | >65 yrs. M = average 73.6 ± 5.3 yrs. F = average 73.8 ± 5.2 yrs | Questions in the standardized interview by health professional at baseline | Average = 3.4 ± 0.67 yrs |
|
|
[39] (Gelber et al., 2011) | Longitudinal epidemiological study |
| 3734 cognitive healthy Japanese American men. Autopsy sub-group (n = 418) | 71–93 yrs. Mean = 52 yrs | 24 h dietary recall questionnaire at entry (mid-life) | 25 yrs |
|
|
[40] (Araujo et al., 2016) | Longitudinal epidemiological study with cross-sectional subgroup |
| cognitive healthy subjects, 55% female. cross-sectional (n = 2914), longitudinal (n = 2454) | Mean = 59 ± 7.2 yrs | FFQ at baseline | 5 yrs |
|
|
[41] (Mirza et al., 2014) | Stratified Longitudinal epidemiological study |
| Cognitively healthy subjects (0–4 yrs, n = 5408) (>4 yrs. n = 4935) | 0–1 cups/day = 70.3(8.6) >1–3 cups/day = 69.5(7.8) >3 cups/day = 66.3(7.3) | Questionnaire baseline (n = 5408) Follow-up questionnaire (n = 4368) | Mean = 13.2 ± 5.4 yrs |
|
|
[29] (Arab et al., 2011) | Longitudinal epidemiological study |
| 4809 cognitive healthy subjects Men(M) (n = 2077) Women(W) (n = 2722) | >65 yrs | FFQ at baseline | Median 7.9 yrs |
|
|
[42] (Fischer et al., 2018) | Longitudinal epidemiological study |
| 2622 dementia-free participants | Avg = 81.2 ± 3.4 yrs Carrier = 80.9 ± 3.4 yrs Non-carrier = 81.3 ± 3.4 yrs | 8-item cognitive health food questionnaire at baseline | 10 yrs |
|
|
[30] (Santos et al., 2010) | Longitudinal epidemiological study |
| 648 subjects recruited Followed up (n = 309) Not followed up (n = 339) | ≥ 75 yrs. Men = 70(67–73) Women = 71(68–74.5) | FFQ at baseline | 2–9 yrs |
|
|
[43] (Ritchie et al., 2014) | Cross-sectional epidemiological study |
| 1193 cognitive healthy subjects with plasma AB levels | ≥65 yrs | Caffeine questionnaire at baseline interview | Nill |
|
|
[44] (Kyle et al., 2010) | Cross-sectional epidemiological study |
| 351 subjects born in 1936 and sat the MHT | 64 yrs | MONICA food frequency questionnaire | NIll |
|
|
[31] (Kim et al., 2019) | Cross-sectional epidemiological study |
| 411 adults without dementia | <2 cups/day = 71.06 ± 7.73 yrs. ≥2 cups/day = 69.67 ± 8.43 yrs | Coffee intake questions in interview | Nill |
|
|
[32] (Al-khateeb et al., 2014) | Cross-sectional epidemiological study |
| 102 subjects without statins use or substance abuse history | >60 yrs. (C) = 68.9 ± 7.11 yrs. (D) = 70.7± 7.63 yrs | Lifestyle questionnaire at baseline | Nill |
|
|
[33] (West et al., 2019) | Cross-sectional epidemiological study |
| 634 cognitively healthy T2D patients | Young group = 64–71.5 Older group = 71.5–84 | FFQ baseline | Nill |
|
|
[45] (Cornelis et al., 2020) | Cross-sectional epidemiological study |
| 493,944 subjects without self-reported neurological disease | 35–73 yrs | Touchscreen questionnaire | Nill |
|
|
[46] (Cornelis et al., 2020) | Cross-sectional epidemiological study |
| 434,900 subjects without self-reported neurological disease | 35–73 yrs | Touchscreen questionnaire | Nill |
|
|
[34] (Iranpour et al., 2020) | Cross-sectional epidemiological study |
| 1440 subjects | ≥65 yrs Mean = 69.14 yrs | 24-hr dietary recall survey | Nill |
|
|
[35] (Ritchie et al., 2010) | Cross-sectional epidemiological study |
| 641 subjects | ≥65 yrs | Caffeine intake questions in interview | Nill |
|
|
[47] (Kim et al., 2015) | Cross-sectional epidemiological study |
| 765 cognitive healthy subjects | ≥60 yrs | FFQ | Nill |
|
|
[48] (Hosking et al., 2014) | Cross-sectional epidemiological study |
| 352 cognitive healthy subjects | 65–90 yrs. Mean 73.12 (SD = 5.47) yrs. | Lifetime diet questionnaire (LDQ) | Nill |
|
|
[36] (Dong et al., 2020) | Cross-sectional epidemiological study |
