Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC Analysis
2.2. Extraction Procedure
2.3. Method Validation
2.4. Application to Feces, Liquid Manure and Digestate Samples
3. Materials and Method
3.1. Chemicals and Reagents
3.2. Preparation of Standard Solutions
3.3. LC-MS
3.4. LC-MS/MS
3.5. Sample Preparation and Extraction
3.6. Clean-up
3.7. Method Validation
3.8. Sample Collection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berendsen, B.J.A.; Wegh, R.S.; Memolink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.J.M.; van de Schans, M.G.M.; de Boer, D.; Bongers, I.E.A.; Schmitt, H.; Hoeksma, P.; Berendsen, B.J.A. A new extraction procedure to abate the burden of non-extractable antibiotic residues in manure. Chemosphere 2019, 224, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces in China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Fogg, L.A.; Blackwell, P.A.; Blackwell, P.; Kay, P.; Pemberton, E.J.; Croxford, A. Reviews of Environmental Conatamination and Toxicology; Springer: New York, NY, USA, 2004; pp. 1–99. [Google Scholar]
- Anderson, R.; Groundwater, P.W.; Todd, A.; Worsley, A. Antibacterial Agents: Chemistry, Mode of Action, Mechanism of Resistance and Clinical Applications; John Willey & Sons, Ltd.: Chichester, UK, 2012. [Google Scholar]
- Berendsen, B.J.A.; Lahr, J.; Nibbeling, C.; Jansen, L.J.M.; Bongers, I.E.A.; Wipfler, E.L.; van de Schans, M.G.M. The peristance of a broad of antibiotics during calve, pig and broiler manure storage. Chemosphere 2018, 2014, 267–276. [Google Scholar] [CrossRef]
- Qian, M.; Wu, H.; Wang, J.; Zhang, H.; Zhang, Z.; Zhang, Y.; Lin, H.; Ma, J. Occurrence of trace elements and antibiotics in amnure-based fertilizers from the Zhejiang Province of China. Sci. Total Environ. 2016, 559, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Carballo, E.; Gonzalez-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 162, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Janusch, F.; Scherz, G.; Mohring, S.A.I. Determination of fluoroquinolones in chicken feces—A new liquid-liquid extraction method combined with LC-MS/MS. Environ. Toxicol. Pharmacol. 2014, 38, 792–799. [Google Scholar] [CrossRef]
- Karcı, A.; Balcıoglu, I.A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ. 2009, 407, 4652–4664. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C.; Yue, L.; Sun, Y.; Ding, H.; Liu, Y. Excretion of enrofloxacin in pigs and its effect on ecological environment. Environ. Toxicol. Pharmacol. 2008, 26, 272–277. [Google Scholar] [CrossRef]
- Turiel, E.; Martin-Esteban, A.; Tadeo, J.L. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Anal. Chim. Acta 2006, 562, 30–35. [Google Scholar] [CrossRef]
- Christian, T.; Schneider, R.J.; Färber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E. Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim. Hydrobiol. 2003, 31, 36–44. [Google Scholar] [CrossRef]
- Morales-Munoz, S.; Luque-García, J.L.; Luque de Castro, M.D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the use in domestic animals. Vet. J. 2004, 172, 10–28. [Google Scholar]
- Pierini, E.; Famiglini, G.; Mangani, F.; Cappiello, A. Fate of enrofloxacin in swine sewage. J. Agric. Food Chem. 2004, 52, 3473–3477. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, J.; Lovering, A.M.; Tobi, C.M.; MacGowan, A.P.; Roe, J.M.; Delsol, A.A. A reverse-phase HPLC assay for the simultaneous determination of enrofloxacin and ciprofloxacinin pig faeces. Int. J. Antimicrob. Agents 2004, 23, 390–393. [Google Scholar] [CrossRef]
- Golet, E.M.; Strehler, A.; Alder, A.C.; Giger, W. Determination of fluoroquinolone antibacterial agents insewage0sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 2002, 74, 5455–5462. [Google Scholar] [CrossRef]
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Occurrence of vaterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci. Total Environ. 2014, 261–267. [Google Scholar] [CrossRef]
- Blacwell, P.A.; Lützhøft, H.-C.H.H.; Ma, H.-P.; Halling-Sørensen, B.; Boxall, A.B.A.; Kay, P. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection. Talanta 2004, 64, 1058–1064. [Google Scholar] [CrossRef]
- Hu, X.-G.; Luo, Y.; Zhou, Q.-X.; Xu, L. Determination of Thirteen Antibiotics Residues in Manure by Solid Phase Extraction and High Performance Liquid Chromatography. Chin. J. Anal. Chem. 2008, 36, 1162–1166. [Google Scholar] [CrossRef]
- Anon: Commission Decision 2002/657/EC. Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Available online: https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en (accessed on 14 July 2020).
