Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health
Abstract
:1. Introduction
2. Clove Essential Oil (CEO)
2.1. CEO Composition
2.1.1. Eugenol
2.1.2. Eugenyl Acetate
2.1.3. β-Caryophyllene
2.1.4. α-Humulene
3. Extraction of EOs
3.1. Conventional/Classical Extraction Methods
3.2. Advanced/Innovative Extraction Methods
3.3. Effect of the Extraction Method on the Concentration of the Main Volatile Compounds of the Essential Oil and Organic Extract
4. Food Applications
4.1. Baked Food
4.2. Dairy Products
4.3. Processed Food
4.4. Meat, Poultry, and Seafood Products
4.5. Vegetables
4.6. Packaging Materials
5. Biological Activities of CEO
5.1. Antimicrobial
5.2. Antioxidant
5.3. Insecticidal
5.4. Antiviral
5.5. Antinociceptive
5.6. Anti-Inflammatory and Wound Healing
5.7. Analgesic
5.8. Anesthetic
5.9. Anticancer
5.10. Other Bioactivities
6. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; Volume I, ISBN 978-92-871-8912-7. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Hua, B.; Tao, L.; Chen, W.; Gao, Y.; Suo, J.; Yu, W.; Wu, J.; Song, L. The interaction of temperature and relative humidity affects the main aromatic components in postharvest Torreya grandis nuts. Food Chem. 2022, 368, 130836. [Google Scholar] [CrossRef]
- Ameur, E.; Sarra, M.; Yosra, D.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complement. Med. Ther. 2021, 21, 209. [Google Scholar] [CrossRef]
- Köse, Y.B.; Karahisar, E.; İşcan, G.; Kürkçüoğlu, M.; Tugay, O. Chemical Composition and Anticandidal Activity of Essential Oils Obtained From Different Part of Prangos heyniae H. Duman & M. F. Watson. Rec. Nat. Prod. 2021, 16, 74–83. [Google Scholar] [CrossRef]
- Alfikri, F.N.; Pujiarti, R.; Wibisono, M.G.; Hardiyanto, E.B. Yield, Quality, and Antioxidant Activity of Clove (Syzygium aromaticum L.) Bud Oil at the Different Phenological Stages in Young and Mature Trees. Scientifica 2020, 2020, 9701701. [Google Scholar] [CrossRef]
- Tunç, M.T.; Koca, İ. Ohmic heating assisted hydrodistillation of clove essential oil. Ind. Crop. Prod. 2019, 141, 111763. [Google Scholar] [CrossRef]
- Guan, W.; Li, S.; Yan, R.; Tang, S.; Quan, C. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 2007, 101, 1558–1564. [Google Scholar] [CrossRef]
- Wei, M.-C.; Xiao, J.; Yang, Y.-C. Extraction of α-Humulene enriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility. Food Chem. 2016, 210, 172–181. [Google Scholar] [CrossRef]
- Frohlich, P.C.; Santos, K.A.; Palú, F.; Cardozo-Filho, L.; da Silva, C.; da Silva, E.A. Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum L.) leaves using supercritical CO2. J. Supercrit. Fluids 2019, 143, 313–320. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Wei, M.-C.; Hong, S.-J. Ultrasound-assisted extraction and quantitation of oils from Syzygium aromaticum flower bud (clove) with supercritical carbon dioxide. J. Chromatogr. A 2014, 1323, 18–27. [Google Scholar] [CrossRef]
- Overly, K.R. Microwave-Assisted Isolation of Eugenol from Cloves. J. Chem. Educ. 2019, 96, 2665–2667. [Google Scholar] [CrossRef]
- Mohamed, Y.; Mohamed, I.; Elsadek, M.; Ali, M.; Ghatas, Y. Improving growth, productivity, and chemical composition of Trachyspermum ammi L. by using organic and chemical fertilization in the presence of boron. Ind. Crop. Prod. 2021, 169, 113637. [Google Scholar] [CrossRef]
- Gioffrè, G.; Ursino, D.; Labate, M.L.C.; Giuffrè, A.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): A review. Emir. J. Food Agric. 2020, 32, 835–845. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Smékalová, K.; Kaffková, K.; Štefelová, N. Influence of post-harvesting period on quality of thyme and spearmint essential oils. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100335. [Google Scholar] [CrossRef]
- Golmakani, M.-T.; Zare, M.; Razzaghi, S. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Sci. Technol. Res. 2017, 23, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Hatami, T.; Johner, J.C.F.; Zabot, G.L.; Meireles, M.A.A. Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J. Supercrit. Fluids 2019, 144, 39–47. [Google Scholar] [CrossRef]
- Kennouche, A.; Benkaci-Ali, F.; Scholl, G.; Eppe, G. Chemical composition and antimicrobial activity of the essential oil of Eugenia caryophyllata Cloves extracted by conventional and microwave techniques. J. Biol. Act. Prod. Nat. 2015, 5, 1–11. [Google Scholar] [CrossRef]
- González-Rivera, J.; Duce, C.; Falconieri, D.; Ferrari, C.; Ghezzi, L.; Piras, A.; Tine, M.R. Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. Innov. Food Sci. Emerg. Technol. 2016, 33, 308–318. [Google Scholar] [CrossRef]
- Khalil, A.A.; ur Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017, 7, 32669–32681. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, A.S.; Gazolla, P.A.R.; da Oliveira, A.F.C.S.; Pereira, W.L.; Viol, L.C.D.S.; da Maia, A.F.S.; Santos, E.G.; da Silva, Í.E.P.; de Mendes, T.A.O.; da Silva, A.M.; et al. Discovery of novel West Nile Virus protease inhibitor based on isobenzonafuranone and triazolic derivatives of eugenol and indan-1,3-dione scaffolds. PLoS ONE 2019, 14, e0223017. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, M.; Mohabatkar, H.; Soltani, M. Anti-HIV-1 Activities of Aerial Parts of Ocimum basilicum and its Parasite Cuscuta campestris. J. Antivir. Antiretrovir. 2013, 05, 057–061. [Google Scholar] [CrossRef] [Green Version]