| 2513 subjects | ≥60 yrs | 2 × 4 h dietary recall interview | Nill |
|
|
[37] (Lin et al., 2021) | Randomized control study |
| 20 healthy subjects | 18–35 yrs | >3 × 150 mg/day caffeine tablets >Sweat test- caffeine metabolite measurement | 5.5 h |
|
|
[38] (Haller et al., 2014) | Randomized control study |
| 34 subjects without neurological/psychiatric history | HC = 68.3 ± 2.8 yrs MCI = 70.7 ± 4.6 yrs | >Caffeine tablets (200 mg) >placebo tablets | 30 min |
|
|
4. In Vitro and In Vivo Studies
4.1. Effecting Membrane
4.2. Altering APP Processing
4.3. Altering Excitation and Inhibition
4.4. Altering Protein Aggregation
4.5. Antioxidant Properties
4.6. Effect on BNDF Levels
4.7. AR Antagonist Properties
4.8. Effect on Endolysosomes Dysfunction
4.9. Acetylcholinesterase Inhibition
4.10. Effect on Granulocyte-Colony Stimulating Factor, IL-6, and IL-10
4.11. Effect on Aβ–Clearance
4.12. Studies Reporting no Effect of Caffeine
Study | In-Vivo/In Vitro Study | Mechanism of Neuroprotective Effect | Study Methodology | Main Outcomes |
---|---|---|---|---|
[49] Gastaldo et al., 2020 | In Vitro | Effecting membrane |
|
|
[50] Janitschke et al., 2019 | In Vitro | Altering APP processing |
|
|
[51] Arendash et al., 2006 | In Vivo | Altering APP processing |
|
|
In Vitro |
|
| ||
[52] Arendash et al., 2009 | In Vivo | Altering APP processing |
|
|
| ||||
| ||||
In Vitro |
|
| ||
[53] Cao et al., 2009 | In Vivo | Altering APP processing |
|
|
|
| |||
[54] Zappettini et al., 2019 | In Vivo | Altering excitation and inhibition |
|
|
[55] Mancini et al., 2018 | In Vitro | Altering protein aggregation |
|
|
[56] Laurent et al., 2014 | In Vivo | Altering protein aggregation |
|
|
[57] Alzoubi et al., 2018 | In Vivo | Antioxidant properties |
|
|
[58] Moy et al., 2013 | In Vivo | Effect on BNDF levels |
|
|
[59] Han et al., 2013 | In Vivo | Effect on BNDF levels |
|
|
[60] Zhao et al., 2017 | In Vivo | AR antagonist properties |
|
|
[61] Bortolotto et al., 2015 | In Vivo | AR antagonist properties |
|
|
[62] Li et al., 2015 | In Vitro | AR antagonist properties |
|
|
[63] Espinosa et al., 2013 | In Vivo | AR antagonist properties |
|
|
[64] Dall’Igna et al., 2007 | In-Vivo | AR antagonist properties |
|
|
[65] Soliman et al., 2017 | In Vitro | Effect on endolysosomes dysfunction |
|
|
[66] Mohamed et al., 2013 | In Vitro In Silico | Acetylcholinesterase inhibition |
|
|
[67] Pohanka et al., 2013 | In vitro In silico | Acetylcholinesterase inhibition |
|
|
[68] Cao et al., 2011 | In Vivo | Effect on granulocyte-colony stimulating factor, IL-6, and IL-10 |
|
|
[69] Qosa et al., 2012 | In Vivo In Vitro | Effect on Aβ-clearance |
|
|
|
| |||
[70] Shukitt-hale et al., 2013 | In Vivo | Nill |
|
|
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Prince, M.J.; Wimo, A.; Guerchet, M.M.; Ali, G.C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015—The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- Karran, E.; Mercken, M.; Strooper, B.D. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698–712. [Google Scholar] [CrossRef]
- Karch, C.M.; Goate, A.M. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Arnsten, A.F.T.; Datta, D.; Del Tredici, K.; Braak, H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s Dement. 2021, 17, 115–124. [Google Scholar] [CrossRef]
- Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; et al. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry 2011, 16, 903–907. [Google Scholar] [CrossRef]
- Norton, S.; Matthews, F.E.; Barnes, D.E.; Yaffe, K.; Brayne, C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef] [Green Version]