- Li, C.; Chen, J.; Wang, J.; Ma, Z.; Han, P.; Luan, Y.; Lu, A. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci. Total Environ. 2015, 101–107. [Google Scholar] [CrossRef]
- Haller, M.; Müller, S.R.; McArdell, C.S.; Alder, A.C.; Sute, M.J.-F. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J. Chromatogr. A 2002, 952, 111–120. [Google Scholar] [CrossRef]
- Wallace, J.S.; Aga, D. Enhancing Extraction and Detection of Veterinary Antibiotics in solid and Liquid Fractions Manure. J. Environ. Qual. 2016, 45, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Xiang, L.; Jiang, Y.N.; Li, Y.W.; Huang, X.P.; Li, H.; Cai, Q.Y.; Mo, C.H. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Sci. Total Environ. 2014, 487, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Luo, Y.; Zhou, Q. Simultaneous analysis of selected typical antibiotics in manure by microwave-assisted extraction and LC–MS. Chromatographia 2010, 1, 217–223. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 2, 161–169. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K. Development and validation of multi-residue analysis for tetracycline antibiotics in feed by high performance liquid chromatography coupled to mass spectrometry. Food Addit. Contam. 2017, 9, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Analyte | Linearity | Recovery [%] | Reproducibility [%] | Reproducibility [%] | LOQ [µg/kg] | LOD [µg/kg] | CCα [µg/kg] | CCβ [µg/kg] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration Levels [µg/kg] | Concentration Level [µg/kg] | Concentration Level [µg/kg] | ||||||||||||
I | II | III | I | II | III | I | II | III | ||||||
CIP | 50–1000 µg/kg | 64.4 | 66.1 | 60.3 | 21.0 | 19.8 | 20.0 | 26.9 | 28.8 | 27.1 | 34.9 | 21.2 | 46.0 | 98.2 |
ENR | 50–1000 µg/kg | 75.1 | 81.0 | 83.9 | 15.5 | 16.2 | 15.2 | 18.1 | 19.0 | 21.0 | 30.8 | 19.5 | 35.2 | 53.3 |
OXT | 100–1500 µg/kg | 89.1 | 92.2 | 93.5 | 10.0 | 10.7 | 8.8 | 18.4 | 13.7 | 12.4 | 61.0 | 54.3 | 77.9 | 111.7 |
TC | 100–1500 µg/kg | 82.0 | 81.0 | 86.7 | 16.1 | 17.7 | 13.6 | 19.4 | 20.5 | 15.4 | 73.0 | 60.7 | 86.4 | 161.0 |
CTC | 100–1500 µg/kg | 84.5 | 80.9 | 82.2 | 11.4 | 11.0 | 8.9 | 15.4 | 13.9 | 18.9 | 78.8 | 64.3 | 76.8 | 120.2 |
DC | 100–1500 µg/kg | 74.3 | 79.1 | 75.8 | 17.9 | 12.3 | 14.1 | 21.9 | 16.0 | 15.3 | 87.2 | 69.1 | 89.0 | 156.2 |
TYL | 100–1500 µg/kg | 63.2 | 65.3 | 64.3 | 22.2 | 14.0 | 12.1 | 28.7 | 17.7 | 19.9 | 82.3 | 67.9 | 91.1 | 168.2 |
