Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. CRDF Used in the Experiment
4.2. Qualitative and Quantitative Analyses of VOC Emitted from CRDF
- 1)
- the internal standard—a solution of 2-undecanone at a ratio of 20 μg compound per 20 mL of distilled water;
- 2)
- water bath with a temperature of 40 °C with glycol;
- 3)
- manual holder for SPME;
- 4)
- universal SPME fiber 3-component DVB/CAR/PDMS 50/30 μm coating (Supelco Inc., Bellefonte, PA, USA);
- 5)
- 10 μL syringe for internal standard addition;
- 6)
- a laboratory incubator (Thermo Fisher Scientific Inc., Waltham, MA, USA) with a constant temperature of 23 °C.
4.3. Preparation of CRDF Samples
4.4. Solid-Phase Microextraction
4.5. Gas Chromatography with Mass Spectrometry
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Biochar Initiative IBI 2015. IBI Biochar Standards—Standardized Product Definition and Product Testing Guidelines for Biochar that is used in Soil. v.2.1. Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf (accessed on 28 October 2018).
- EBC (2012). European Biochar Certificate—Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC): Arbaz, Switzerland. Available online: http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf (accessed on 28 October 2018).
- Schmidt, H.P. 55 Uses of Biochar. Ithaka J. 2012, 1, 286–289. [Google Scholar]
- Bird, M.; Wurster, C.; de Paula Silva, P.; Bass, A.; de Nys, R. Algal biochar—Production and properties. Bioresour. Technol. 2011, 102, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Białowiec, A.; Pulka, J.; Stępień, P.; Manczarski, P.; Gołaszewski, J. The RDF/SRF torrefaction: An effect of temperature on characterization of the product—Carbonized Refuse Derived Fuel. Waste Manag. 2017, 70, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Stępień, P.; Białowiec, A. Kinetic parameters of torrefaction process of alternative fuel produced from municipal solid waste and characteristic of carbonized refuse derived fuel. Detritus 2018, 3, 75–83. [Google Scholar] [CrossRef]
- Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. The pyrolysis and gasification of digestate from agricultural biogas plant. Arch. Environ. Prot. 2015, 41, 70–75. [Google Scholar] [CrossRef]
- Pulka, J.; Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. Is the biochar produced from sewage sludge a good quality solid fuel? Arch. Environ. Prot. 2016, 42, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Białowiec, A.; Micuda, M.; Koziel, J.A. Waste to carbon: Densification of torrefied refuse-derived fuels. Energies 2018, 11, 3233. [Google Scholar] [CrossRef]
- Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32004L0042 (accessed on 13 November 2018).
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; Dusaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef]
- Buss, W.; Masek, O.; Graham, M.; Wüst, D. Inherent organic compounds in biochar-Their content, composition and potential toxic effects. J. Environ. Manag. 2015, 156, 150–157. [Google Scholar] [CrossRef]
- Allaire, S.E.; Lange, S.F.; Auclair, I.K.; Quinche, M.; Greffard, L. Analyses of biochar properties. CRMR-2015-SA-5. Presented at the Char Team (2015) Report, Centre de Recherche sur les Matériaux Renouvelables, Université Laval, Quebec, QC, Canada, 2015; p. 59. [Google Scholar]
- Taherymoosavi, S.; Verheyen, V.; Munroe, P.; Joseph, S.; Reynolds, A. Characterization of organic compounds in biochars derived from municipal solid waste. Waste Manag. 2017, 67, 131–142. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Herath, H.M.S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar—Their formation, occurrence and analysis: A review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef]
- World Health Organization Report. Indoor air quality, organic pollutants: Report on a WHO meeting. Eur. Rep. Stud. 1989, 111, 1–70. [Google Scholar]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- OECD/IEA/EUROSTAT, Energy Statistics Manual. Available online: http://ec.europa.eu/eurostat/ramon/statmanuals/files/Energy_statistics_manual_2004_EN.pdf (accessed on 21 September 2018).
