Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Polymer Template Preparation
3.2. Infiltration from Swelling Solution
3.3. Vapor-Phase Infiltration
3.4. Polymer Removal
3.5. QCM Analysis
3.6. Magnetic Properties
3.7. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Xie, Y.; Kocaefe, D.; Chen, C.; Kocaefe, Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 2011, 170, 381–394. [Google Scholar] [CrossRef]
- Gacitua, W.; Ballerini, A.; Zhang, J. Polymer nanocomposites: Synthetic and natural fillers a review, Maderas. Cienc. Tecnol. 2005, 7, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Van Bommel, K.J.; Friggeri, A.; Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. 2003, 42, 980–999. [Google Scholar] [CrossRef] [PubMed]
- She, Y.; Lee, J.; Diroll, B.T.; Lee, B.; Aouadi, S.; Shevchenko, E.V.; Berman, D. Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-Enhanced Sequential Infiltration of a Polymer Template. ACS Omega 2017, 2, 7812–7819. [Google Scholar] [CrossRef]
- Oh, J.; Suh, H.S.; Ko, Y.; Nah, Y.; Lee, J.-C.; Yeom, B.; Char, K.; Ross, C.A.; Son, J.G. Universal perpendicular orientation of block copolymer microdomains using a filtered plasma. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gotrik, K.W.; Ross, C. Solvothermal annealing of block copolymer thin films. Nano Lett. 2013, 13, 5117–5122. [Google Scholar] [CrossRef]
- Nam, C.-Y.; Stein, A. Photodetectors: Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis. Adv. Opt. Mater. 2017, 5, 1770119. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-M.; Pippel, E.; Gösele, U.; Dresbach, C.; Qin, Y.; Chandran, C.V.; Bräuniger, T.; Hause, G.; Knez, M. Greatly Increased Toughness of Infiltrated Spider Silk. Science 2009, 324, 488–492. [Google Scholar] [CrossRef]
- Lee, S.-M.; Pippel, E.; Moutanabbir, O.; Kim, J.-H.; Lee, H.-J.; Knez, M. In situ Raman spectroscopic study of al-infiltrated spider dragline silk under tensile deformation. ACS Appl. Mater. Interfaces 2014, 6, 16827–16834. [Google Scholar] [CrossRef]
- Waldman, R.Z.; Jeon, N.; Mandia, D.J.; Heinonen, O.; Darling, S.B.; Martinson, A.B.F. Sequential Infiltration Synthesis of Electronic Materials: Group 13 Oxides via Metal Alkyl Precursors. Chem. Mater. 2019, 31, 5274–5285. [Google Scholar] [CrossRef]
- Barry, E.; Mane, A.U.; Libera, J.A.; Elam, J.W.; Darling, S.B. Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A 2017, 5, 2929–2935. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Peng, Q.; Ocola, L.E.; Czaplewski, D.A.; Elam, J.W.; Darling, S.B. Etch properties of resists modified by sequential infiltration synthesis. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2011, 29, 06FG01. [Google Scholar] [CrossRef]
- Waldman, R.Z.; Mandia, D.J.; Yanguas-Gil, A.; Martinson, A.B.F.; Elam, J.W.; Darling, S.B. The chemical physics of sequential infiltration synthesis—A thermodynamic and kinetic perspective. J. Chem. Phys. 2019, 151, 190901. [Google Scholar] [CrossRef]
- Berman, D.; Shevchenko, E. Design of Functional Composite and All-inorganic Nanostructured Materials via Infiltration of Polymer Templates with Inorganic Precursors. J. Mater. Chem. C 2020, 8, 10604–10627. [Google Scholar] [CrossRef]
- She, Y.; Goodman, E.; Lee, J.; Diroll, B.T.; Cargnello, M.; Shevchenko, E.V.; Berman, D. Block-Copolymer Assisted Synthesis of All Inorganic Highly Porous Heterostructures with Highly Accessible Thermally Stable Functional Centers. ACS Appl. Mater. Interface 2019, 11, 30154–30162. [Google Scholar] [CrossRef]
