Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment
Abstract
:1. Introduction
2. Results and Discussion
Exposure Assessment
3. Materials and Methods
3.1. Sampling
3.2. Reagents and Equipment
3.3. Preparation of the Analytical Standards
3.4. Extraction
3.5. Bromination
3.6. GC-MS Detection
3.7. Method Performance
3.8. Data Analysis
3.9. Exposure Assessment and MOE Evaluation
- DI = daily intake of acrylamide (ng/kg bw/day).
- C = median and 95th percentile concentration of acrylamide detected in the samples (ng/g).
- Q = individual food daily consumption of population within different age groups and for median and 95th pctl consumers (g/day).
- BW = individual body weight (kg bw).
- MOE = margin of exposure (dimensionless).
- BMDL10 = benchmark dose lower confidence limit for a benchmark response of 10% (mg/kg bw/day).
- DI = daily intake of acrylamide previously calculated (mg/kg bw/day).
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J. Agric. Food Chem. 2002, 50, 4998–5006. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Das, S.; Teoh, S.L. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front. Nutr. 2018, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zyzak, D.V.; Sanders, R.A.; Stojanovic, M.; Tallmadge, D.H.; Eberhart, B.L.; Ewald, D.K.; Gruber, D.C.; Morsch, T.R.; Strothers, M.A.; Rizzi, G.P.; et al. Acrylamide formation mechanism in heated foods. J. Agric. Food Chem. 2003, 51, 4782–4787. [Google Scholar] [CrossRef] [PubMed]
- Mencin, M.; Abramovič, H.; Vidrih, R.; Schreiner, M. Acrylamide levels in food products on the Slovenian market. Food Control 2020, 114, 107267. [Google Scholar] [CrossRef]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Influence of the frying process and potato cultivar on acrylamide formation in French fries. Food Control 2016, 62, 216–223. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on acrylamide in food. EFSA J. 2015, 13, 1–321. [Google Scholar]
- Wenzl, T.; Lachenmeier, D.W.; Gökmen, V. Analysis of heat-induced contaminants (acrylamide, chloropropanols and furan) in carbohydrate-rich food. Anal. Bioanal. Chem. 2007, 389, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Nardone, A.; Fasano, E.; Triassi, M.; Cirillo, T. Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a Margin of Exposure approach. Food Chem. Toxicol. 2017, 108, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Mesìas, M.; Morales, F.J. Acrylamide in commercial potato crisps from Spanish market: Trends from 2004 to 2014 and assessment of the dietary exposure. Food Chem. Toxicol. 2015, 81, 104–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Başaran, B.; Aydın, F.; Kaban, G. The determination of acrylamide content in brewed coffee samples marketed in Turkey. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 280–287. [Google Scholar] [CrossRef]
- Lyon, F. IARC Monographs on the evaluation of carcinogenic risks of chemicals to humans. Some Ind. Chem. 1994, 60, 389–433. [Google Scholar]
- Pelucchi, C.; Bosetti, C.; Galeone, C.; La Vecchia, C. Dietary acrylamide and cancer risk: An updated meta-analysis. Int. J. Cancer 2015, 136, 2912–2922. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Fasano, E.; De Vivo, A.; Velotto, S.; Sarghini, F.; Cirillo, T. Processing effects on acrylamide content in roasted coffee production. Food Chem. 2020, 126550. [Google Scholar] [CrossRef] [PubMed]