- De Bruijn, R.F.; Bos, M.J.; Portegies, M.L.; Hofman, A.; Franco, O.H.; Koudstaal, P.J.; Ikram, M.A. The potential for prevention of dementia across two decades: The prospective, population-based Rotterdam Study. BMC Med. 2015, 13, 132. [Google Scholar] [CrossRef] [Green Version]
- Panza, F.; Solfrizzi, V.; Barulli, M.R.; Bonfiglio, C.; Guerra, V.; Osella, A.; Seripa, D.; Sabba, C.; Pilotto, A.; Logroscino, G. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. J. Nutr. Health Aging 2015, 19, 313–328. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.W. Coffee and Its Active Compounds Are Neuroprotective; Elsevier: Amsterdam, The Netherlands, 2015; pp. 423–427. [Google Scholar]
- Singh, S.S.; Rai, S.N.; Birla, H.; Zahra, W.; Kumar, G.; Gedda, M.R.; Tiwari, N.; Patnaik, R.; Singh, R.K.; Singh, S.P. Effect of Chlorogenic Acid Supplementation in MPTP-Intoxicated Mouse. Front. Pharm. 2018, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, R.; Azam, S.; Cho, D.-Y.; Su-Kim, I.; Choi, D.-K. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson’s Disease: Current Knowledge and Future Perspectives. Oxidative Med. Cell. Longev. 2021, 2021, 6680935. [Google Scholar] [CrossRef]
- Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Nikbakht, F.; Roghani, M. Trigonelline protects hippocampus against intracerebral Aβ(1–40) as a model of Alzheimer’s disease in the rat: Insights into underlying mechanisms. Metab. Brain Dis. 2019, 34, 191–201. [Google Scholar] [CrossRef]
- PubChem Compound Summary for CID 2519, Caffeine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caffeine (accessed on 17 May 2022).
- Yoshimura, H. The Potential of Caffeine for Functional Modification from Cortical Synapses to Neuron Networks in the Brain. Curr. Neuropharmacol. 2005, 3, 309–316. [Google Scholar] [CrossRef]
- Arendash, G.W.; Cao, C. Caffeine and Coffee as Therapeutics Against Alzheimer’s Disease. J. Alzheimer’s Dis. 2010, 20, S117–S126. [Google Scholar] [CrossRef] [Green Version]
- Berthou, F.; Ratanasavanh, D.; Alix, D.; Carlhant, D.; Riche, C.; Guillouzo, A. Caffeine and theophylline metabolism in newborn and adult human hepatocytes; comparison with adult rat hepatocytes. Biochem. Pharm. 1988, 37, 3691–3700. [Google Scholar] [CrossRef]
- Eskelinen, M.H.; Ngandu, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife Coffee and Tea Drinking and the Risk of Late-Life Dementia: A Population-Based CAIDE Study. J. Alzheimers Dis. 2009, 16, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Lelo, A.; Miners, J.O.; Robson, R.; Birkett, D.J. Assessment of caffeine exposure: Caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clin. Pharmacol. Ther. 1986, 39, 54–59. [Google Scholar] [CrossRef]
- Cao, C.; Loewensteine, D.A.; Lin, X.; Zhang, C.; Wang, L.; Duara, R.; Wu, Y.; Giannini, A.; Bai, G.; Cai, J.; et al. High Blood Caffeine Levels in MCI Linked to Lack of Progression to Dementia. J. Alzheimers Dis. 2012, 30, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Solfrizzi, V.; Panza, F.; Imbimbo, B.P.; D’Introno, A.; Galluzzo, L.; Gandin, C.; Misciagna, G.; Guerra, V.; Osella, A.; Baldereschi, M.; et al. Coffee Consumption Habits and the Risk of Mild Cognitive Impairment: The Italian Longitudinal Study on Aging. J. Alzheimers Dis. 2015, 47, 889–899. [Google Scholar] [CrossRef]