- Sugihartini, N.; Prabandari, R.; Yuwono, T.; Rahmawati, D.R. The anti-inflammatory activity of essential oil of clove (Syzygium aromaticum) in absorption base ointment with addition of oleic acid and propylene glycol as enhancer. Int. J. Appl. Pharm. 2019, 11, 106–109. [Google Scholar] [CrossRef]
- Banerjee, K.; Madhyastha, H.; Sandur, R.; Manikandanath, N.T.; Thiagarajan, N.; Thiagarajan, P. Anti-inflammatory and wound healing potential of a clove oil emulsion. Colloids Surf. B Biointerfaces 2020, 193, 111102. [Google Scholar] [CrossRef]
- Khalilzadeh, E.; Hazrati, R.; Saiah, G. Effects of topical and systemic administration of Eugenia caryophyllata buds essential oil on corneal anesthesia and analgesia. Res. Pharm. Sci. 2016, 11, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Sung, B.; Prasad, S.; Yadav, V.R.; Aggarwal, B.B. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr. Cancer 2012, 64, 173–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadilah, F.; Yanuar, A.; Arsianti, A.; Andrajati, R. Phenylpropanoids, eugenol scaffold, and its derivatives as anticancer. Asian J. Pharm. Clin. Res. 2017, 10, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Thapa, D.; Richardson, A.J.; Zweifel, B.; Wallace, R.J.; Gratz, S.W. Genoprotective effects of essential oil compounds against oxidative and methylated DNA damage in human colon cancer cells. J. Food Sci. 2019, 84, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Cansian, R.L.; Vanin, A.B.; Orlando, T.; Piazza, S.P.; Puton, B.M.S.; Cardoso, R.I.; Gonçalves, I.L.; Honaiser, T.C.; Paroul, N.; Oliveira, D. Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina. Braz. J. Biol. 2017, 77, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Musthafa, K.S.; Hmoteh, J.; Thamjarungwong, B.; Voravuthikunchai, S.P. Antifungal potential of eugenyl acetate against clinical isolates of Candida species. Microb. Pathog. 2016, 99, 19–29. [Google Scholar] [CrossRef]
- Kaur, K.; Kaushal, S.; Rani, R. Chemical composition, antioxidant and antifungal potential of clove (Syzygium aromaticum) essential Oil, its major compound and its derivatives. J. Essent. Oil Bear. Plants 2019, 22, 1195–1217. [Google Scholar] [CrossRef]
- Machado, J.R.; Pereira, G.N.; dos Santos de Oliveira, P.; Zenevicz, M.C.; Lerin, L.; dos Reis Barreto de Oliveira, R.; Cabral de Holanda Cavalcanti, S.; Ninow, J.L.; de Oliveira, D. Synthesis of eugenyl acetate by immobilized lipase in a packed bed reactor and evaluation of its larvicidal activity. Process Biochem. 2017, 58, 114–119. [Google Scholar] [CrossRef]
- Hong, T.; Perumalsamy, H.; Jang, K.; Na, E.; Ahn, Y.-J. Ovicidal and larvicidal activity and possible mode of action of phenylpropanoids and ketone identified in Syzygium aromaticum bud against Bradysia procera. Pestic. Biochem. Physiol. 2018, 145, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Lesgards, J.-F.; Baldovini, N.; Vidal, N.; Pietri, S. Anticancer activities of essential oils constituents and synergy with conventional therapies: A review. Phyther. Res. 2014, 28, 1423–1446. [Google Scholar] [CrossRef]
- Aranha, E.S.P.; de Azevedo, S.G.; dos Reis, G.G.; Silva Lima, E.; Machado, M.B.; de Vasconcellos, M.C. Essential oils from Eugenia spp.: In vitro antiproliferative potential with inhibitory action of metalloproteinases. Ind. Crop. Prod. 2019, 141, 111736. [Google Scholar] [CrossRef]
- Pfeifer Barbosa, A.L.; Wenzel-Storjohann, A.; Barbosa, J.D.; Zidorn, C.; Peifer, C.; Tasdemir, D.; Çiçek, S.S. Antimicrobial and cytotoxic effects of the Copaifera reticulata oleoresin and its main diterpene acids. J. Ethnopharmacol. 2019, 233, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhan, M.-L.; Tang, Y.; Xiao, M.; Li, M.; Li, Q.-S.; Yang, L.; Li, X.; Chen, W.-W.; Wang, Y.-L. Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions. Int. J. Oncol. 2018, 53, 1613–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.A.; Majid, A.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-Caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Ambrož, M.; Šmatová, M.; Šadibolová, M.; Pospíšilová, E.; Hadravská, P.; Kašparová, M.; Skarková, V.H.; Králová, V.; Skálová, L. Sesquiterpenes α-Humulene and β-Caryophyllene oxide enhance the efficacy of 5-Fluorouracil and oxaliplatin in colon cancer cells. Acta Pharm. 2019, 69, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Guesmi, F.; Tyagi, A.K.; Prasad, S.; Landoulsi, A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018, 9, 32305–32320. [Google Scholar] [CrossRef] [Green Version]
- Langhasova, L.; Hanusova, V.; Rezek, J.; Stohanslova, B.; Ambroz, M.; Kralova, V.; Vanek, T.; Lou, J.D.; Yun, Z.L.; Yang, J.; et al. Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines. Ind. Crop. Prod. 2014, 59, 20–26. [Google Scholar] [CrossRef]