- Sanny, M.; Jinap, S.; Bakker, E.J.; Van Boekel, M.A.J.S.; Luning, P.A. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments? Food Chem. 2012, 135, 2012–2020. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Overview on mitigation of acrylamide in starchy fried and baked foods. J. Sci. Food Agric. 2018, 98, 4385–4394. [Google Scholar] [CrossRef]
- Schouten, M.A.; Tappi, S.; Romani, S. Acrylamide in coffee: Formation and possible mitigation strategies—A review. Crit. Rev. Food Sci. Nutr. 2020, 1–15. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, H.; Wu, G.; Zhang, H.; Gu, L.; Wang, L.; Qian, H.; Qi, X. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chem. 2018, 250, 98–104. [Google Scholar] [CrossRef]
- Al-asmar, A.; Naviglio, D.; Giosafatto, C.V.L.; Mariniello, L. Hydrocolloid-Based Coatings are Effective at Reducing Acrylamide and Oil Content of French Fries. Coatings 2018, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Andačić, I.M.; Tot, A.; Ivešić, M.; Krivohlavek, A.; Thirumdas, R.; Barba, F.J.; Sabolović, M.B.; Kljusurić, J.G.; Brnčić, S.R. Exposure of the Croatian adult population to acrylamide through bread and bakery products. Food Chem. 2020, 322. [Google Scholar] [CrossRef]
- Mottram, D.S.; Low, M.Y.; Elmore, J.S. The Maillard reaction and its role in the formation of acrylamide and other potentially hazardous compounds in foods. Acrylamide Other Hazard. Compd. Heat Treat. Foods 2006, 3–22. [Google Scholar] [CrossRef]
- Komoike, Y.; Nomura-Komoike, K.; Matsuoka, M. Intake of acrylamide at the dietary relevant concentration causes splenic toxicity in adult zebrafish. Environ. Res. 2020, 189, 109977. [Google Scholar] [CrossRef]
- EC Commission Regulation (EU) 2017/2158: Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union 2017, 2017, 24–44.
- Sansano, M.; Heredia, A.; Peinado, I.; Andrés, A. Dietary acrylamide: What happens during digestion? Food Chem. 2017, 237, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, B.; Haase, N.U.; Vosmann, K. Factors affecting the concentration of acrylamide during deep-fat frying of potatoes. Eur. J. Lipid Sci. Technol. 2004, 106, 793–801. [Google Scholar] [CrossRef]
- Bråthen, E.; Knutsen, S.H. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem. 2005, 92, 693–700. [Google Scholar] [CrossRef]
- Mesías, M.; Morales, F.J.; Delgado-Andrade, C. Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019. Food Funct. 2019, 10, 6624–6632. [Google Scholar] [CrossRef] [Green Version]
- Roszko, M.Ł.; Szczepańska, M.; Szymczyk, K.; Rzepkowska, M. Dietary risk evaluation of acrylamide intake with bread in Poland, determined by two comparable cleanup procedures. Food Addit. Contam. Part B Surveill. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Mojska, H.; Gielecińska, I.; Szponar, L.; Ołtarzewski, M. Estimation of the dietary acrylamide exposure of the Polish population. Food Chem. Toxicol. 2010, 48, 2090–2096. [Google Scholar] [CrossRef]
- Fernandes, J.O.; Soares, C. Application of matrix solid-phase dispersion in the determination of acrylamide in potato chips. J. Chromatogr. A 2007, 1175, 1–6. [Google Scholar] [CrossRef]
- Foodstuffs–Determination of Acrylamide in Food and Coffee by Gas Chromatography-Mass Spectrometry (GC-MS); CEN UNI CEN/TS 17083:2017; Swedish Institute for Standards: Stockholm, Sweden, June 2017.
- R: A Language and Environment for Statistical Computing; R Version 3.6.2; R Core Team: Murray Hill, NJ, USA, 2019.
- Rudis, B. Hrbrthemes: Additional Themes, Theme Components and Utilities for “ggplot2”. Hrbrthemes Documentation. Available online: https://rdrr.io/cran/hrbrthemes (accessed on 26 March 2020).