- Driscoll, I.; Shumaker, S.A.; Snively, B.M.; Margolis, K.L.; Manson, J.E.; Vitolins, M.Z.; Rossom, R.C.; Espeland, M.A. Relationships Between Caffeine Intake and Risk for Probable Dementia or Global Cognitive Impairment: The Women’s Health Initiative Memory Study. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2016, 71, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Paganini-Hill, A.; Kawas, C.H.; Corrada, M.M. Lifestyle Factors and Dementia in the Oldest-old the 90 + Study. Alzheimer Dis. Assoc. Disord. 2016, 30, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, K.; Tomata, Y.; Kaiho, Y.; Honkura, K.; Sugawara, Y.; Tsuji, I. Association between Coffee Consumption and Incident Risk of Disabling Dementia in Elderly Japanese: The Ohsaki Cohort 2006 Study. J. Alzheimers Dis. 2016, 50, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Montandon, M.-L.; Rodriguez, C.; Moser, D.; Toma, S.; Hofmeister, J.; Giannakopoulos, P. Caffeine impact on working memory-related network activation patterns in early stages of cognitive decline. Neuroradiology 2017, 59, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Montandon, M.-L.; Rodriguez, C.; Herrmann, F.R.; Giannakopoulos, P. Impact of Coffee, Wine, and Chocolate Consumption on Cognitive Outcome and MRI Parameters in Old Age. Nutrients 2018, 10, 1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vercambre, M.N.; Berr, C.; Ritchie, K.; Kang, J.H. Caffeine and cognitive decline in elderly women at high vascular risk. J. Alzheimers Dis. 2013, 35, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, K.; Carriere, I.; de Mendonca, A.; Portet, F.; Dartigues, J.F.; Rouaud, O.; Barberger-Gateau, P.; Ancelin, M.L. The neuroprotective effects of caffeine—A prospective population study (the Three City Study). Neurology 2007, 69, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Biggs, M.L.; O’Meara, E.S.; Longstreth, W.T.; Crane, P.K.; Fitzpatrick, A.L. Gender differences in tea, coffee, and cognitive decline in the elderly: The Cardiovascular Health Study. J. Alzheimers Dis. 2011, 27, 553–566. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.; Lunet, N.; Azevedo, A.; de Mendonça, A.; Ritchie, K.; Barros, H. Caffeine intake is associated with a lower risk of cognitive decline: A cohort study from Portugal. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S175–S185. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Jeon, S.Y.; Jung, G.; Lee, H.N.; Sohn, B.K.; Lee, J.-Y.; Kim, Y.K.; et al. Coffee intake and decreased amyloid pathology in human brain. Transl. Psychiatry 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Al-khateeb, E.; Al-zayadneh, E.; Al-dalahmah, O.; Alawadi, Z.; Khatib, F.; Naffa, R.; Shafagoj, Y. Relation between Copper, Lipid Profile, and Cognition in Elderly Jordanians. J. Alzheimers Dis. 2014, 41, 203–211. [Google Scholar] [CrossRef]
- West, R.K.; Ravona-Springer, R.; Livny, A.; Heymann, A.; Shahar, D.; Leroith, D.; Preiss, R.; Zukran, R.; Silverman, J.M.; Schnaider, M. Age Modulates the Association of Caffeine Intake with Cognition and With Gray Matter in Elderly Diabetics. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2019, 74, 683–688. [Google Scholar] [CrossRef]
- Iranpour, S.; Saadati, H.M.; Koohi, F.; Sabour, S. Association between caffeine intake and cognitive function in adults; effect modification by sex: Data from National Health and Nutrition Examination Survey (NHANES) 2013–2014. Clin. Nutr. 2020, 39, 2158–2168. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K.; Artero, S.; Portet, F.; Brickman, A.; Muraskin, J.; Beanino, E.; Ancelin, M.-L.; Carriere, I. Caffeine, Cognitive Functioning, and White Matter Lesions in the Elderly: Establishing Causality from Epidemiological Evidence. J. Alzheimers Dis. 2010, 20, S161–S166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Li, S.; Sun, J.; Li, Y.; Zhang, D. Association of Coffee, Decaffeinated Coffee and Caffeine Intake from Coffee with Cognitive Performance in Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutrients 2020, 12, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-S.; Weibel, J.; Landolt, H.-P.; Santini, F.; Meyer, M.; Brunmair, J.; Meier-Menches, S.M.; Gerner, C.; Borgwardt, S.; Cajochen, C.; et al. Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial. Cereb. Cortex 2021, 31, 3096–3106. [Google Scholar] [CrossRef]