- Sylvestre, M.; Pichette, A.; Lavoie, S.; Longtin, A.; Legault, J. Composition and cytotoxic activity of the leaf essential oil of Comptonia peregrina (L.) Coulter. Phyther. Res. 2007, 21, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Myslivečková, Z.; Szotáková, B.; Špičáková, A.; Lněničková, K.; Ambrož, M.; Kubíček, V.; Krasulová, K.; Anzenbacher, P.; Skálová, L. The inhibitory effects of β-Caryophyllene, β-Caryophyllene oxide and α-Humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem. Biol. Interact. 2017, 278, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-Humulene and (−)-trans-Caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Benelli, G. α-Humulene and β-Elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol. Res. 2016, 115, 2771–2778. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Vaseeharan, B.; Alyahya, S.A.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Maggi, F. Insecticidal activity of camphene, zerumbone and α-Humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicol. Environ. Saf. 2018, 148, 781–786. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Campos, J.M.; da Silva Rolim, G.; Martínez, L.C.; Dos Santos, M.H.; Fernandes, F.L.; Serrão, J.E.; Zanuncio, J.C. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotoxicol. Environ. Saf. 2018, 156, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Fragoso-Jiménez, J.; Tapia-Campos, E.; Estarron-Espinosa, M.; Barba-Gonzalez, R.; Castañeda-Saucedo, M.; Castillo-Herrera, G. Effect of Supercritical Fluid Extraction Process on Chemical Composition of Polianthes tuberosa Flower Extracts. Processes 2019, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Rasul, M.G. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput. 2018, 2, 10–14. [Google Scholar]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Tekin, K.; Akalın, M.K.; Şeker, M.G. Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Ind. Crop. Prod. 2015, 77, 954–960. [Google Scholar] [CrossRef]
- Barajas-Álvarez, P.; Castillo-Herrera, G.A.; Guatemala-Morales, G.M.; Corona-González, R.I.; Arriola-Guevara, E.; Espinosa-Andrews, H. Supercritical CO2-ethanol extraction of oil from green coffee beans: Optimization conditions and bioactive compound identification. J. Food Sci. Technol. 2021, 58, 4514–4523. [Google Scholar] [CrossRef]
- Ribes, S.; Fuentes, A.; Barat, J.M. Effect of oregano (Origanum vulgare L. ssp. hirtum) and clove (Eugenia spp.) nanoemulsions on Zygosaccharomyces bailii survival in salad dressings. Food Chem. 2019, 295, 630–636. [Google Scholar] [CrossRef]
- Ghule, S.N.; Desai, M.A. Intensified extraction of valuable compounds from clove buds using ultrasound assisted hydrotropic extraction. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100325. [Google Scholar] [CrossRef]
- Ju, J.; Xu, X.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods. Food Chem. 2018, 240, 850–855. [Google Scholar] [CrossRef]
- Ahmed, L.I.; Ibrahim, N.; Abdel-Salam, A.B.; Fahim, K.M. Potential application of ginger, clove and thyme essential oils to improve soft cheese microbial safety and sensory characteristics. Food Biosci. 2021, 42, 101177. [Google Scholar] [CrossRef]
- Chaichi, M.; Mohammadi, A.; Badii, F.; Hashemi, M. Triple synergistic essential oils prevent pathogenic and spoilage bacteria growth in the refrigerated chicken breast meat. Biocatal. Agric. Biotechnol. 2021, 32, 101926. [Google Scholar] [CrossRef]
- Rajaei, A.; Hadian, M.; Mohsenifar, A.; Rahmani-Cherati, T.; Tabatabaei, M. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packag. Shelf Life 2017, 14, 137–145. [Google Scholar] [CrossRef]
- Takahashi, H.; Nakamura, A.; Fujino, N.; Sawaguchi, Y.; Sato, M.; Kuda, T.; Kimura, B. Evaluation of the antibacterial activity of allyl isothiocyanate, clove oil, eugenol and carvacrol against spoilage lactic acid bacteria. LWT 2021, 145, 111263. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Keya, C.A.; Hasan, K.N.; Hoque, M.M.; Inatsu, Y.; Bari, M.L. Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT 2016, 74, 219–223. [Google Scholar] [CrossRef]
- Omidbeygi, M.; Barzegar, M.; Hamidi, Z.; Naghdibadi, H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 2007, 18, 1518–1523. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Bhandari, B.; Xu, J.; Yang, C. Improving storage quality of refrigerated steamed buns by mung bean starch composite coating enriched with nano-emulsified essential oils. J. Food Process Eng. 2020, 43, e13475. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. A novel method to prolong bread shelf life: Sachets containing essential oils components. LWT 2020, 131, 109744. [Google Scholar] [CrossRef]
- Dehghani, P.; Hosseini, S.M.H.; Golmakani, M.-T.; Majdinasab, M.; Esteghlal, S. Shelf-life extension of refrigerated rainbow trout fillets using total Farsi gum-based coatings containing clove and thyme essential oils emulsions. Food Hydrocoll. 2018, 77, 677–688. [Google Scholar] [CrossRef]
- Saricaoglu, F.T.; Turhan, S. Performance of mechanically deboned chicken meat protein coatings containing thyme or clove essential oil for storage quality improvement of beef sucuks. Meat Sci. 2019, 158, 107912. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Segura, L.; Ros-Chumillas, M.; López-Cánovas, A.E.; García-Ayala, A.; López-Gómez, A. Nanoencapsulated essential oils embedded in ice improve the quality and shelf life of fresh whole seabream stored on ice. Heliyon 2019, 5, e01804. [Google Scholar] [CrossRef] [Green Version]
- Echeverría, I.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Mauri, A.N.; Montero, M.P. Active nanocomposite films based on soy proteins-montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. Int. J. Food Microbiol. 2018, 266, 142–149. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López de Lacey, A.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef]