- Jakubiak, M.; Kordylewski, W. Biomass torrefaction. Polski Inst. Spal. 2010, 10, 11–25. [Google Scholar]
- Kenessov, B.; Koziel, J.A.; Grotenhuis, T.; Carlsen, L. Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC-MS. Anal. Chim. Acta 2010, 674, 32–39. [Google Scholar] [CrossRef]
- Orazbayeva, D.; Kenessov, B.; Koziel, J.A.; Nassyrova, D.; Lyabukhova, N.V. Quantification of BTEX in soil by headspace SPME-GC-MS using combined standard addition and internal standard calibration. Chromatographia 2017, 80, 1249–1256. [Google Scholar] [CrossRef]
- Akdeniz, N.; Koziel, J.A.; Ahn, H.K.; Glanville, T.D.; Crawford, B.; Raman, R.D. Laboratory scale evaluation of VOC emissions as indication of swine carcass degradation inside biosecure composting units. Bioresour. Technol. 2010, 101, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Koziel, J.A.; Nguyen, L.T.; Glanville, T.D.; Ahn, H.K.; Frana, T.S.; van Leeuwen, J.H. Method for sampling and analysis of volatile biomarkers in process gas from aerobic digestion of poultry carcass using time-weighted average SPME and GC-MS. Food Chem. 2017, 232, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Onuki, S.; Koziel, J.A.; Jenks, W.S.; Cai, L.; Rice, S.; van Leeuwen, J.H. Optimization of extraction parameters for quantification of fermentation volatile by-products in industrial ethanol with solid-phase microextraction and gas chromatography. J. Inst. Brewing. 2016, 122, 102–109. [Google Scholar] [CrossRef]
- Rice, S.; Lutt, N.; Koziel, J.A.; Dharmadhikari, M.; Fennell, A. Determination of selected aromas in Marquette and Frontenac wine using headspace-SPME coupled with GC-MS and simultaneous olfactometry. Separations 2018, 5, 20. [Google Scholar] [CrossRef]
- Soso, S.B.; Koziel, J.A. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. Sci. Rep. UK 2017, 7, 5137. [Google Scholar] [CrossRef] [PubMed]
- Soso, S.B.; Koziel, J.A. Analysis of odorants in marking fluid of Siberian tiger (Panthera tigris altaica) using simultaneous sensory and chemical analysis with headspace solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. Molecules 2016, 21, 834. [Google Scholar] [CrossRef] [PubMed]
- Maurer, D.L.; Koziel, J.A.; Engelken, T.J.; Cooper, V.L.; Funk, J.L. Detection of volatile compounds emitted from nasal secretions and serum: Towards non-invasive identification of diseased cattle biomarkers. Separations 2018, 5, 18. [Google Scholar] [CrossRef]
- Cai, L.; Koziel, J.A.; Davis, J.; Lo, Y.C.; Xin, H. Characterization of VOCs and odors by in vivo sampling of beef cattle rumen gas using SPME and GC-MS-olfactometry. Anal. Bioanal. Chem. 2006, 386, 1791–1802. [Google Scholar] [CrossRef]
- Cai, L.; Koziel, J.A.; O’Neal, M.E. Studying plant-insect interactions with solid phase microextraction: Screening for airborne volatile emissions of soybeans to the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae). Chromatography 2015, 2, 265–276. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—A review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Martínez-Tomé, J.; Carbonell-Barrachina, Á.A. Dying methods affect the aroma of Origanum majorana L. analyzed by GC–MS and descriptive sensory analysis. Ind. Crop. Prod. 2015, 74, 218–227. [Google Scholar] [CrossRef]
- Nöfer, J.; Lech, K.; Figiel, A.; Szumny, A.; Carbonell-Barrachina, Á.A. The influence of drying method on volatile composition and sensory profile of Boletus edulis. J. Food Qual. 2018, 2018. [Google Scholar] [CrossRef]
- Stein, S.E. “Mass Spectra” by NIST Mass Spec Data Center. Available online: https://webbook.nist.gov (accessed on 13 November 2018).