- Haller, S.; Montandon, M.-L.; Rodriguez, C.; Moser, D.; Toma, S.; Hofmeister, J.; Sinanaj, I.; Lovblad, K.-O.; Giannakopoulos, P. Acute Caffeine Administration Effect on Brain Activation Patterns in Mild Cognitive Impairment. J. Alzheimers Dis. 2014, 41, 101–112. [Google Scholar] [CrossRef]
- Gelber, R.P.; Petrovitch, H.; Masaki, K.H.; Ross, G.W.; White, L.R. Coffee Intake in Midlife and Risk of Dementia and its Neuropathologic Correlates. J. Alzheimers Dis. 2011, 23, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Araujo, L.F.; Mirza, S.S.; Bos, D.; Niessen, W.J.; Barreto, S.M.; van der Lugt, A.; Vernooij, M.W.; Hofman, A.; Tiemeier, H.; Ikram, M.A. Association of Coffee Consumption with MRI Markers and Cognitive Function: A Population-Based Study. J. Alzheimers Dis. 2016, 53, 451–461. [Google Scholar] [CrossRef]
- Mirza, S.S.; Tiemeier, H.; de Bruijn, R.F.A.G.; Hofman, A.; Franco, O.H.; Kiefte-de Jong, J.; Koudstaal, P.J.; Ikram, M.A. Coffee consumption and incident dementia. Eur. J. Epidemiol. 2014, 29, 735–741. [Google Scholar] [CrossRef]
- Fischer, K.; Melo van Lent, D.; Wolfsgruber, S.; Weinhold, L.; Kleineidam, L.; Bickel, H.; Scherer, M.; Eisele, M.; van den Bussche, H.; Wiese, B.; et al. Prospective Associations between Single Foods, Alzheimer’s Dementia and Memory Decline in the Elderly. Nutrients 2018, 10, 852. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, K.; Ancelin, M.L.; Amieva, H.; Rouaud, O.; Carriere, I. The association between caffeine and cognitive decline: Examining alternative causal hypotheses. Int. Psychogeriatr. 2014, 26, 581–590. [Google Scholar] [CrossRef]
- Kyle, J.; Fox, H.C.; Whalley, L.J. Caffeine, Cognition, and Socioeconomic Status. J. Alzheimers Dis. 2010, 20, S151–S159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelis, M.C.; Weintraub, S.; Morris, M.C. Caffeinated Coffee and Tea Consumption, Genetic Variation and Cognitive Function in the UK Biobank. J. Nutr. 2020, 150, 2164–2174. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Weintraub, S.; Morris, M.C. Recent Caffeine Drinking Associates with Cognitive Function in the UK Biobank. Nutrients 2020, 12, 1969. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yu, A.; Choi, B.Y.; Nam, J.H.; Kim, M.K.; Oh, D.H.; Yang, Y.J. Dietary Patterns Derived by Cluster Analysis are Associated with Cognitive Function among Korean Older Adults. Nutrients 2015, 7, 4154–4169. [Google Scholar] [CrossRef] [Green Version]
- Hosking, D.E.; Nettelbeck, T.; Wilson, C.; Danthiir, V. Retrospective lifetime dietary patterns predict cognitive performance in community-dwelling older Australians. Br. J. Nutr. 2014, 112, 228–237. [Google Scholar] [CrossRef]
- Gastaldo, I.P.; Himbert, S.; Ram, U.; Rheinstadter, M.C. The Effects of Resveratrol, Caffeine, beta-Carotene, and Epigallocatechin Gallate (EGCG) on Amyloid-beta(25-35) Aggregation in Synthetic Brain Membranes. Mol. Nutr. Food Res. 2020, 64, 2000632. [Google Scholar] [CrossRef]
- Janitschke, D.; Nelke, C.; Lauer, A.A.; Regner, L.; Winkler, J.; Thiel, A.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Effect of Caffeine and Other Methylxanthines on A beta-Homeostasis in SH-SY5Y Cells. Biomolecules 2019, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Arendash, G.W.; Schleif, W.; Rezai-Zadeh, K.; Jackson, E.K.; Zacharia, L.C.; Cracchiolo, J.R.; Shippy, D.; Tan, J. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 2006, 142, 941–952. [Google Scholar] [CrossRef]