- Yu, D.; Xu, Y.; Regenstein, J.M.; Xia, W.; Yang, F.; Jiang, Q.; Wang, B. The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage. Food Chem. 2018, 242, 412–420. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, C.; Liu, S.; Gao, J.; Cui, S.W.; Xia, W. Coating white shrimp (Litopenaeus vannamei) with edible fully deacetylated chitosan incorporated with clove essential oil and kojic acid improves preservation during cold storage. Int. J. Biol. Macromol. 2020, 162, 1276–1282. [Google Scholar] [CrossRef]
- Jonušaite, K.; Venskutonis, P.R.; Martínez-Hernández, G.B.; Taboada-Rodríguez, A.; Nieto, G.; López-Gómez, A.; Marín-Iniesta, F. Antioxidant and antimicrobial effect of plant essential oils and Sambucus nigra extract in salmon burgers. Foods 2021, 10, 776. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Mendiratta, S.K.; Zende, R.J.; Agrawal, R.K.; Kumar Jaiswal, R. Effects of chitosan coating enriched with Syzygium aromaticum essential oil on quality and shelf-life of chicken patties. J. Food Process. Preserv. 2020, 44, e14870. [Google Scholar] [CrossRef]
- Hosseini, M.; Jamshidi, A.; Raeisi, M.; Azizzadeh, M. Effect of sodium alginate coating containing clove (Syzygium aromaticum) and lemon verbena (Aloysia citriodora) essential oils and different packaging treatments on shelf life extension of refrigerated chicken breast. J. Food Process. Preserv. 2021, 45, e14946. [Google Scholar] [CrossRef]
- Sarıcaoglu, F.T.; Turhan, S. Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packag. Shelf Life 2020, 25, 100527. [Google Scholar] [CrossRef]
- Lu, W.; Cui, R.; Zhu, B.; Qin, Y.; Cheng, G.; Li, L.; Yuan, M. Influence of clove essential oil immobilized in mesoporous silica nanoparticles on the functional properties of poly(lactic acid) biocomposite food packaging film. J. Mater. Res. Technol. 2021, 11, 1152–1161. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Jacob, H.; Luciano, G.; Bini, T.B.; Almusallam, A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag. Shelf Life 2019, 21, 100355. [Google Scholar] [CrossRef]
- Xu, T.; Gao, C.; Feng, X.; Huang, M.; Yang, Y.; Shen, X.; Tang, X. Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohydr. Polym. 2019, 217, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Nisar, T.; Wang, Z.-C.; Yang, X.; Tian, Y.; Iqbal, M.; Guo, Y. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2018, 106, 670–680. [Google Scholar] [CrossRef]
- Phothisuwan, S.; Preechatiwong, W.; Matan, N. Enhancement of antibacterial activity of essential oil vapor released from a paper egg tray in combination with UV-C radiation against pathogenic bacteria on chicken eggs. J. Food Process. Preserv. 2020, 44, e14794. [Google Scholar] [CrossRef]
- Perumal, A.B.; Nambiar, R.B.; Sellamuthu, P.S.; Emmanuel, R.S. Use of modified atmosphere packaging combined with essential oils for prolonging post-harvest shelf life of mango (cv. Banganapalli and cv. Totapuri). LWT 2021, 148, 111662. [Google Scholar] [CrossRef]
- Vurmaz, A.K.; Gündüz, G.T. Inhibition of mold growth on the surface of dried persimmons using combined treatments of UV-C light and clove oil. Innov. Food Sci. Emerg. Technol. 2020, 61, 102336. [Google Scholar] [CrossRef]
- Park, J.-B.; Kang, J.-H.; Song, K. Bin Clove bud essential oil emulsion containing benzethonium chloride inactivates Salmonella Typhimurium and Listeria monocytogenes on fresh-cut pak choi during modified atmosphere storage. Food Control 2019, 100, 17–23. [Google Scholar] [CrossRef]
- Nilmini, R.K.; Kodituwakku, T.D.; Abeywickrama, K.; Kuruppu, M. In vitro and in vivo Application of Eco-friendly Treatments to Control Postharvest Stem-end Rot of Naturally Infected Avocado (cv. Pollock). J. Agric. Sci.–Sri Lanka 2021, 16, 283–299. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm. Biol. 2017, 55, 1619–1622. [Google Scholar] [CrossRef] [Green Version]
- Correia, A.M.; Pedrazzani, A.S.; Mendonça, R.C.; Massucatto, A.; Ozório, R.A.; Tsuzuki, M.Y. Basil, tea tree and clove essential oils as analgesics and anaesthetics in Amphiprion clarkii (Bennett, 1830). Braz. J. Biol. 2017, 78, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, R.Y.; Pereira, D.M.; Silva, J.C.S.; de Oliveira, L.C.A.; Inoue, L.A.K.A.; Hamoy, M.; de Mello, V.J.; Torres, M.F.; Barbas, L.A.L. Clove oil induces anaesthesia and blunts muscle contraction power in three Amazon fish species. Fish Physiol. Biochem. 2018, 44, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Ghanawi, J.; Saoud, G.; Zakher, C.; Monzer, S.; Saoud, I.P. Clove oil as an anaesthetic for Australian redclaw crayfish Cherax quadricarinatus. Aquac. Res. 2019, 50, 3628–3632. [Google Scholar] [CrossRef]
- da Silva, D.R.; Arvigo, A.L.; Giaquinto, P.C.; Delicio, H.C.; Barcellos, L.J.G.; Barreto, R.E. Effects of clove oil on behavioral reactivity and motivation in Nile tilapia. Aquaculture 2021, 532, 736045. [Google Scholar] [CrossRef]
- Rajkowska, K.; Nowak, A.; Kunicka-Styczyńska, A.; Siadura, A. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Adv. 2016, 6, 97199–97207. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, M.M.; Ali, M.M.; Ghanem, K.Z.; El-Ghorabe, A.H. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines. Grasas Aceites 2015, 66, e080. [Google Scholar] [CrossRef] [Green Version]