Sample Availability: Samples of the compounds are available from the authors. |
# | Retention Time (min) | Compound Name, IUPAC | Retention Coefficient, KI Experimental (MS Database) | Retention Coefficient (Kovats C7-40 Index) | CAS Number |
---|---|---|---|---|---|
1 | 1.87 | acetic acid | - | 593 | 123-72-8 |
2 | 2.45 | propanoic acid | 700 | 700 | 79-49-4 |
3 | 2.93 | pyrimidine | 740 | 736 | 289-95-2 |
4 | 3.10 | pyridine | 753 | 746 | 110-86-1 |
5 | 3.29 | pentan-1-ol | 768 | 765 | 71-41-0 |
6 | 3.36 | toluene | 774 | 769 | 108-88-3 |
7 | 3.45 | 2-methylpropanoic acid | 781 | 775 | 79-31-2 |
8 | 3.78 | hexanal | 804 | 800 | 66-25-1 |
9 | 4.23 | 2-methylpyrazine | 826 | 831 | 109-08-0 |
10 | 4.41 | furan-2-carbaldehyde | 835 | 833 | 98-01-1 |
11 | 5.01 | 1,3-xylene | 864 | 866 | 108-38-3 |
12 | 5.06 | 2-oxopropyl acetate | 866 | 870 | 592-20-1 |
13 | 5.18 | 1,4-xylene | 872 | 866 | 106-42-3 |
14 | 5.35 | pentanoic acid | 881 | 902 | 109-52-4 |
15 | 5.49 | unknown compound | 887 | - | |
16 | 5.63 | heptan-2-one | 893 | 891 | 110-43-0 |
17 | 5.68 | styrene | 896 | 893 | 100-42-5 |
18 | 5.78 | 1,2-xylene | 900 | 887 | 95-47-6 |
19 | 5.88 | heptanal | 904 | 902 | 111-71-7 |
20 | 6.03 | hexa-2,4-diene, (E,E)- | 909 | 911 | 592-46-1 |
21 | 6.15 | 1-(furan-2-yl)ethanone | 914 | 912 | 1192-62-7 |
22 | 6.24 | 2-ethylpyrazine | 917 | 921 | 13925-00-3 |
23 | 6.34 | 2,5-dimethylpyrazine | 920 | 925 | 123-32-0 |
24 | 6.55 | cumene | 927 | 926 | 98-82-8 |
25 | 6.64 | 1,4-dimethylpyridine | 931 | 930 | 108-47-4 |
26 | 6.81 | 4,6,6-trimethylbicyclo[3.1.1]hept-3-ene | 936 | 937 | 80-56-8 |
27 | 6.97 | 3-methylbutanoic acid | 942 | 947 | 503-74-2 |
28 | 7.02 | 4-ethylpyridine | 944 | 956 | 536-75-4 |
29 | 7.34 | n-propylbenzene | 955 | 953 | 103-65-1 |
30 | 7.53 | benzaldehyde | 962 | 963 | 100-52-7 |
31 | 7.59 | 5-methylfuran-2-carbaldehyde | 964 | 965 | 620-02-0 |
32 | 7.77 | 1,3,5-trimethylbenzene | 970 | 972 | 108-67-8 |
33 | 8.14 | phenol | 980 | 983 | 108-95-2 |
34 | 8.47 | 4-methyl-1-propan-2-ylcyclohexene | 993 | 988 | 500-00-5 |
35 | 8.53 | 1,2,4-trimethylbenzene | 996 | 993 | 95-63-6 |
36 | 8.79 | octanal | 1005 | 1003 | 124-13-0 |
37 | 8.87 | dec-3-yn-1-ol | 1007 | 1011 | 51721-39-2 |
38 | 9.06 | an unknown isomer of ethyldimethyl benzene | 1013 | - | - |
39 | 9.45 | 1,3-diethylbenzene | 1025 | 1025 | 141-93-5 |
40 | 9.50 | 1-methyl-4-propan-2-ylbenzene | 1027 | 1026 | 99-87-6 |
41 | 9.61 | 1-methyl-4-prop-1-en-2-ylcyclohexene | 1030 | 1031 | 138-86-3 |
42 | 9.87 | 2,3-dihydro-1H-indene | 1037 | 1030 | 496-11-7 |
43 | 10.32 | 1,2-diethylbenzene | 1051 | 1045 | 135-01-3 |
44 | 10.42 | 1-methyl-2-propylbenzene | 1055 | 1047 | 1074-17-5 |
45 | 10.53 | butylbenzene | 1058 | 1054 | 104-51-8 |
46 | 10.61 | 1-ethyl-3,5-dimethylbenzene | 1060 | 1058 | 934-74-7 |
47 | 10.70 | 2-ethyl-1,4-dimethylbenzene | 1063 | 1071 | 1758-88-9 |
48 | 10.87 | 1-phenylethanone | 1068 | 1065 | 98-86-2 |
49 | 11.23 | 2-ethyl-1,3-dimethylbenzene | 1079 | 1080 | 2870-04-4 |