TIAM | 100–1500 µg/kg | 88.4 | 88.0 | 91.4 | 11.3 | 10.7 | 12.2 | 13.5 | 15.3 | 12.1 | 45.5 | 39.3 | 53.2 | 78.8 |
LINCO | 125–625 µg/kg | 75.5 | 72.3 | 81.0 | 11.0 | 10.2 | 9.9 | 14.5 | 13.1 | 13.0 | 92.0 | 76.2 | 101.8 | 133.5 |
TRIM | 25–500 µg/kg | 90.0 | 100.2 | 93.3 | 9.8 | 7.8 | 5.6 | 6.8 | 7.0 | 8.4 | 15.5 | 10.2 | 23.2 | 38.0 |
Sample | Analyte [µg/kg] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CIP | ENR | OXC | TC | CTC | DC | TYL | TIAM | LINCO | TRIM | |
PIG FAECES | ||||||||||
Samples from Poland | ||||||||||
S1 | nd | nd | nd | nd | nd | 200 | nd | nd | nd | Nd |
S2 | nd | nd | nd | nd | nd | 200 | nd | nd | nd | Nd |
S3 | nd | nd | 1450 | nd | nd | 4141 | nd | nd | nd | Nd |
S4 | nd | nd | nd | nd | nd | 980 | nd | nd | nd | Nd |
S5 | nd | nd | nd | nd | nd | 1900 | nd | nd | nd | Nd |
S6 | nd | nd | nd | nd | nd | 1165 | nd | nd | nd | Nd |
Samples from Spain | ||||||||||
S7 | nd | nd | nd | nd | 340 | 1000 | nd | nd | nd | Nd |
S8 | nd | nd | nd | nd | nd | 34,340 | nd | nd | nd | Nd |
S9 * | nd | nd | 440 | nd | nd | 175,400 | nd | 520 | nd | Nd |
S10 | nd | nd | 220 | nd | nd | 125,140 | nd | nd | 290 | Nd |
S11 | nd | nd | nd | nd | nd | 5540 | nd | nd | nd | Nd |
S12 | nd | nd | nd | 1710 | 17,700 | nd | nd | nd | nd | Nd |
S13 * | nd | nd | 410 | nd | nd | 97,900 | nd | nd | nd | Nd |
S14 | nd | nd | nd | 1320 | nd | 16,540 | nd | nd | nd | Nd |
S15 | nd | nd | nd | nd | nd | 18,340 | nd | nd | nd | Nd |
LIQUID MANURE | ||||||||||
M1 | nd | nd | nd | nd | nd | 5900 | nd | nd | nd | Nd |
DIGESTATE | ||||||||||
D1 | nd | nd | nd | nd | nd | nd | nd | 148 | nd | Nd |
D2 | nd | 50 | nd | nd | nd | nd | nd | nd | nd | Nd |
Step | Total Time (min) | Flow Rate (µL/min) | A (%) | B (%) |
---|---|---|---|---|
0 | 0 | 400 | 100 | 0 |
1 | 1 | 400 | 100 | 0 |
2 | 5 | 400 | 85 | 15 |
3 | 15 | 400 | 74 | 26 |
4 | 20 | 400 | 64 | 36 |
5 | 24 | 400 | 0 | 100 |
6 | 25 | 400 | 100 | 0 |
7 | 31 | 400 | 100 | 0 |
Analyte | Precursor Ion | Production | DP | EP | CEP | CE | CXP |
---|---|---|---|---|---|---|---|
Lincomycin 1 | 407.0 | 359.1 | 31 | 7.5 | 18.29 | 17 | 6 |
Lincomycin 2 | 407.0 | 172.1 | 31 | 7.5 | 18.29 | 25 | 4 |
Trimethoprim 1 | 291.1 | 230.1 | 31 | 12 | 14.15 | 33 | 8 |
Trimethoprim 2 | 291.1 | 275.1 | 31 | 12 | 14.15 | 33 | 12 |
Oxytetracycline 1 | 461.0 | 426.2 | 26 | 10 | 20.22 | 21 | 6 |
Oxytetracycline2 | 461.0 | 443.2 | 26 | 10 | 20.22 | 21 | 18 |