- Najar, B.; Shortrede, J.E.; Pistelli, L.; Buhagiar, J. Chemical Composition and in vitro Cytotoxic Screening of Sixteen Commercial Essential Oils on Five Cancer Cell Lines. Chem. Biodivers. 2020, 17, e1900478. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; K, H.; S K, D.K.; K, H.R.; Jayaprakash, B. Evaluation of therapeutic potential of eugenol a natural derivative of Syzygium aromaticum on Cervical Cancer. Asian Pac. J. Cancer Prev. 2018, 19, 1977–1985. [Google Scholar] [CrossRef]
- El-Darier, S.M.; El-Ahwany, A.M.D.; Elkenany, E.T.; Abdeldaim, A.A. An in vitro study on antimicrobial and anticancer potentiality of thyme and clove oils. Rend. Lincei. Sci. Fis. Nat. 2018, 29, 131–139. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Noshad, M.; Falah, F. Study of chemical structure, antimicrobial, cytotoxic and mechanism of action of Syzygium aromaticum essential oil on foodborne pathogens. Potravin. Slovak J. Food Sci. 2019, 13, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Uchôa Lopes, C.; Saturnino de Oliveira, J.; Holanda, V.; Rodrigues, A.; Martins da Fonseca, C.; Galvão Rodrigues, F.; Camilo, C.; Lima, V.; Coutinho, H.; Kowalski, R.; et al. GC-MS analysis and hemolytic, antipyretic and antidiarrheal potential of Syzygium aromaticum (Clove) essential oil. Separations 2020, 7, 35. [Google Scholar] [CrossRef]
- Marmouzi, I.; Karym, E.M.; Alami, R.; El Jemli, M.; Kharbach, M.; Mamouch, F.; Attar, A.; Faridi, B.; Cherrah, Y.; Faouzi, M.E.A. Modulatory effect of Syzygium aromaticum and Pelargonium graveolens on oxidative and sodium nitroprusside stress and inflammation. Orient. Pharm. Exp. Med. 2019, 19, 201–210. [Google Scholar] [CrossRef]
- Shahbazi, Y. Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomedicine Res. J. 2019, 4, 204–208. [Google Scholar] [CrossRef]
- Beltrán-Villalobos, K.L.; Déciga-Campos, M.; Aguilar-Mariscal, H.; González-Trujano, M.E.; Martínez-Salazar, M.F.; Ramírez-Cisneros, M. de los Á.; Rios, M.Y.; López-Muñoz, F.J. Synergistic antinociceptive interaction of Syzygium aromaticum or Rosmarinus officinalis coadministered with ketorolac in rats. Biomed. Pharmacother. 2017, 94, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Bakaour, M.; Soulo, N.; Hammas, N.; Fatemi, H.; Aboulghazi, A.; Taroq, A.; Abdellaoui, A.; Al-Qaili, N.; Lyoussi, B. The antioxidant content and protective effect of argan oil and Syzygium aromaticum Essential Oil in Hydrogen Peroxide-Induced Biochemical and Histological Changes. Int. J. Mol. Sci. 2018, 19, 610. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.M.; Campos, D.R.; Borges, D.A.; de Avelar, B.R.; Ferreira, T.P.; Cid, Y.P.; Boylan, F.; Scott, F.B.; de Almeida Chaves, D.S.; Coumendouros, K. Activity of Syzygium aromaticum essential oil and its main constituent eugenol in the inhibition of the development of Ctenocephalides felis felis and the control of adults. Vet. Parasitol. 2020, 282, 109126. [Google Scholar] [CrossRef] [PubMed]
- Toledo, P.F.S.; Viteri Jumbo, L.O.; Rezende, S.M.; Haddi, K.; Silva, B.A.; Mello, T.S.; Della Lucia, T.M.C.; Aguiar, R.W.S.; Smagghe, G.; Oliveira, E.E. Disentangling the ecotoxicological selectivity of clove essential oil against aphids and non-target ladybeetles. Sci. Total Environ. 2020, 718, 137328. [Google Scholar] [CrossRef] [PubMed]
- Elzayyat, E.; Elleboudy, N.; Moustafa, A.; Ammar, A. Insecticidal, oxidative, and genotoxic activities of Syzygium aromaticum and Eucalyptus globulus on Culex pipiens adults and larvae. Turkish J. Parasitol. 2018, 42, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Neupane, A.C.; Sapakuka, S.; Tao, P.; Kafle, L. Repellancy and contact toxicity of clove bud oil and its constituents against German cockroaches, Blatella germanica (Dictyoptera: Blattellidae), under laboratory conditions. Int. J. Pest Manag. 2020, 66, 289–297. [Google Scholar] [CrossRef]
- Reuss, F.; Kreß, A.; Braun, M.; Magdeburg, A.; Pfenninger, M.; Müller, R.; Mehring, M. Knowledge on exotic mosquitoes in Germany, and public acceptance and effectiveness of Bti and two self-prepared insecticides against Aedes japonicus japonicus. Sci. Rep. 2020, 10, 18901. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Durai, L.; Gopakumar, V.; Nagarajan, R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int. J. Nanomed. 2019, 14, 6439–6450. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Ansari, M.J.; Anwer, M.K.; Raish, M.; Kamal, Y.K.T.; Shakeel, F. Wound healing effects of nanoemulsion containing clove essential oil. Artif. Cells, Nanomed. Biotechnol. 2017, 45, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Morsy, N.F.S. Chemical Structure, Quality Indices and Bioactivity of Essential Oil Constituents. In Active Ingredients from Aromatic and Medicinal Plants; InTech: Rikeja, Croatia, 2017; pp. 175–206. [Google Scholar]
- Lane, T.; Anantpadma, M.; Freundlich, J.S.; Davey, R.A.; Madrid, P.B.; Ekins, S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm. Res. 2019, 36, 104. [Google Scholar] [CrossRef]
- Dai, J.-P.; Zhao, X.-F.; Zeng, J.; Wan, Q.-Y.; Yang, J.-C.; Li, W.-Z.; Chen, X.-X.; Wang, G.-F.; Li, K.-S. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza a virus activity. PLoS ONE 2013, 8, e61026. [Google Scholar] [CrossRef] [Green Version]
- Aboubakr, H.A.; Nauertz, A.; Luong, N.T.; Agrawal, S.; El-Sohaimy, S.A.; Youssef, M.M.; Goyal, S.M. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot. 2016, 79, 1001–1012. [Google Scholar] [CrossRef]