50 | 11.29 | 4-ethyl-1,2-dimethylbenzene | 1081 | 1083 | 499-75-2 |
51 | 11.36 | 1-ethenyl-2,4-dimethylbenzene | 1083 | 1084 | 2234-20-0 |
52 | 11.54 | 2-ethyl-1,4-dimethylbenzene | 1089 | 1090 | 1758-88-9 |
53 | 11.63 | 2-methoxyphenol | 1091 | 1090 | 90-05-1 |
54 | 11.70 | 1-undecyne | 1093 | 1095 | 2243-98-3 |
55 | 11.84 | methyl benzoate | 1098 | 1095 | 93-58-3 |
56 | 12.00 | undecane | 1102 | 1100 | 1120-21-4 |
57 | 12.05 | nonanal | 1104 | 1103 | 124-19-6 |
58 | 12.25 | 1,2,4,5-tetramethylbenzene | 1110 | 1116 | 95-93-2 |
59 | 12.33 | an unknown isomer of diethylmethylbenzene | 1113 | - | - |
60 | 12.54 | unknown compound | 1118 | - | - |
61 | 12.68 | 1,2,3,5-tetramethylbenzene | 1122 | 1117 | 527-53-7 |
62 | 12.94 | 1,3-dimethyl-2,3-dihydro-1H-indene | 1130 | 1135 | 4175-53-5 |
63 | 13.33 | 5-methyl-2,3-dihydro-1H-indene | 1142 | 1136 | 874-35-1 |
64 | 13.49 | 1,3-diethyl-5-methylbenzene | 1145 | 1147 | 2050-24-0 |
65 | 13.70 | 4-methyl-2,3-dihydro-1H-indene | 1152 | 1148 | 824-22-6 |
66 | 13.90 | 1-methyl-1H-indene | 1158 | 1157 | 767-59-9 |
67 | 13.94 | pentylbenzene | 1160 | 1158 | 538-68-1 |
68 | 14.08 | 1,2,3,4-tetrahydronaphthalene | 1163 | 1157 | 119-64-2 |
69 | 14.14 | 1,4-diethyl-2-methylbenzene | 1165 | 1164 | 13632-94-5 |
70 | 14.28 | 2,4-diethyl-1-methylbenzene | 1168 | 1166 | 1758-85-6 |
71 | 14.83 | azulene | 1185 | 1182 | 275-51-4 |
72 | 14.99 | 1-methyl-4-propan-2-yl-2-[(E)-prop-1-enyl]benzene | 1190 | 1191 | 97664-18-1 |
73 | 15.18 | 2-ethyl-2,3-dihydro-1H-indene | 1196 | n.d. | 56147-63-8 |
74 | 15.52 | decanal | 1203 | 1206 | 112-31-2 |
75 | 15.70 | unknown compound | 1212 | - | - |
76 | 17.42 | hexylbenzene | 1253 | 1260 | 1077-16-3 |
77 | 17.57 | 6-methyl-1,2,3,4-tetrahydronaphthalene | 1266 | 1263 | 1680-51-9 |
78 | 17.66 | 5-methyl-1,2,3,4-tetrahydronaphthalene | 1269 | 1276 | 2809-64-5 |
79 | 18.17 | 4,7-dimethyl-2,3-dihydro-1H-indene | 1284 | 1282 | 6682-71-9 |
80 | 18.57 | undecan-2-one (internal standard) | 1296 | 1298 | 112-12-9 |
81 | 18.77 | 2-methyl-5-propan-2-ylphenol | 1302 | 1299 | 499-75-2 |
82 | 19.11 | 1-methylnaphtalene | 1314 | 1307 | 112-44-7 |
83 | 19.43 | 3,3-dimethyl-2H-inden-1-one | 1325 | 1330 | 26465-81-6 |
84 | 19.70 | 1,5-dimethyl-1,2,3,4-tetrahydronaphthalene | 1334 | 1341 | 21564-91-0 |
85 | 20.82 | 5,6-dimethyl-1,2,3,4-tetrahydronaphthalene | 1373 | 1381 | 21693-54-9 |
Compound Name (IUPAC) | Emissions (µg/kg) | % of Total Emissions | Boiling Point (°C) | Type of VOC 1 | Observed in Emissions from Biochar (+, −, =, Yes, No) | ||
---|---|---|---|---|---|---|---|
[11] | [12] | [14] | |||||
Nonanal * | 2860.00 | 17.400 | 195 | VOC | − | − | − |
Octanal * | 1480.00 | 9.010 | 171 | VOC | + | − | − |
Heptanal * | 1180.00 | 7.150 | 153 | VOC | + | − | − |
butylbenzene | 1030.00 | 6.290 | 183 | VOC | − | − | − |
Hexanal * | 843.00 | 5.120 | 130 | VOC | + | − | − |
1-methyl-4-prop-1-en-2-ylcyclohexene | 789.00 | 4.800 | 176.5 | VOC | − | − | − |
