Analgesic Potential of Essential Oils
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
Plant Specie | Major Constituent | Animal Model | Mechanism of Action | Reference |
---|---|---|---|---|
Bunium persicum | γ-Terpinene (46.1%) | Acetic acid-induced writhings, Formalin | Peripheral and central | [25] |
Citrus limon | Limonene (52.77%) | Acetic acid-induced writhings, Formalin, Hot-plate | Central | [26] |
Cymbopogon citrates | Myrcene (27.83%) | Acetic acid-induced writhings, Tail-flick | Not informed | [27] |
Cymbopogon winterianus | Geraniol (40.06%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral and central | [28] |
Eucalyptus citriodora | Citronellal (83.50%) | Acetic acid-induced writhings, Tail-flick | Not informed | [27] |
Eugenia caryophyllata | Eugenol (87.34%) | Formalin, Tail-flick | Opioid | [29] |
Heracleum persicum | Hexyl butyrate (56.5%) | Acetic acid-induced writhings, Formalin | Peripheral | [30] |
Hofmeisteria schaffneri | Hofmeisterin III | Acetic acid-induced writhings, Hot-plate | Opioid | [31] |
Hyptis fruticosa | 1,8-Cineole (18.70% in leaves) | Acetic acid-induced writhings, Formalin | Peripheral and central | [32] |
α-Pinene (20.51% in flowers) | ||||
Hyptis pectinata | β-Caryophyllene (40.90%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral and central (opioid, nitrergic and cholinergic) | [33] |
Illicum lanceolatum | Myristicin (17.63%) | Acetic acid-induced writhings | Peripheral | [34] |
Lippia gracilis | Thymol (24.08%) | Acetic acid-induced writhings | Peripheral | [35] |
Carvacrol (44.43%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral and central (opioid, nitrergic and cholinergic) | [36] | |
Matricaria recutita | α-Bisabolol oxide B (25.5%) | Carrageenan-induced mechanical hypernociception | Peripheral | [37] |
Mentha x villosa | Piperitenone oxide | Acetic acid-induced writhings, Formalin, Hot-plate, Tail-flick | Peripheral | [38] |
Nepeta crispa | Not informed | Formalin, Tail-flick | Not informed | [39] |
Ocimum basilicum | Linalool (69.54%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral and Central (opioid) | [40] |
Ocimum gratissimum | Eugenol (67.17%) | Formalin, Hot-plate | Central (opioid) | [41] |
Ocimum micranthum | (E)-methyl cinnamate (33.6%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral | [42] |
Peperomia serpens | (E)-Nerolidol (38.0%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral | [43] |
Pimenta pseudocaryophyllus | Neral (27.59%) Geranial (36.49%) | Acetic acid-induced writhings | Peripheral | [44] |
Piper alyreanum | Caryophyllene oxide (11.5%) | Formalin | Peripheral | [45] |
Satureja hortensis | γ-Terpinen (50.5%) | Acetic acid-induced writhings, Formalin | Peripheral | [25] |
Senecio rufinervis | Germacrene (40.19%) | Acetic acid-induced writhings, Hot-plate | Peripheral and central | [46] |
Tetradenia riparia | 14-hydroxy-9-epi-caryophyllene (18.27%–24.36%) | Acetic acid-induced writhings | Not informed | [47] |
Teucrium stocksianum | δ-Cadinene (12.92%) | Acetic acid-induced writhings | Not informed | [48] |
Ugni myricoides | α-Pinene (52.1%) | Carrageenan-induced mechanical hypernociception; CFA-induced mechanical hypernociception; Partial ligation of sciatic nerve | Not informed | [49] |