- Sun, W.-J.; Lv, W.-J.; Li, L.-N.; Yin, G.; Hang, X.; Xue, Y.; Chen, J.; Shi, Z. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. N. Biotechnol. 2016, 33, 345–354. [Google Scholar] [CrossRef]
- Sueksakit, K.; Thisayakorn, K.; Khueynok, V.; Sriyam, K.; Pahusee, D.; Buddhakala, N. Preliminary study of Syzygium aromaticum L. on analgesic activity in rats. Thai J. Pharm. Sci. 2013, 38, 63–65. [Google Scholar]
- Bayala, B.; Bassole, I.H.N.; Scifo, R.; Gnoula, C.; Morel, L.; Lobaccaro, J.M.A.; Simpore, J. Anticancer activity of essential oils and their chemical components—A review. Am. J. Cancer Res. 2014, 4, 591–607. [Google Scholar] [PubMed]
- Lee, G.; Yang, E.; Kim, S.; Park, C.-S.; Park, Y.S.; Jin, Y.-H. Parapheromones Suppress Chemotherapy Side Effects. J. Pharmacol. Exp. Ther. 2018, 367, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Din, M.U.; Sarfraz, R.A.; Shahid, T. Biological Activity-Based Assessment of Essential Oil Emulsions. J. Food Process. Preserv. 2015, 39, 1452–1456. [Google Scholar] [CrossRef]
- Liu, B.-B.; Luo, L.; Liu, X.-L.; Geng, D.; Li, C.-F.; Chen, S.-M.; Chen, X.-M.; Yi, L.-T.; Liu, Q. Essential oil of Syzygium aromaticum reverses the deficits of stress-induced behaviors and hippocampal p-ERK/p-CREB/brain-derived neurotrophic factor expression. Planta Med. 2015, 81, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Golmakani, M.T., et al. 2017 [19] | Kennouche, A., et al. 2015 [21] | González-Rivera, J., et al. 2016 [22] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | Retention Index | Relative Peak Area (%) | Retention Index | Relative Peak Area (%) | Retention Index | Relative Peak Area (%) | |||||
HD | SD | MA HD | MA SD | MA SD outside | MA SD inside | Coaxial MA HD | |||||
1 | Eugenol | 1359 | 87.3 | 82.7 | 88.8 | 83.4 | 1360 | 65.36 | 71.84 | 1367 | 66.9 |
2 | Eugenyl acetate | 1526 | 10.4 | 15.6 | 7.46 | 14.3 | 1519 | 5.71 | 9.49 | 1529 | 2.7 |
3 | β-Caryophyllene | 1415 | 1.35 | 0.91 | 2.65 | 1.37 | 1446 | 24.62 | 15.6 | 1422 | 24.8 |
4 | α-Humulene | 1449 | 0.19 | 0.13 | 0.4 | 0.21 | 1455 | - | 0.01 | 1454 | 3.1 |
5 | Caryophyllene oxide | 1578 | 0.2 | 0.17 | 0.19 | 0.22 | - | - | - | 1367 | 0.1 |
6 | α-Copaene | - | - | - | - | - | 1377 | 0.01 | tr | 1378 | 0.8 |
7 | Chavicol | 1251 | 0.31 | 0.24 | 0.22 | 0.22 | 1253 | 0.13 | 0.1 | - | - |
8 | Methyl salycilate | 1191 | 0.08 | 0.08 | 0.1 | 0.07 | 1188 | 0.1 | 0.08 | - | - |
9 | Benzaldehyde | 956 | 0.07 | 0.08 | 0.06 | 0.05 | - | - | - | - | - |
10 | Benzyl acetate | 1161 | 0.05 | 0.04 | 0.06 | 0.05 | 1161 | 0.02 | 0.02 | - | - |
11 | 2-Nonanone | 1089 | 0.04 | 0.04 | 0.05 | 0.04 | - | - | - | - | - |
12 | Benzyl benzoate | 1759 | 0.02 | 0.03 | 0.01 | 0.02 | - | - | - | - | - |
13 | Ethyl benzoate | 1167 | 0.01 | 0.01 | 0.01 | 0.01 | 1181 | 0.02 | 0.02 | - | - |
14 | 1,8-Cineole | - | - | - | - | - | 1032 | 0.03 | 0.03 | - | - |
15 | 1,3,8-p-Menthatriene | - | - | - | - | - | 1110 | 0.03 | 0.01 | - | - |
16 | 2-Heptanone | - | - | - | - | - | 881 | 0.01 | tr | - | - |
17 | 2-Heptyl acetate | - | - | - | - | - | 1043 | 0.03 | 0.01 | - | - |
18 | 2-Nonanol | - | - | - | - | - | 1098 | 0.01 | tr | - | - |
19 | 6-Methyl coumarin | - | - | - | - | - | 1549 | 0.03 | tr | - | - |
20 | Acetophenone | - | - | - | - | - | 1078 | 0.03 | 0.01 | - | - |
21 | Caryophyllene alcohol | - | - | - | - | - | 1565 | 0.04 | tr | - | - |
22 | Epizonarene | - | - | - | - | - | 1492 | 0.07 | 0.05 | - | - |
23 | Germacrene D | - | - | - | - | - | 1484 | 0.14 | 0.09 | - | - |
24 | Methyl benzoate | - | - | - | - | - | 1087 | 0.01 | tr | - | - |
25 | Methyl eugenol | - | - | - | - | - | 1404 | 0.04 | tr | - | - |
26 | Methyl undecanoate | - | - | - | - | - | 1420 | 0.02 | tr | - | - |
27 | N-Citronellyl butyrate | - | - | - | - | - | 1532 | 0.01 | tr | - | - |
28 | Viridiflorol | - | - | - | - | - | 1591 | 0.02 | - | - | - |
29 | Z-Nerolidol | - | - | - | - | - | 1534 | 0.06 | 0.02 | - | - |
30 | α-Pinene | - | - | - | - | - | 934 | tr | 0.03 | - | - |
31 | β-Cubebene | - | - | - | - | - | 1382 | 0.02 | tr | - | - |
32 | β-Pinene | - | - | - | - | - | 997 | tr | tr | - | - |
33 | γ-Gurjunene | - | - | - | - | - | 1470 | 2.35 | 1.65 | - | - |
34 | δ-Cadinene | - | - | - | - | - | 1500 | 0.22 | 0.2 | 1523 | 0.6 |
35 | ρ-Acoradiene | - | - | - | - | - | 1461 | 0.03 | 0.01 | - | - |
36 | ρ-Cymene | - | - | - | - | - | 1020 | tr | 0.07 | - | - |
Method | Extraction Conditions | Extraction Product | Eugenol (%) | β-Caryophyllene (%) | α-Humulene (%) | Eugenyl Acetate (%) |
---|---|---|---|---|---|---|
HD [22] | 360 min 100 °C Clove:Water 1:5 | EO | 87.10 | 5.10 | 0.60 | 6.40 |
HD [56] | Commercial | EO | 85.50 | 7.40 | 1.50 | 2.7 |
HD [34] | 240 min 100 °C Clove:Water 1:10 | EO | 69.68 | 12.23 | 1.50 | 14.38 |
HD [21] | 150 min 100 °C Clove:Water 1:2 | EO | 64.91 | 22.01 | - | 6.31 |
HD [19] | 240 min 100 °C Clove:Water 1:10 | EO | 87.26 | 1.35 | 0.19 | 10.43 |
HD [11] | 360 min 100 °C Clove:Water 1:5 | EO | 58.20 | 20.59 | 2.61 | 13.84 |
Microwave-assisted HD [21] | 30 min 850 W 100 °C Clove:Water 1:5 | EO | 69.52 | 17.20 | 0.01 | 9.11 |
Microwave-assisted HD [19] | 80 min 1000 W 100 °C Clove:Water 1:10 | EO | 88.80 | 2.65 | 0.40 | 7.46 |
Microwave-assisted HD coaxial [22] | 120 min 300 W 100 °C Clove:Water 1:5 | EO | 66.90 | 24.80 | 3.10 | 2.70 |