Benzaldehyde * | 777.00 | 4.720 | 179 | VOC | + | − | − |
Decanal * | 554.97 | 3.373 | 208 | VOC | − | − | − |
Toluene * | 535.78 | 3.257 | 110.6 | VOC | + | − | − |
hexylbenzene | 521.82 | 3.172 | 228 | VOC | − | − | − |
4,6,6-trimethyl-bicyclo[3.1.1]hept-3-ene * | 408.38 | 2.482 | 155.5 | VOC | − | − | − |
1,3,5-trimethylbenzene | 387.43 | 2.355 | 165 | VOC | − | − | − |
1-undecyne | 373.47 | 2.270 | 195 | VOC | − | − | − |
2-ethyl-2,3-dihydro-1H-indene | 342.06 | 2.079 | - | - | − | − | − |
1-ethyl-3,5-dimethyl-benzene | 246.07 | 1.496 | 184 | VOC | − | − | − |
4,7-dimethyl-2,3-dihydro-1H-indene | 235.60 | 1.432 | 225.9 | VOC | − | − | − |
1,4-xylene | 225.13 | 1.368 | 138 | VOC | − | − | − |
1-methyl-1H-indene | 204.19 | 1.241 | 199 | VOC | − | − | − |
acetic acid * | 197.21 | 1.199 | 118 | VOC | + | + | − |
heptan-2-one * | 160.56 | 0.976 | 149 | VOC | + | − | − |
2-methyl-5-propan-2-ylphenol | 139.62 | 0.849 | 236.5 | VOC | − | − | − |
4-methyl-1-propan-2-ylccyclohexene * | 136.13 | 0.827 | 166.8 | VOC | − | − | − |
Undecane * | 136.13 | 0.827 | 196 | VOC | − | − | − |
1,3-dimethyl-2,3-dihydro-1H-indene | 122.16 | 0.743 | 208.7 | VOC | − | − | − |
pyrimidine * | 118.67 | 0.721 | 124 | VOC | − | − | − |
2-ethyl-1,4-dimethylbenzene | 115.18 | 0.700 | 187 | VOC | − | − | − |
furan-2-carbaldehyde | 113.44 | 0.690 | 162 | VOC | − | − | − |
1,2,3,4-tetrahydro-naphthalene | 109.95 | 0.668 | 207 | VOC | − | − | − |
1-ethenyl-2,4-dimethylbenzene | 108.20 | 0.658 | - | - | − | − | − |
1,2,3,5-tetramethyl-benzene | 108.20 | 0.658 | 198 | VOC | − | − | − |
1,2,4,5-tetramethyl-benzene | 104.71 | 0.636 | 196.5 | VOC | − | − | − |
1,3-xylene | 99.48 | 0.605 | 139 | VOC | − | − | − |
pentylbenzene | 97.73 | 0.594 | 205 | VOC | − | − | − |
2-oxopropyl acetate | 95.99 | 0.583 | 175 | VOC | − | − | − |
Phenol * | 95.99 | 0.583 | 182 | VOC | − | + | + |
1,2-diethylbenzene | 92.50 | 0.562 | 183 | VOC | − | − | − |
2-ethyl-1,3-dimethyl-benzene | 87.26 | 0.530 | 190 | VOC | − | − | − |
unknown isomer of ethyldimethyl benzene | 85.51 | 0.520 | - | - | − | − | − |
Styrene * | 75.04 | 0.456 | 145.5 | VOC | − | − | − |
methyl benzoate | 66.32 | 0.403 | 198.5 | VOC | − | − | − |
6-methyl-1,2,3,4-tetrahydronaphthalene | 62.83 | 0.382 | 226 | VOC | − | − | − |
2-ethyl-1,4-dimethylbenzene | 61.08 | 0.371 | 187 | VOC | − | − | − |
unknown compound | 59.34 | 0.361 | − | − | |||
2,3-dihydro-1H-indene | 54.10 | 0.329 | 176 | VOC | − | − | − |
n-propylbenzene | 52.36 | 0.318 | 159 | VOC | − | − | − |
1-methyl-4-propan-2-ylbenzene | 50.61 | 0.308 | 177 | VOC | − | − | − |
1-(furan-2-yl)ethanone | 48.87 | 0.297 | 168 | VOC | − | − | − |
2-methylpyrazine | 47.12 | 0.286 | 135 | VOC | − | − | − |
4-methyl-2,3-dihydro-1H-indene | 45.38 | 0.276 | 204 | VOC | − | − | − |
1,3-diethyl-5-methylbenzene | 43.63 | 0.265 | 200.7 | VOC | − | − | − |
5-methyl-2,3-dihydro-1H-indene | 41.88 | 0.255 | 204.1 | VOC | − | − | − |