Valeriana wallichii | δ-Guaiene (10%) | Acetic acid-induced writhings, Tail-flick | Peripheral | [50] |
Xylopia laevigata | γ-Muurolene (17.78%) | Acetic acid-induced writhings, Formalin | Peripheral | [51] |
Vanillosmopsis arborea | α-Bisabolol (70%) | Eye wiping (corneal nociception) Formalin | Peripheral and Central (TRVP1 cholinergic, adrenergic and serotoninergic) | [52] |
Zingiber oficinalle | Zingiberene (31.08%) | Acetic acid-induced writhings | Peripheral | [53] |
Zingiber zerumbet | Zerumbone (36.12%) | Acetic acid-induced writhings, Formalin, Hot-plate | Peripheral and central (opioid) | [54] |
Not informed | Acetic acid-induced writhings, Formalin | Peripheral and Central (TRVP1 glutamatergic, nitrergic and ATP-sensitive K+ channel blockade) | [55] |
3.1. Bunium persicum Essential Oil
3.2. Citrus limon Essential Oil
3.3. Cymbopogon citrates and Cymbopogon winterianus Essential Oils
3.4. Eucalyptus citriodora Essential Oil
3.5. Eugenia caryophyllata Essential Oil
3.6. Heracleum persicum Essential Oil
3.7. Hofmeisteria schaffneri Essential Oil
3.8. Hyptis fruticosa and Hyptis pectinata (L.) Poit Essential Oils
3.9. Illicum lanceolatum Essential Oil
3.10. Lippia gracilis Essential Oil
3.11. Matricaria recutita L. Essential Oil
3.12. Mentha x villosa Huds Essential Oil
3.13. Nepeta crispa Willd. Essential Oil
3.14. Ocimum basilicum, Ocimum gratissimum and Ocimum micranthum Essential Oils
3.15. Peperomia serpens (Sw.) Loud Essential Oil
3.16. Pimenta pseudocaryophyllus (Gomes) L.R. Landrum Essential Oil
3.17. Piper alyreanum C.DC Essential Oil
3.18. Satureja hortensis L. Essential Oil
3.19. Senecio rufinervis D.C. Essential Oil
3.20. Tetradenia riparia (Hochst.) Codd Essential Oil
3.21. Teucrium stocksianum Essential Oil
3.22. Ugni myricoides (Kunth) O. Berg Essential Oil
3.23. Valeriana wallichii DC Essential Oil
3.24. Xylopia laevigata (Mart.) R.E.Fries Essential Oil
3.25. Vanillosmopsis arborea Baker Essential Oil
3.26. Zingiber oficinalle and Zingiber zerumbet Essential Oils
4. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interests
Abbreviations
5-HT: 5-hydroxytryptamine |
AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
CB1/CB2: cannabinoid receptor type 1 and 2 |
CFA: complete Freund’s adjuvant |
cGMP: cyclic guanosine monophosphate |
COX: cyclooxygenase |
GABA: gamma-Aminobutyric acid |
GC/MS: gas chromatography/mass spectrometry |
HPLC: high performance liquid chromatography |
IL-1β: interleukin 1β |
IL-8: interleukin 8 |
L-NAME: N-nitro-l-arginine methyl Ester |
NMDA: N-methyl d-aspartate |
NO: nitric oxide |
NOS: nitric oxide synthase |
NSAIDs: non-steroidal aintiinflammatory drugs |
PCPA: p-chlorophenylalanine |
PGE2: prostaglandin E2 |
PGF2α: Prostaglandin F2α |
PGI2: prostacyclin |
PGs: prostaglandins |
PKC: protein kinase C |
PMA: phorbol 12-myrstrato 13-aspartate |
TNFα: tumor necrosis factor α |
TRPV1: transient receptor potential vanilloid 1 |
References
- IASP Pain Terminology. Available online: http://www.iasp-pain.org/AM/Template.cfm?Section=Pain_Definitions&Template=/CM/HTML Display.cfm&ContentID=1728#Pain (accessed on 8 December 2010).