Microwave-assisted SD [19] | 80 min 1000 W 100 °C Clove:Water 1:10 | EO | 83.39 | 1.34 | 0.21 | 14.34 |
Microwave-assisted SD inside [21] | 10 min 500 W 100 °C Clove:Water 1:5 | EO | 67.54 | 18.33 | 0.02 | 10.59 |
Microwave-assisted SD outside [21] | 10 min 500 W 100 °C Clove:Water 1:5 | EO | 56.06 | 34.15 | - | 4.69 |
SD [19] | 240 min 100 °C Clove:Water 1:10 | EO | 82.65 | 0.91 | 0.13 | 15.63 |
SD [11] | 600 min 100 °C Clove:Water 1:5 | EO | 48.82 | 36.94 | 4.41 | 3.89 |
SFE [14] | 170 min SC–CO2 40 °C 20 MPa | Organic extract | 55.63 | 14.48 | 1.81 | 17.15 |
SFE [20] | 14 min SC–CO2 40 °C 15 MPa | Organic extract | 55.44 | 7.77 | 0.86 | 12.53 |
SFE [11] | 120 min SC–CO2 30 °C 20 MPa | Organic extract | 54.58 | 17.32 | 2.26 | 20.55 |
SFE [11] | 120 min SC–CO2 40 °C 30 MPa | Organic extract | 55.14 | 15.52 | 2.02 | 20.32 |
SFE [11] | 120 min SC–CO2 50 °C 10 MPa | Organic extract | 57.36 | 13.99 | 1.90 | 22.34 |
SFE assisted by cold pressing [20] | 15 min SC–CO2 40 °C 15 MPa 40 N.m | Organic extract | 57.69 | 8.33 | 0.92 | 12.61 |
SFE assisted by cold pressing [20] | 15 min SC–CO2 40 °C 15 MPa 80 N.m | Organic extract | 54.85 | 7.94 | 0.88 | 12.12 |
Soxhlet extraction [14] | 720 min 69 °C Clove:Hexane 1:20 | Organic extract | 34.03 | 9.12 | 1.04 | 10.50 |
Soxhlet extraction [11] | 360 min 100 °C Clove:Ethanol 1:8 | Organic extract | 57.24 | 1.75 | 2.03 | 19.37 |
Ultrasound-assisted SFE [14] | 115 min SC–CO2 40 °C 15 MPa | Organic extract | 59.18 | 15.35 | 1.93 | 18.60 |
Food Category | Food | Application Form | Dose | Results | Reference |
---|---|---|---|---|---|
Baked foods | Cake, bread, green bean cake, and Buddha’s hand citron cake * | Storage | 1% | Extended shelf life up to 2–12 days | [58] |
Bread * | Storage | 250 mg/g | Extended shelf life up to 15 days | [66] | |
Refrigerated steamed buns * | Coating | 0–1.2% | Extended shelf life up to 10 days, but volatile components evaporate during the re-steaming process | [65] | |
Dairy products | Fresh soft cheese * | Fortification | 0.01% | Extended shelf life up to 3 weeks | [65] |
Meat, poultry, and seafood products | Fresh rainbow trout *,+ | Coating | Extended shelf life up to 5–12 days | [67] | |
Chicken breast meat * | Coating | Extended shelf life up to 12 days | [60] | ||
Beef sucuk *,+ | Coating | 1.50% | Extended shelf life up to 45 days | [68] | |
Beef cutlets *,+ | Coating | 2 mg/g | Extended shelf life up to 12 days | [61] | |
Sea bream *,+ | Storage | 10–15 mg/kg | Extended shelf life up to 15 days | [69] | |
Bluefin tuna *,+ | Coating | 0.5 mL | Extended shelf life up to 14 days | [70] | |
Ground beef *,+ | Fortification | 10% | Extended shelf life up to 7 days; at refrigeration and chilling temperatures 60 days Can produce unpleasant flavors | [63] | |
Gelatin–chitosan film, Cod fillets * | Coating | 15% | Extended shelf life up to 12 days; improved mechanical, structural, and barrier properties | [71] | |
Raw grass carp fillets + | Coating | 0.1–1.0% | Reduced content of off-odor volatiles for 12 days | [72] | |
White shrimp *,+ | Coating | 0.25–0.5% | Extended shelf life up to 15 days and inhibited melanosis | [73] | |
Salmon burgers *,+ | Fortification | 0.005–0.01% | Extended shelf life up to 14 days and inhibited melanosis | [74] | |
Chicken patties *,+ | Coating | 0.50% | Extended shelf life up to 35 days and inhibited melanosis | [75] | |
Chicken breast *,+ | Storage | 0.2–0.5% | Extended shelf life up to 15 days and inhibited melanosis | [76] | |
Packaging material | Mechanically deboned chicken meat protein film *,+ | Fortification | 1% | Improved antioxidant and antimicrobial properties | [77] |
Poly (lactic acid) biocomposite food packaging film * | Fortification | 3% | Improved antimicrobial properties | [78] | |
Polylactide/poly(ε-caprolactone)/zinc oxide/CEO and scrambled eggs * | Fortification | 25% | Extended shelf life up to 21 days, improved mechanical, structural, and barrier properties | [79] | |
Chitosan–gum Arabic film * | Fortification | 5% | [80] | ||
Citrus pectin film *,+ | Fortification | 0.5–1.5% | Improved barrier, mechanical, antioxidant, and antimicrobial properties of pectin film | [81] | |
Chicken eggs * | Storage | 10–80 µg/g | Extended shelf life up to 30 days, less weight reduction | [82] | |
Processed food | Ketchup * | Fortification | 500 ppm | [64] | |
Sausages * | Fortification | 2000 mg/L | Prolonged shelf life for 14 days | [62] | |
Vegetables | Mango (cv. Banganapalli and cv. Totapuri) *,+ | Storage | 106 μL | Extended shelf life up to 20–21 days | [83] |
Persimmon * | Storage | 1.56% | Inhibited mold growth on persimmon fruits for 28 days | [84] | |
Pak choi * | Storage | 0.02% | Extended shelf life up to 17 days | [85] | |
Avocado * | Coating | 0.20% | Extended shelf life up to 7 days | [86] |
Pharmaceutical Form | Bioactivity | Mechanism | Model | Dose | References |
---|---|---|---|---|---|
Clove essential oil C, HD, SD | Analgesic | Mediation through opioidergic and cholinergic systems Inhibits voltage-gated Na+ channels and activation of TRPV1 | Adult male Wistar rats [28] Yellowtail clownfish Amphiprion clarkia [88] | 40–500 µL/L | [28,88] |
Anesthetic | Inhibits voltage-gated Na+ channels and activation of TRPV1 Reduces contraction of dorsal muscle | Wistar rats [28] Cardinal tetra Paracheirodon axelrodi Angelfish Pterophyllum scalare [89] Cherax quadricarinatus [90] Adult male Tilapia del Nilo Oreochromis niloticus [91] | 50–500 μL/L | [28,89,90,91] | |