- Smith, P.B. Oxygen-Free, Dry Plasma Process For Polymer Removal. U.S. Patent 6,277,733, 21 August 2001. [Google Scholar]
- Hillmyer, M.A. Nanoporous materials from block copolymer precursors. In Block Copolymers II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 137–181. [Google Scholar]
- Hitz, S.; Prins, R. Influence of template extraction on structure, activity, and stability of MCM-41 catalysts. J. Catal. 1997, 168, 194–206. [Google Scholar] [CrossRef]
- Patarin, J. Mild Methods for Removing Organic Templates from Inorganic Host Materials. Angew. Chem. Int. Ed. 2004, 43, 3878–3880. [Google Scholar] [CrossRef]
- She, Y.; Lee, J.; Diroll, B.T.; Scharf, T.W.; Shevchenko, E.V.; Berman, D. Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis. Nanotechnology 2018, 29, 495703. [Google Scholar] [CrossRef]
- Berman, D.; Guha, S.; Lee, B.; Elam, J.W.; Darling, S.B.; Shevchenko, E.V. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness. ACS Nano 2017, 11, 2521–2530. [Google Scholar] [CrossRef]
- Lee, J.; Hasannaeimi, V.; Scharf, T.W.; Berman, D. Mechanical and chemical robustness of the aluminum oxide-infiltrated block copolymer films and the resulting aluminum oxide coatings. Surf. Coat. Technol. 2020, 399, 126204. [Google Scholar] [CrossRef]
- Keene, M.T.; Denoyel, R.; Llewellyn, P.L. Ozone treatment for the removal of surfactant to form MCM-41 type materials. Chem. Commun. 1998, 20, 2203–2204. [Google Scholar] [CrossRef]
- Büchel, G.; Denoyel, R.; Llewellyn, P.L.; Rouquerol, J. In situ surfactant removal from MCM-type mesostructures by ozone treatment. J. Mater. Chem. 2001, 11, 589–593. [Google Scholar] [CrossRef]
- Shi, C.; Alderman, O.L.G.; Berman, D.; Du, J.; Neuefeind, J.; Tamalonis, A.; Weber, J.K.R.; You, J.; Benmore, C.J. The Structure of Amorphous and Deeply Supercooled Liquid Alumina. Front. Mater. 2019, 6. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Liu, G.; Deng, Q.; Wang, H.; Ng, D.H.; Kong, M.; Cai, W.; Wang, G. Micro/nanostructured α-Fe 2 O 3 spheres: Synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J. Mater. Chem. 2012, 22, 9704–9713. [Google Scholar] [CrossRef]
- Chen, D.; Gao, L. A facile route for high-throughput formation of single-crystal α-Fe2O3 nanodisks in aqueous solutions of Tween 80 and triblock copolymer. Chem. Phys. Lett. 2004, 395, 316–320. [Google Scholar] [CrossRef]
- Nasibulin, A.G.; Rackauskas, S.; Jiang, H.; Tian, Y.; Mudimela, P.R.; Shandakov, S.D.; Nasibulina, L.I.; Jani, S.; Kauppinen, E.I. Simple and rapid synthesis of α-Fe 2 O 3 nanowires under ambient conditions. Nano Res. 2009, 2, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, R.; Ashok, K.; Bhalero, G.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and properties of α-Fe2O3 nanorods. Cryst. Res. Technol. 2010, 45, 965–968. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.C.; Gong, J.; Li, Q.; Li, G. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 2007, 19, 2324–2329. [Google Scholar] [CrossRef]
- Kwon, S.G.; Chattopadhyay, S.; Koo, B.; Claro, P.C.d.S.; Shibata, T.; Requejo, F.G.; Giovanetti, L.J.; Liu, Y.; Johnson, C.; Prakapenka, V.; et al. Shevchenko, E.V. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies. Nano Lett. 2016, 16, 3738–3747. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, P.; Kwon, S.G.; Koo, B.; Lee, B.; Prakapenka, V.B.; Dera, P.; Zhuravlev, K.K.; Krylova, G.; Shevchenko, E.V. How “Hollow” Are Hollow Nanoparticles? J. Am. Chem. Soc. 2013, 135, 2435–2438. [Google Scholar] [CrossRef] [PubMed]