- Merky, L.A.; Breslauer, K.J.; Frank, R.; Blockers, H. Predicting DNA duplex stability from the base sequence. Biochemistry 1986, 83, 3746–3750. [Google Scholar]
- Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacol. Rev. 2001, 53, 597–652. [Google Scholar] [PubMed]
- Negus, S.S.; Vanderah, T.W.; Brandt, M.R.; Bilsky, E.J.; Becerra, L.; Borsook, D. Preclinical assessment of candidate analgesic drugs: Recent advances and future challenges. J. Pharmacol. Exp. Ther. 2006, 319, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Hunskaar, S.; Hole, K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 1987, 30, 103–114. [Google Scholar] [CrossRef]
- Rosland, J.H.; Tjφlsen, A.; Mæhle, B.; Hole, K. The formalin test in mice: Effect of formalin concentration. Pain 1990, 42, 235–242. [Google Scholar] [CrossRef]
- Woolfe, G.; MacDonald, A.D. The evaluation of analgesic action of pethidine hydrochloride (demerol). Pharmacol. Exp. Ther. 1944, 80, 300–307. [Google Scholar]
- Eddy, N.B.; Touchberry, C.F.; Lieberman, J.E. Synthetic analgesics I Methadone isomers and derivatives. Pharmacol. Exp. Ther. 1950, 98, 121–137. [Google Scholar]
- D’Amour, F.E.; Smith, D.L. A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 1941, 72, 74–79. [Google Scholar]
- Yaksh, T.L.; Rudy, T.A. Narcotic analgestics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 1978, 4, 299–359. [Google Scholar] [CrossRef]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Marchand, F.; Mauro, P.; Stephen, B.M. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 2005, 6, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, V.; Guangchen, L.I. Differential effects of crf1 and crf2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J. Neurophysiol. 2007, 97, 3893–3904. [Google Scholar]
- Almeida, R.N.; Navarro, D.S.; Barbosa-Filho, J.M. Plants with central analgesic activity. Phytomedicine 2001, 8, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Vigan, M. Essential oils: Renewal of interest and toxicity. Eur. J. Dermatol. 2010, 20, 685–692. [Google Scholar] [PubMed]
- Hammer, K.A.; Carson, C.F. Antibacterial and antifungal activities of essential oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons: Chichester, UK, 2011; pp. 255–306. [Google Scholar]
- Almeida, R.N.; Agra, M.F.; Maior, F.N.S.; de Sousa, D.P. Essential Oils and Their Constituents: Anticonvulsant Activity. Molecules 2011, 16, 2726–2742. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, D.P. Bioactive Essential Oils and Cancer, 1st ed.; Springer Publishing Co.: New York, NY, USA, 2015; volume 1, pp. 1–292. [Google Scholar]
- Elisabetsky, E.; Coelho de Sousa, G.P.; Santos, M.A.C.; Siqueira, I.R.; Amador, T.A. Sedative properties of linalool. Fitoterapia 1995, 66, 407–414. [Google Scholar]
- do Amaral, J.F.; Silva, M.I.; Neto, M.R.; Neto, P.F.; Moura, B.A.; de Melo, C.T.; de Araújo, F.L.; de Sousa, D.P.; de Vasconcelos, P.F.; de Vasconcelos, S.M.; et al. Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol. Pharm. Bull. 2007, 30, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.S.N.; Menezes, A.M.S.; Viana, G.S.B. Effect of myrcene on nociception in mice. J. Pharm. Pharmacol. 1990, 42, 877–878. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.; Rao, V.S.N. Antiinflammatory and Antinociceptive Effects of 1,8-Cineole a Terpenoid Oxide Present in many Plant Essential Oils. Phytoter. Res. 2000, 14, 240–244. [Google Scholar] [CrossRef]
- De Sousa, D.P. Analgesic-like Activity of Essential Oils Constituents. Molecules 2011, 16, 2233–2252. [Google Scholar] [CrossRef] [PubMed]