Doxycycline 1 | 445.0 | 428.2 | 31 | 10 | 19.65 | 21 | 6 |
Doxycycline 2 | 445.0 | 201.0 | 31 | 10 | 19.65 | 57 | 4 |
Tetracycline 1 | 445.0 | 410.0 | 41 | 8 | 19.65 | 25 | 15 |
Tetracycline 2 | 445.0 | 154.1 | 41 | 8 | 19.65 | 35 | 5 |
Enrofloxacin 2 | 360.0 | 342.2 | 56 | 10 | 16.61 | 33 | 6 |
Enrofloxacin 1 | 360.0 | 245.0 | 56 | 10 | 16.61 | 39 | 6 |
Chlortetracycline 1 | 479.0 | 260.1 | 51 | 9.5 | 20.86 | 73 | 4 |
Chlortetracycline 2 | 479.0 | 305.1 | 51 | 10 | 20.94 | 39 | 6 |
Ciprofloxacin 2 | 332.0 | 231.1 | 91 | 8.5 | 15.61 | 41 | 8 |
Ciprofloxacin 1 | 332.0 | 313.9 | 91 | 8.5 | 15.61 | 35 | 6 |
Tylosin 1 | 916.2 | 173.9 | 81 | 9 | 36.5 | 49 | 4 |
Tylosin 2 | 916.2 | 156.0 | 81 | 9 | 36.5 | 51 | 4 |
Tiamulin 1 | 494.1 | 192.1 | 41 | 8 | 21.41 | 23 | 4 |
Tiamulin 2 | 494.1 | 119.1 | 41 | 8 | 21.41 | 23 | 4 |
Concentration Levels [µg/kg] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CIP | ENR | OXT | TC | CTC | DC | TYL | TIAM | LINCO | TRIM | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 50 | 50 | 100 | 100 | 100 | 100 | 100 | 100 | 125 | 25 |
3 | 100 | 100 | 200 | 200 | 200 | 200 | 200 | 200 | 250 | 50 |
4 | 200 | 200 | 500 | 500 | 500 | 500 | 500 | 500 | 375 | 100 |
5 | 500 | 500 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 500 | 250 |
6 | 1000 | 1000 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 625 | 500 |
Spiking Levels [µg/kg] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CIP | ENR | OXT | TC | CTC | DC | TYL | TIAM | LINCO | TRIM | |
I | 50 | 50 | 100 | 100 | 100 | 100 | 100 | 100 | 125 | 25 |
II | 200 | 200 | 500 | 500 | 500 | 500 | 500 | 500 | 375 | 100 |
III | 1000 | 1000 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 625 | 500 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilán, R.E. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules 2020, 25, 3265. https://doi.org/10.3390/molecules25143265
Patyra E, Kwiatek K, Nebot C, Gavilán RE. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules. 2020; 25(14):3265. https://doi.org/10.3390/molecules25143265
Chicago/Turabian StylePatyra, Ewelina, Krzysztof Kwiatek, Carolina Nebot, and Rosa Elvira Gavilán. 2020. "Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry" Molecules 25, no. 14: 3265. https://doi.org/10.3390/molecules25143265
APA StylePatyra, E., Kwiatek, K., Nebot, C., & Gavilán, R. E. (2020). Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules, 25(14), 3265. https://doi.org/10.3390/molecules25143265