# Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Ondracek Model

#### 1.2. Dalmas s-Shape Model

#### 1.3. Dose–Response Model

#### 1.4. Gaussian Fitting Model

## 2. Results

#### Experimental Data and Modeling Analysis

## 3. Materials and Methods

#### Fabrication Method

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Al-Zu’bi, M.; Fan, M.; Anguilano, L. Advances in bonding agents for retrofitting concrete structures with fibre reinforced polymer materials: A review. Constr. Build. Mater.
**2022**, 330, 127115. [Google Scholar] [CrossRef] - Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y. Conducting polymer nanostructures: Template synthesis and applications in energy storage. Int. J. Mol. Sci.
**2010**, 11, 2636–2657. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bednarczyk, K.; Kukulski, T.; Fryczkowski, R.; Schab-Balcerzak, E.; Libera, M. Effect of Polythiophene Content on Thermomechanical Properties of Electroconductive Composites. Molecules
**2021**, 26, 2476. [Google Scholar] [CrossRef] [PubMed] - Li, H.-Y.; Huang, D.-N.; Ren, K.-F.; Ji, J. Inorganic-polymer composite coatings for biomedical devices. Smart Mater. Med.
**2021**, 2, 1–14. [Google Scholar] [CrossRef] - Aziz, S.B.; Dannoun, E.; Abdulwahid, R.T.; Kadir, M.F.; Nofal, M.M.; Al-Saeedi, S.I.; Murad, A.R. The Study of Ion Transport Parameters in MC-Based Electrolyte Membranes Using EIS and Their Applications for EDLC Devices. Membranes
**2022**, 12, 139. [Google Scholar] [CrossRef] [PubMed] - Aziz, S.B.; Nofal, M.M.; Abdulwahid, R.T.; Kadir, M.; Hadi, J.M.; Hessien, M.M.; Kareem, W.O.; Dannoun, E.M.; Saeed, S.R. Impedance, FTIR and transport properties of plasticized proton conducting biopolymer electrolyte based on chitosan for electrochemical device application. Results Phys.
**2021**, 29, 104770. [Google Scholar] [CrossRef] - Gaida, B.; Brzęczek-Szafran, A. Insights into the properties and potential applications of renewable carbohydrate-based ionic liquids: A review. Molecules
**2020**, 25, 3285. [Google Scholar] [CrossRef] [PubMed] - Aziz, S.B.; Nofal, M.M.; Abdulwahid, R.T.; Ghareeb, H.O.; Dannoun, E.; Abdullah, R.M.; Hamsan, M.; Kadir, M. Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage—EEC Modeling, Transport Properties, and Charge-Discharge Characteristics. Polymers
**2021**, 13, 803. [Google Scholar] [CrossRef] - Aziz, S.B.; Abdulwahid, R.T.; Kadir, M.F.; Ghareeb, H.O.; Ahamad, T.; Alshehri, S.M. Design of non-faradaic EDLC from plasticized MC based polymer electrolyte with an energy density close to lead-acid batteries. J. Ind. Eng. Chem.
**2022**, 105, 414–426. [Google Scholar] [CrossRef] - Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Adekoya, G.J. Electrical Resistance control model for polypyrrole-graphene nanocomposite: Energy storage applications. Mater. Today Commun.
**2021**, 26, 101699. [Google Scholar] [CrossRef] - Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Adekoya, G.J. Synthesis methods of borophene, graphene-loaded polypyrrole nanocomposites and their benefits for energy storage applications: A brief overview. FlatChem
**2021**, 26, 100211. [Google Scholar] [CrossRef] - Moyseowicz, A.; Pająk, K.; Gajewska, K.; Gryglewicz, G. Synthesis of polypyrrole/reduced graphene oxide hybrids via hydrothermal treatment for energy storage applications. Materials
**2020**, 13, 2273. [Google Scholar] [CrossRef] - Liu, Z.; Shen, D.; Yu, J.; Dai, W.; Li, C.; Du, S.; Jiang, N.; Li, H.; Lin, C.-T. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Adv.
**2016**, 6, 22364–22369. [Google Scholar] [CrossRef] - Tjong, S.C. Polymer composites with graphene nanofillers: Electrical properties and applications. J. Nanosci. Nanotechnol.
**2014**, 14, 1154–1168. [Google Scholar] [CrossRef] - Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Joseph, A.G. Parametric analysis of electrical conductivity of polymer-composites. Polymers
**2019**, 11, 1250. [Google Scholar] [CrossRef] [Green Version] - Clingerman, M.L.; King, J.A.; Schulz, K.H.; Meyers, J.D. Evaluation of electrical conductivity models for conductive polymer composites. J. Appl. Polym. Sci.
**2002**, 83, 1341–1356. [Google Scholar] [CrossRef] - Mamunya, Y.P.; Davydenko, V.; Pissis, P.; Lebedev, E. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J.