- Barrot, M. Tests and models of nociception and pain in rodents. Neuroscience 2012, 211, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Sajjadi, S.E.; Zomorodkia, M. Antinociceptive and anti-inflammatory activities of Bunium persicum essential oil, hydroalcoholic and polyphenolic extracts in animal models. Pharm. Biol. 2011, 2, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Campêlo, L.M.L.; Almeida, A.A.C.; Freitas, R.L.M.; Cerqueira, G.S.; Sousa, G.F.; Saldanha, G.B.; Feitosa, C.M.; Freitas, R.M. Antioxidant and Antinociceptive Effects of Citrus limon Essential Oil in Mice. J. Biomed. Biotechnol. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Gbenou, J.D.; Ahounou, J.F.; Akakpo, H.B.; Laleye, A.; Yayi, E.; Gbaguidi, F.; Baba-Moussa, L.; Darboux, R.; Dansou, P.; Moudachirou, M.; et al. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Mol. Biol. Rep. 2012, 40, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Leite, B.L.; Bonfim, R.R.; Antoniolli, A.R.; Thomazzi, S.M.; Araújo, A.A.; Blank, A.F.; Estevam, C.S.; Cambui, E.V.; Bonjardim, L.R.; Albuquerque Júnior, R.L.; et al. Assessment of antinociceptive, anti-inflammatory and antioxidant properties of Cymbopogon winterianus leaf essential oil. Pharm. Biol. 2010, 48, 1164–1169. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.; Mehta, A.K.; Mediratta, P.K.; Sharma, K.K. Acute effect of essential oil of Eugenia caryophyllata on cognition and pain in mice. Naunyn Schmiedeberg Arch. Pharmacol. 2012, 385, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Sajjadi, S.E.; Heshmati, M. Anti-inflammatory and analgesic properties of Heracleum persicum essential oil and hydroalcoholic extract in animal models. J. Ethnopharmacol. 2009, 124, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Angeles-López, G.; Pérez-Vásquez, A.; Hernández-Luis, F.; Déciga-Campos, M.; Bye, R.; Linares, E.; Mata, R. Antinociceptive effect of extracts and compounds from Hofmeisteria schaffneri. J. Ethnopharmacol. 2010, 131, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.R.; Antoniolli, A.R.; Guimarães, A.G.; Andrade, D.M.; Jesus, H.C.; Alves, P.B.; Bannet, L.E.; Patrus, A.H.; Azevedo, E.G.; Queiroz, D.B.; et al. Bioassay-guided evaluation of antinociceptive properties and chemical variability of the essential oil of Hyptis fruticose. Phytother. Res. 2011, 25, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Raymundo, L.J.; Guilhon, C.C.; Alviano, D.S.; Matheus, M.E.; Antoniolli, A.R.; Cavalcanti, S.C.; Alves, P.B.; Alviano, C.S.; Fernandes, P.D. Characterisation of the anti-inflammatory and antinociceptive activities of the Hyptis pectinata (L.) Poit essential oil. J. Ethnopharmacol. 2011, 134, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, B.; Wang, G. Chemical composition, antinociceptive and anti-inflammatory properties of essential oil from the roots of Illicium lanceolatum. Nat. Prod. Res. 2012, 26, 1712–1714. [Google Scholar] [CrossRef] [PubMed]
- Mendes, S.S.; Bomfim, R.R.; Jesus, H.C.R.; Alves, P.B.; Blank, A.F.; Estevam, C.S.; Antoniolli, A.R.; Thomazzi, S.M. Evaluation of the analgesic and anti-inflammatory effects of the essential oil of Lippia gracilis leaves. J. Ethnopharmacol. 2010, 129, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Guilhon, C.C.; Raymundo, L.J.; Alviano, D.S.; Blank, A.F.; Arrigoni-Blank, M.F.; Matheus, M.E.; Cavalcanti, C.S.; Alviano, P.D. Fernandes, Characterisation of the anti-inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J. Ethnopharmacol. 2011, 135, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Tomić, M.; Popović, V.; Petrović, S.; Stepanović-Petrović, R.; Micov, A.; Pavlović-Drobac, M.; Couladis, M. Antihyperalgesic and antiedematous activities of bisabolol-oxides-rich matricaria oil in a rat model of inflammation. Phytother. Res. 2014, 28, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.J.; Linard, C.F.; Azevedo-Batista, D.; Oliveira, A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone oxide in mice. Braz. J. Med. Biol. Res. 2009, 42, 655–659. [Google Scholar] [PubMed]