- Jacques, K.; Joy, T.; Shirani, A.; Berman, D. Effect of Water Incorporation on the Lubrication Characteristics of Synthetic Oils. Tribol. Lett. 2019, 67, 1–8. [Google Scholar] [CrossRef]
- Lee, J.; Berman, D. Inhibitor or promoter: Insights on the corrosion evolution in a graphene protected surface. Carbon 2018, 126, 225–231. [Google Scholar] [CrossRef]
- Lee, J.; Atmeh, M.; Berman, D. Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment. Carbon 2017, 120, 11–16. [Google Scholar] [CrossRef]
- She, Y.; Lee, J.; Lee, B.; Diroll, B.; Scharf, T.; Shevchenko, E.V.; Berman, D. Effect of the Micelle Opening in Self-assembled Amphiphilic Block Co-polymer Films on the Infiltration of Inorganic Precursors. Langmuir 2019, 35, 796–803. [Google Scholar] [CrossRef]
- Koo, B.; Xiong, H.; Slater, M.D.; Prakapenka, V.B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C.S.; Rajh, T.; Shevchenko, E.V. Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries. Nano Lett. 2012, 12, 2429–2435. [Google Scholar] [CrossRef]
- Cabot, A.; Puntes, V.F.; Shevchenko, E.; Yin, Y.; Balcells, L.; Marcus, M.A.; Hughes, S.M.; Alivisatos, A.P. Vacancy Coalescence during Oxidation of Iron Nanoparticles. J. Am. Chem. Soc. 2007, 129, 10358–10360. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Rioux, R.M.; Erdonmez, C.K.; Hughes, S.; Somorjai, G.A.; Alivisatos, A.P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science 2004, 304, 711–714. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, E.V.; Bodnarchuk, M.I.; Kovalenko, M.V.; Talapin, D.V.; Smith, R.K.; Aloni, S.; Heiss, W.; Alivisatos, A.P. Gold/Iron Oxide Core/Hollow-Shell Nanoparticles. Adv. Mat. 2008, 20, 4323–4329. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Romero, C.; McCloy, J. Magnetic analysis of commercial hematite, magnetite, and their mixtures. AIP Adv. 2018, 8, 056807. [Google Scholar] [CrossRef] [Green Version]
- Martin-Hernandez, F.; García-Hernández, M.M. Magnetic properties and anisotropy constant of goethite single crystals at saturating high fields. Geophys. J. Int. 2010, 181, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Kemp, S.J.; Ferguson, R.M.; Khandhar, A.P.; Krishnan, K.M. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv. 2016, 6, 77452–77464. [Google Scholar] [CrossRef]
- Ong, Q.K.; Wei, A.; Lin, X.-M. Exchange bias in Fe/Fe3O4 core-shell magnetic nanoparticles mediated by frozen interfacial spins. Phys. Rev. B 2009, 80, 134418. [Google Scholar] [CrossRef]
- Livingston, J.D. A review of coercivity mechanisms (invited). J. Appl. Phys. 1981, 52, 2544–2548. [Google Scholar] [CrossRef]
- Lee, J.; Kuchibhotla, A.; Banerjee, D.; Berman, D. Silica nanoparticles as copper corrosion inhibitors. Mater. Res. Express 2019, 6, 0850e3. [Google Scholar] [CrossRef]
- ICSD Database. Available online: https://icsd.products.fiz-karlsruhe.de/ (accessed on 20 October 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berman, D.; Sha, Y.; Shevchenko, E.V. Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration. Molecules 2021, 26, 679. https://doi.org/10.3390/molecules26030679
Berman D, Sha Y, Shevchenko EV. Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration. Molecules. 2021; 26(3):679. https://doi.org/10.3390/molecules26030679
Chicago/Turabian StyleBerman, Diana, Yuchen Sha, and Elena V. Shevchenko. 2021. "Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration" Molecules 26, no. 3: 679. https://doi.org/10.3390/molecules26030679
APA StyleBerman, D., Sha, Y., & Shevchenko, E. V. (2021). Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration. Molecules, 26(3), 679. https://doi.org/10.3390/molecules26030679