**2002**, 38, 1887–1897. [Google Scholar] [CrossRef] - Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Joseph, A.G. The modified logistic model for polymer-composites electrical conductivity prediction. AIP Conf. Proc.
**2020**, 2289, 020019. [Google Scholar] - Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Kumar, N. Investigation and modeling of the electrical conductivity of graphene nanoplatelets-loaded doped-polypyrrole. Polymers
**2021**, 13, 1034. [Google Scholar] [CrossRef] - Takeda, T.; Shindo, Y.; Kuronuma, Y.; Narita, F. Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer
**2011**, 52, 3852–3856. [Google Scholar] [CrossRef] - Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Adekoya, G.J. Statistical characterization and simulation of graphene-loaded polypyrrole composite electrical conductivity. J. Mater. Res. Technol.
**2020**, 9, 15788–15801. [Google Scholar] [CrossRef] - Ondracek, G. Microstructure-thermomechanical-property correlations of two-phase and porous materials. Mater. Chem. Phys.
**1986**, 15, 281–313. [Google Scholar] [CrossRef] - Dalmas, F.; Dendievel, R.; Chazeau, L.; Cavaillé, J.-Y.; Gauthier, C. Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater.
**2006**, 54, 2923–2931. [Google Scholar] [CrossRef] - Hong, P.-Y. Antibiotic-Resistant Bacteria and Resistance Genes in the Water–Food Nexus of the Agricultural Environment. In Antimicrobial Resistance and Food Safety; Elsevier: Amsterdam, The Netherlands, 2015; pp. 325–346. [Google Scholar]
- Park, H.C.; Seong, J.; Han, K.H.; Chon, C.Y.; Moon, Y.M.; Suh, C.O. Dose–response relationship in local radiotherapy for hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys.
**2002**, 54, 150–155. [Google Scholar] [CrossRef] - Li, Z.-Y.; Tan, Y.-T.; Wang, J.; Fang, J.; Liu, D.-K.; Li, H.-L.; Xiang, Y.-B. Dose–response relationship between fat distribution and liver cancer incidence: A prospective cohort study in Chinese men. Cancer Epidemiol.
**2022**, 76, 102091. [Google Scholar] [CrossRef] - Rahaman, M.; Aldalbahi, A.; Govindasami, P.; Khanam, N.P.; Bhandari, S.; Feng, P.; Altalhi, T. A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models. Polymers
**2017**, 9, 527. [Google Scholar] [CrossRef] - Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose–response analysis using R. PLoS ONE
**2015**, 10, e0146021. [Google Scholar] [CrossRef] [Green Version] - Choi, S.; Jung, G.B.; Park, H.-K. A novel cardiac spectral segmentation based on a multi-Gaussian fitting method for regurgitation murmur identification. Signal Process.
**2014**, 104, 339–345. [Google Scholar] [CrossRef] - Chou, Y.; Gu, Y.; Liu, J.; Huang, X.; Lin, J. Modelling arterial blood pressure waveforms for extreme bradycardia and tachycardia by curve fitting with Gaussian functions. Int. J. Model. Identif. Control.
**2019**, 32, 226–231. [Google Scholar] [CrossRef] - Gournelos, T.; Kotinas, V.; Poulos, S. Fitting a Gaussian mixture model to bivariate distributions of monthly river flows and suspended sediments. J. Hydrol.
**2020**, 590, 125166. [Google Scholar] [CrossRef] - Huang, Y.-H.; Tseng, F.-F.; Tsai, S.-J.; Lin, C.-H.; Chou, Y.-H.; Lew, H.L. The use of the Gaussian curve fitting method for scintigraphic measurements of the swallowing process in healthy subjects: Implications for evaluation of dysphagia. Arch. Phys. Med. Rehabil.
**2006**, 87, 1526–1529. [Google Scholar] [CrossRef] [PubMed] - Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater.
**2017**, 16, 170–181. [Google Scholar] [CrossRef] [PubMed] - Park, S.-H.; Hwang, J.; Park, G.-S.; Ha, J.-H.; Zhang, M.; Kim, D.; Yun, D.-J.; Lee, S.; Lee, S.H. Modeling the electrical resistivity of polymer composites with segregated structures. Nat. Commun.
**2019**, 10, 2357. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rahaman, M.; Aldalbahi, A.; Nayak, L.; Giri, R. Electrical conductivity of polymer–carbon composites: Effects of different factors. In Carbon-Containing Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2019; pp. 159–210. [Google Scholar]
- Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol.
**2016**, 123, 17–31. [Google Scholar] [CrossRef] - Shah, S.; Lee, J. Stochastic lightning damage prediction of carbon/epoxy composites with material uncertainties. Compos. Struct.
**2022**, 282, 115014. [Google Scholar] [CrossRef]