Anticancer | Decreases levels of inflammatory biomarkers Inhibits tissue remodeling in protein molecules Inhibits pro-inflammatory genes and proteins such as pro-inflammatory cytokines Cytotoxic Genotoxic Induces apoptosis Antiproliferative activity Growth inhibition Changes polarization of cancer cells Inhibits proton pumps and ATP production | Human dermal fibroblasts [87], cancer cell lines (cervical, liver, breast, prostate, colon, erythroleukemia, lung) [92,93,94,95,96,97] | 13–127 μg/mL | [87,92,93,94,95,96,97] | |
Anticoagulant | Delays time for blood coagulation | Male Swiss mice (Mus musculus) [98] | 0.0625–4 mg/mL | [98] | |
Antidiarrheal | Ability to balance gut microbiota Helps intestinal motility Potentiates digestive process due to its ability to increase enzyme activity and nitrogen absorption Regulates neurotransmitters such as histamine and dopamine; Ca2+ activates Cl channel inhibitor TMEM16A, causing reduced intestinal motility in mice | Male Swiss mice (M. musculus) [98] | 50–100 mg/kg | [98] | |
Anti-inflammatory | Inhibits release or synthesis of inflammation-mediating compounds Decreases levels of inflammatory biomarkers Inhibits tissue remodeling proteins Inhibits level of expression of genes and proteins, pro-inflammatory proteins such as cytokines Inhibits prostaglandin synthesis and neutrophil chemotaxis Inhibits factor NF-kB in activation of tumor necrosis factor-α (TNF-α) Inhibits expression of cyclooxygenase (COX-2) | Rats [99] Human dermal fibroblasts [87] BALB/c mice [26] | 100–250 mg/kg | [26,87,99] | |
Antimicrobial | Inhibits growth Destabilizes membrane permeability and integrity Ruptures phospholipid membrane, resulting in electron transport inhibition, protein translocation, phosphorylation, and other enzymatic activity, leading to cell death | Candida albicans, Klebsiella spp., E. coli, Proteus spp., Pseudomonas aeruginosa, Agrobacterium tumefaciens, Erwinia spp., S. aureus, Listeria innocua, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei, Lactobacillus rhamnosus, Aspergillus niger, Tetrahymena pyriformis [92,96,97,99,100] | 1.25–6.25 mg/ mL | [92,96,97,99,100] | |
Antinociceptive | Inhibits COX-2 and transient vanilloid receptor potential (TRPV) by high-voltage inhibition of Ca2+ currents in primary neurons | Female Wistar rats [101] | 100 μg/kg | [101] | |
Antioxidant | Radical scavenging activity Inhibits lipid peroxidation Transfers electrons or hydrogen atoms to neutralize free radicals and block oxidative processes Protective effect on ROS-induced biochemical changes and histopathological damage, balance between oxidant/antioxidant ratio | DPPH, β-carotene-linoleate, ABTS, FRAP, Folin–Ciocalteu, flavones and flavonols, flavonoids, TAC [93,97,99,100,102]. Wistar rats/blood, histopathological study [102] | 30–600 μg/mL | [93,97,99,100,102] | |
Antipyretic | Reduces chemotaxis Inhibits COX-1 and COX-2 | Male Swiss mice (M. musculus) [98] | 50–100 mg/kg | [98] | |
Hemolytic | Interacts with the cell membrane | Male Swiss mice (M. musculus) [98] | 0.625–2.5 mg/m | [98] | |
Insecticide Contact toxicity Repellent Larval toxicity Oviposition deterrence | Inhibits life cycle Inhibits development Attacks three possible molecular targets (transient receptor potential (TRP) channels, octopamine receptors, and gamma-aminobutyric acid (GABA) receptors) Neurotoxic action Increases cell membrane permeability, breaking cytoplasmic membrane and interacting with proteins Hydroxyl group present in eugenol binds to proteins and affects their properties Inhibits enzymes ATPase, histidine decarboxylase, amylase, and protease Absorption by cuticular lipids, then enters hemocoel and nervous system, or tracheal system absorbs it | Ctenocephalides felis felis, Rhopalosiphum maidis, Coccinellidae, Coleomegilla maculate, Culex pipiens, Blattella germanica, Ae. j. japonicus [103,104,105,106,107] | 4 mL/cm 5–80 mg/L | [103,104,105,106,107] | |
Microemulsion SD nmslyyds 303 nm Montanov 202™ Phase inversion method | Anti-inflammatory | Re-epithelialization and formation of dermis and epidermis. increases collagen synthesis | m5S cell line Male Wistar rats [27] | 0.2 g | [27] |
Nanoemulsion C nmslyyds 6–27 nm Tween 20 and 80 Spontaneous self-emulsification | Antimicrobial | Destabilizes membrane permeability | S. aureus [108] | 19–24 μg/m | [108] |
Anticancer | Antiproliferative effect Cytotoxic activity Induces necrosis | Thyroid cancer cell line [108] | 19–24 μg/mL | [108] | |
Nanoemulsion C nmslyyds 29.1 nm Tween-80 Spontaneous self-emulsification | Wound healing | Reduces wound epithelialization period Increases leucine content Increases collagen content Induces neovascularization | Female albino Wistar rats [109] | 0.61 mg/g | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. https://doi.org/10.3390/molecules26216387
Haro-González JN, Castillo-Herrera GA, Martínez-Velázquez M, Espinosa-Andrews H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules. 2021; 26(21):6387. https://doi.org/10.3390/molecules26216387
Chicago/Turabian StyleHaro-González, José Nabor, Gustavo Adolfo Castillo-Herrera, Moisés Martínez-Velázquez, and Hugo Espinosa-Andrews. 2021. "Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health" Molecules 26, no. 21: 6387. https://doi.org/10.3390/molecules26216387