- Wickham, H.; Bryan, J. readxl: Read Excel Files. Available online: https://cran.r-project.org/web/packages/readxl/readxl.pdf (accessed on 13 March 2019).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C.; Turrini, A. The Italian National Food Consumption Survey INRAN-SCAI 2005-06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the standards of acrylamide are available from the authors. |
Category | Product | Acrylamide (µg/kg) | Benchmark Levels According to EU 2017/2158 (µg/kg) | |||
---|---|---|---|---|---|---|
Mean ± SD | Median | 95th Percentile | Min–Max | |||
Bread (n = 102) | Bread | 57 ± 18 a | 55 | 82 | 31–90 | 50 |
Bread rolls | 52 ± 8 a | 55 | 64 | 42–67 | 50 | |
Wholemeal bread | 61 ± 10 a | 60 | 80 | 44–88 | 50 | |
Friselle | 358 ± 36 b,c | 353 | 403 | 306–454 | 350 | |
Wholemeal Friselle | 384 ± 37 b | 375 | 450 | 328–450 | 350 | |
Sweets (n = 98) | Butter cookies | 310 ± 36 d,e | 330 | 346 | 249–350 | 350 |
“Babà” cake | 292 ± 62 e | 278 | 391 | 207–400 | 300 | |
Ice cream wafers | 337 ± 5 c,d | 336 | 344 | 330–346 | 350 | |
“Frolla” cake | 362 ± 11 b,c | 356 | 380 | 350–380 | 300 | |
Croissants | 313 ± 55 d,e | 330 | 382 | 204–396 | 300 |
Product | Moisture (%) | Sugars (%) | Salt (%) |
---|---|---|---|
Bread (n = 22) | 41–43 | 1.0–1.2 | 1.6–1.8 |
Bread rolls (n = 22) | 42–48 | 1.0–1.2 | 1.5–1.7 |
Wholemeal bread (n = 22) | 41–45 | 1.0–1.2 | 1.6–1.8 |
Friselle (n = 18) | 39–42 | 1.1–1.3 | 1.7–1.9 |
Wholemeal Friselle (n = 18) | 35–40 | 1.2–1.4 | 1.5–1.8 |
Product | Moisture (%) | Sugars (%) | Salt (%) |
---|---|---|---|
Butter cookies (n = 20) | 14–18 | 36–39 | 0.5–0.8 |
“Babà” cake (n = 20) | 43–46 | 5–6 | 0.0–0.1 |
Ice cream wafers (n = 20) | 34–35 | 22–24 | 0.0–0.1 |
“Frolla” cake (n = 18) | 30–32 | 3–5 | 0.0–0.1 |
Croissants (n = 20) | 36–38 | 10–12 | 1.0–1.1 |
Product | Daily Exposure (ng/kg bw/day) (BS–WS) | ||
---|---|---|---|
Adolescents | Adults | Elderly | |
Bread | 84–125 | 59–88 | 71–105 |
Wholemeal bread | 75–100 | 43–57 | 60–80 |
Friselle | 68–78 | 67–77 | 81–92 |
Wholemeal Friselle | 50–70 | 86–103 | 114–137 |
Product | Daily Exposure (ng/kg bw/day) (BS–WS) | ||
---|---|---|---|
Adolescents | Adults | Elderly | |
Bread | 236–351 | 189–281 | 165–246 |
Wholemeal bread | 137–182 | 171–229 | 174–232 |
Friselle | 173–197 | 161–184 | 197–225 |
Wholemeal Friselle | 230–276 | 214–257 | 213–255 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, F.; Velotto, S.; Rea, T.; Stasi, T.; Cirillo, T. Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment. Molecules 2020, 25, 4156. https://doi.org/10.3390/molecules25184156
Esposito F, Velotto S, Rea T, Stasi T, Cirillo T. Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment. Molecules. 2020; 25(18):4156. https://doi.org/10.3390/molecules25184156
Chicago/Turabian StyleEsposito, Francesco, Salvatore Velotto, Teresa Rea, Tommaso Stasi, and Teresa Cirillo. 2020. "Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment" Molecules 25, no. 18: 4156. https://doi.org/10.3390/molecules25184156
APA StyleEsposito, F., Velotto, S., Rea, T., Stasi, T., & Cirillo, T. (2020). Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment. Molecules, 25(18), 4156. https://doi.org/10.3390/molecules25184156