Model | Parameters | Parameter Values | Standard Error | Per-Unit Standard Error | R^{2} | R^{2}-adj |
---|---|---|---|---|---|---|

Ondracek | ${\chi}_{1}$ | 8.51 | 0.27 | 0.03 | 0.967 | 0.962 |

${\chi}_{2}$ | −2.11 | 0.21 | 0.09 |

Model | Parameters | Parameter Values | Standard Error | Per-Unit Standard Error | R^{2} | R^{2}-adj |
---|---|---|---|---|---|---|

Dalmas s-shape | ${\sigma}_{2}$ | 1.02 | 0.008 | 0.007 | ||

$a$ | 22.37 | 0.462 | 0.021 | 0.9989 | 0.9988 | |

$b$ | 10.46 | 0.203 | 0.019 |

Model | Parameters | Parameter Values | Standard Error | Per-Unit Standard Error | R^{2} | R^{2}-adj |
---|---|---|---|---|---|---|

Dose–response | ${\sigma}_{2}-{\sigma}_{1}$ | 1.07 | 0.01 | 0.01 | ||

$c$ | −9.79 | 0.24 | 0.03 | 0.9986 | 0.9984 | |

${e}^{-clog\left(d\right)}$ | 7.40 | 0.21 | 0.03 |

Model | Parameters | Parameter Values | Standard Error | Per-Unit Standard Error | R^{2} | R^{2}-adj |
---|---|---|---|---|---|---|

Gaussian | ${\sigma}_{1}$ | 1.52 | 0.024 | 0.02 | ||

${k}_{1}$ | 0.64 | 0.011 | 0.02 | 0.9989 | 0.9902 | |

${z}_{1}$ | 0.28 | 0.012 | 0.04 |

Model | Parameters | Parameter Values | Standard Error | Per-Unit Standard Error | R^{2} | R^{2}-adj |
---|---|---|---|---|---|---|

Gaussian | ${\sigma}_{1}$ | 0.138 | 0.033 | 0.236 | 0.9983 | 0.9975 |

${k}_{1}$ | 0.346 | 0.019 | 0.056 | |||

${z}_{1}$ | 0.032 | 0.019 | 0.578 | |||

${\sigma}_{2}$ | 1.505 | 0.008 | 0.005 | |||

${k}_{2}$ | 0.620 | 0.004 | 0.007 | |||

${z}_{2}$ | −0.244 | 0.007 | 0.027 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Folorunso, O.; Onibonoje, M.O.; Hamam, Y.; Sadiku, R.; Ray, S.S.
Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite. *Molecules* **2022**, *27*, 3696.
https://doi.org/10.3390/molecules27123696

**AMA Style**

Folorunso O, Onibonoje MO, Hamam Y, Sadiku R, Ray SS.
Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite. *Molecules*. 2022; 27(12):3696.
https://doi.org/10.3390/molecules27123696

**Chicago/Turabian Style**

Folorunso, Oladipo, Moses Oluwafemi Onibonoje, Yskandar Hamam, Rotimi Sadiku, and Suprakas Sinha Ray.
2022. "Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite" *Molecules* 27, no. 12: 3696.
https://doi.org/10.3390/molecules27123696