unknown compound | 41.88 | 0.255 | - | - | − | − | |
dec-3-yn-1-ol | 36.65 | 0.223 | 130.5 | VOC | − | − | − |
1,4-dimetylopirydyne | 34.90 | 0.212 | 159 | VOC | − | − | − |
pentan-1-ol * | 33.16 | 0.202 | 138 | VOC | − | − | − |
azulene | 24.43 | 0.148 | 242 | VOC | − | − | − |
1-methyl-4-propan-2-yl-2-[(E)-prop-1-enyl]benzene | 22.69 | 0.138 | - | - | − | − | − |
propanoic acid * | 22.69 | 0.138 | 141.5 | VOC | − | − | − |
1,3-diethylbenzene | 20.94 | 0.127 | 182 | VOC | − | − | − |
unknown isomer of diethyl methylbenzene | 20.94 | 0.127 | - | - | − | − | |
2,4-diethyl-1-methylbenzene | 19.20 | 0.117 | 205 | VOC | − | − | − |
4-ethylpyridine | 15.71 | 0.095 | 168 | VOC | − | − | − |
unknown compound | 15.71 | 0.095 | − | − | |||
1,2,4-trimethylbenzene | 13.96 | 0.085 | 168 | VOC | − | − | − |
1,5-dimethyl-1,2,3,4-tetrahydronaphthalene | 13.96 | 0.085 | 247.5 | SVOC | − | − | − |
5,6-dimethyl-1,2,3,4-tetrahydronaphthalene | 13.96 | 0.085 | - | - | − | − | − |
2-methylpropanoic acid | 10.47 | 0.064 | 155 | VOC | − | − | − |
3,3-dimethyl-2H-inden-1-one | 8.73 | 0.053 | 122 | VOC | − | − | − |
1-methylnaphtalene | 8.73 | 0.053 | 120 | VOC | − | − | − |
5-methylfuran-2-carbaldehyde | 6.98 | 0.042 | 188 | VOC | − | − | − |
2-ethylpyrazine | 6.98 | 0.042 | 152.5 | VOC | − | − | − |
pyridine | 6.98 | 0.042 | 115 | VOC | − | − | − |
1-methyl-2-propylbenzene | 5.24 | 0.032 | 185 | VOC | − | − | − |
1,2-xylene | 5.24 | 0.032 | 144 | VOC | − | − | − |
hexa-2,4-diene, (E,E)- | 5.24 | 0.032 | 82 | VVOC | − | − | − |
1-phenylethanone | 1.75 | 0.011 | 202 | VOC | − | − | − |
2,5-dimethylpyrazine | 1.75 | 0.011 | 155 | VOC | − | − | − |
4-ethyl-1,2-dimethylbenzene | 1.75 | 0.011 | 236.5 | VOC | − | − | − |
cumene | 1.75 | 0.011 | 153 | VOC | + | − | − |
pentanoic acid * | 1.75 | 0.011 | 110.5 | VOC | − | − | − |
1,4-diethyl-2-methylbenzene | 0.10 | 0.001 | 207 | VOC | − | − | − |
2-methoxyphenol * | 0.10 | 0.001 | 205 | VOC | − | − | − |
3-methylbutanoic acid | 0.10 | 0.001 | 176 | VOC | − | − | − |
5-methyl-1,2,3,4-tetrahydronaphthalene | 0.10 | 0.001 | 234 | VOC | − | − | − |
Total | 16,452.46 | - | - | - | − | − | − |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białowiec, A.; Micuda, M.; Szumny, A.; Łyczko, J.; Koziel, J.A. Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2018, 23, 3208. https://doi.org/10.3390/molecules23123208
Białowiec A, Micuda M, Szumny A, Łyczko J, Koziel JA. Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules. 2018; 23(12):3208. https://doi.org/10.3390/molecules23123208
Chicago/Turabian StyleBiałowiec, Andrzej, Monika Micuda, Antoni Szumny, Jacek Łyczko, and Jacek A. Koziel. 2018. "Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry" Molecules 23, no. 12: 3208. https://doi.org/10.3390/molecules23123208
APA StyleBiałowiec, A., Micuda, M., Szumny, A., Łyczko, J., & Koziel, J. A. (2018). Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules, 23(12), 3208. https://doi.org/10.3390/molecules23123208