- Arendash, G.W.; Mori, T.; Cao, C.; Mamcarz, M.; Runfeldt, M.; Dickson, A.; Rezai-Zadeh, K.; Tane, J.; Citron, B.A.; Lin, X.; et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J. Alzheimers Dis. 2009, 17, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Cirrito, J.R.; Lin, X.; Wang, L.; Verges, D.K.; Dickson, A.; Mamcarz, M.; Zhang, C.; Mori, T.; Arendash, G.W.; et al. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 2009, 17, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Zappettini, S.; Faivre, E.; Ghestem, A.; Carrier, S.; Buee, L.; Blum, D.; Esclapez, M.; Bernard, C. Caffeine Consumption during Pregnancy Accelerates the Development of Cognitive Deficits in Offspring in a Model of Tauopathy. Front. Cell. Neurosci. 2019, 13, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, R.S.; Wang, Y.; Weaves, D.F. Phenylindanes in Brewed Coffee Inhibit Amyloid-Beta and Tau Aggregation. Front. Neurosci. 2018, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.; Eddarkaoui, S.; Derisbourg, M.; Leboucher, A.; Demeyer, D.; Carrier, S.; Schneider, M.; Hamdane, M.; Müller, C.E.; Buée, L.; et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol. Aging 2014, 35, 2079–2090. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Mhaidat, N.M.; Obaid, E.A.; Khabour, O.F. Caffeine Prevents Memory Impairment Induced by Hyperhomocysteinemia. J. Mol. Neurosci. 2018, 66, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Moy, G.A.; McNay, E.C. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol. Behav. 2013, 109, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, K.; Jia, N.; Li, J.; Yang, L.; Min, L.-Q. Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep. 2013, 8, 737–740. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.A.; Zhao, Y.; Ning, Y.L.; Yang, N.; Peng, Y.; Li, P.; Chen, X.Y.; Liu, D.; Wang, H.; Chen, X.; et al. Adenosine A(2A) receptor inactivation alleviates early-onset cognitive dysfunction after traumatic brain injury involving an inhibition of tau hyperphosphorylation. Transl. Psychiatry 2017, 7, e1123. [Google Scholar] [CrossRef] [Green Version]
- Bortolotto, J.W.; de Melo, G.M.; Cognato, G.d.P.; Moreira Vianna, M.R.; Bonan, C.D. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol. Learn. Mem. 2015, 118, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Geiger, N.H.; Soliman, M.L.; Hui, L.; Geiger, J.D.; Chen, X. Caffeine, Through Adenosine A(3) Receptor-Mediated Actions, Suppresses Amyloid-beta Protein Precursor Internalization and Amyloid-beta Generation. J. Alzheimers Dis. 2015, 47, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.; Rocha, A.; Nunes, F.; Costa, M.S.; Schein, V.; Kazlauckas, V.; Kalinine, E.; Souza, D.O.; Cunha, R.A.; Porciuncula, L.O. Caffeine Consumption Prevents Memory Impairment, Neuronal Damage, and Adenosine A(2A) Receptors Upregulation in the Hippocampus of a Rat Model of Sporadic Dementia. J. Alzheimers Dis. 2013, 34, 509–518. [Google Scholar] [CrossRef]
- Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol. 2007, 203, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.L.; Geiger, J.D.; Chen, X. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation. J. Neuroimmune Pharmacol. 2017, 12, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, T.; Osman, W.; Tin, G.; Rao, P.P.N. Selective inhibition of human acetylcholinesterase by xanthine derivatives: In vitro inhibition and molecular modeling investigations. Bioorganic Med. Chem. Lett. 2013, 23, 4336–4341. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M.; Dobes, P. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase. Int. J. Mol. Sci. 2013, 14, 9873–9882. [Google Scholar] [CrossRef]
- Cao, C.; Wang, L.; Lin, X.; Mamcarz, M.; Zhang, C.; Bai, G.; Nong, J.; Sussman, S.; Arendash, G. Caffeine synergizes with another coffee component to increase plasmato cognitive benefits in Alzheimer’s mice. J. Alzheimers Dis. 2011, 25, 323–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qosa, H.; Abuznait, A.H.; Hill, R.A.; Kaddoumi, A. Enhanced Brain Amyloid-β Clearance by Rifampicin and Caffeine as a Possible Protective Mechanism Against Alzheimer’s Disease. J. Alzheimers Dis. 2012, 31, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Shukitt-Hale, B.; Miller, M.G.; Chu, Y.-F.; Lyle, B.J.; Joseph, J.A. Coffee, but not caffeine, has positive effects on cognition and psychomotor behavior in aging. Age 2013, 35, 2183–2192. [Google Scholar] [CrossRef] [Green Version]
- Culm-Merdek, K.E.; von Moltke, L.L.; Harmatz, J.S.; Greenblatt, D.J. Fluvoxamine impairs single-dose caffeine clearance without altering caffeine pharmacodynamics. Br. J. Clin. Pharm. 2005, 60, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Alves, R.C.; Almeida, I.M.; Casal, S.; Oliveira, M.B. Isoflavones in coffee: Influence of species, roast degree, and brewing method. J. Agric. Food Chem. 2010, 58, 3002–3007. [Google Scholar] [CrossRef]
- Silva, C.G.; Metin, C.; Fazeli, W.; Machado, N.J.; Darmopil, S.; Launay, P.S.; Ghestem, A.; Nesa, M.P.; Bassot, E.; Szabo, E.; et al. Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Sci. Transl. Med. 2013, 5, 197ra104–197ra191. [Google Scholar] [CrossRef] [PubMed]
- Bonati, M.; Latini, R.; Galletti, F.; Young, J.F.; Tognoni, G.; Garattini, S. Caffeine disposition after oral doses. Clin. Pharmacol. Ther. 1982, 32, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, M.J. The pharmacology of caffeine. Prog. Drug Res. 1987, 31, 273–313. [Google Scholar] [CrossRef] [PubMed]
- Begas, E.; Kouvaras, E.; Tsakalof, A.; Papakosta, S.; Asprodini, E.K. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed. Chromatogr. 2007, 21, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.F.; Aklillu, E.; McDonagh, E.M.; Klein, T.E.; Altman, R.B. PharmGKB summary: Caffeine pathway. Pharm. Genom. 2012, 22, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, B.G.; Wylie, M.; Stack, J.A.; Sorisio, D.A.; Thompson, D.S.; Kirshner, M.A.; Folan, M.M.; Condifer, K.A. Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women. J. Clin. Pharm. 1999, 39, 936–940. [Google Scholar] [CrossRef]
- Reznikov, L.R.; Pasumarthi, R.K.; Fadel, J.R. Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons. Neuroreport 2009, 20, 1609–1612. [Google Scholar] [CrossRef]
- Laurent, C.; Burnouf, S.; Ferry, B.; Batalha, V.L.; Coelho, J.E.; Baqi, Y.; Malik, E.; Mariciniak, E.; Parrot, S.; Van der Jeugd, A.; et al. A(2A) adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol. Psychiatry 2016, 21, 97–107. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M Yelanchezian, Y.M.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules 2022, 27, 3737. https://doi.org/10.3390/molecules27123737
M Yelanchezian YM, Waldvogel HJ, Faull RLM, Kwakowsky A. Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules. 2022; 27(12):3737. https://doi.org/10.3390/molecules27123737
Chicago/Turabian StyleM Yelanchezian, Y Mukish, Henry J. Waldvogel, Richard L. M. Faull, and Andrea Kwakowsky. 2022. "Neuroprotective Effect of Caffeine in Alzheimer’s Disease" Molecules 27, no. 12: 3737. https://doi.org/10.3390/molecules27123737
APA StyleM Yelanchezian, Y. M., Waldvogel, H. J., Faull, R. L. M., & Kwakowsky, A. (2022). Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules, 27(12), 3737. https://doi.org/10.3390/molecules27123737