- Ali, T.; Javan, M.; Sonboli, A.; Semnanian, S. Evaluation of the antinociceptive and anti-inflammatory effects of essential oil of Nepeta pogonosperma Jamzad et Assadi in rats. DARU J. Pharm. Sci. 2012, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, A.M.; Onofre, A.S.; Lira, A.F.; Alves, P.B.; Blank, A.F.; Antoniolli, A.R.; Marchioro, M.; Estevam, C.D.S.; de Araujo, B.S. Chemical composition, acute toxicity and antinociceptive activity of the essential oil of a plant breeding cultivar of basil (Ocimum basilicum L.). Planta Med. 2010, 77, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Paula-Freire, L.I.G.; Andersen, M.L.; Molska, G.R.; Köhn, D.O.; Carlini, E.L.A. Evaluation of the antinociceptive activity of Ocimum gratissimum L. (Lamiaceae) essential oil and its isolated active principles in mice. Phytother. Res. 2013, 27, 1220–1224. [Google Scholar] [CrossRef] [PubMed]
- Pinho, J.P.; Silva, A.S.; Pinheiro, B.G.; Sombra, I.; Bayma, J.C.; Lahlou, S.; Sousa Magalhães, P.J. Antinociceptive and antispasmodic effects of the essential oil of Ocimum micranthum: Potential anti-inflammatory properties. Planta Med. 2012, 78, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, B.G.; Silva, A.S.; Souza, G.E.; Figueiredo, J.G.; Cunha, F.Q.; Lahlou, S.; da Silva, J.K.; Maia, J.G.; Sousa, P.J. Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Lou. J. Ethnopharmacol. 2011, 138, 479–486. [Google Scholar] [CrossRef] [PubMed]
- De Paula, J.A.M.; Silva, M.R.R.; Costa, M.P.; Diniz, D.G.A.; Sá, F.A.S.; Alves, S.F.; Costa, E.A.; Lino, R.; de Paula, J.R. Phytochemical Analysis and Antimicrobial, Antinociceptive and Anti-Inflammatory Activities of Two Chemotypes of Pimenta pseudocaryophyllus (Myrtaceae). Evid. Based Complement. Altern. Med. 2012, 2012, 15. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.K.; Ballico, J.L.; Lapa, F.R.; Gonçalves, H.P.; de Souza, L.M.; Iacomini, M.; Werner, M.F.; Baggio, C.H.; Pereira, I.T.; da Silva, L.M.; et al. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents. J. Ethnopharmacol. 2012, 142, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Bisht, G.; Mazumdar, P.M.; Sah, S.P. Chemical composition and analgesic activity of Senecio rufinervis essential oil. Pharm. Biol. 2010, 48, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Gazim, Z.C.; Amorim, A.C.; Hovell, A.M.; Rezende, C.M.; Nascimento, I.A.; Ferreira, G.A.; Cortez, D.A. Seasonal variation, chemical composition and analgesic and antimicrobial activities of the essential oil from leaves of Tetradenia riparia (Hochst.) Codd in southern Brazil. Molecules 2010, 15, 5509–5524. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.M.; Ullah, F.; Shah, S.M.H.; Zahoor, M.; Sadiq, A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium Stocksianum bioss collected from the North West of Pakistan. BMC Complement. Altern. Med. 2012, 12, 244. [Google Scholar] [CrossRef] [PubMed]
- Quintão, N.L.; da Silva, G.F.; Antonialli, C.S.; Rocha, L.W.; Cechinel Filho, V.; Cicció, J.F. Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice. Planta Med. 2010, 76, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Sah, S.P.; Mathela, C.S.; Chopra, K. Elucidation of possible mechanism of analgesic action of Valeriana wallichii DC chemotype (patchouli alcohol) in experimental animal models. Indian J. Exp. Biol. 2010, 48, 289–293. [Google Scholar] [PubMed]
- Queiroz, J.C.; Antoniolli, A.R.; Quintans-Júnior, L.J.; Brito, R.G.; Barreto, R.S.; Costa, E.V.; da Silva, T.B.; Prata, A.P.; de Lucca, W., Jr.; Almeida, J.R.; et al. Evaluation of the anti-inflammatory and antinociceptive effects of the essential oil from leaves of Xylopia laevigata in experimental models. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Leite, L.H.I.; Leite, G.O.; Coutinho, T.S.; Sousa, S.D.G.; Sampaio, R.S.; da Costa, J.G.M.; Menezes, A.R.; Campos, I.R.A. Topical Antinociceptive Effect of Vanillosmopsis arborea Baker on Acute Corneal Pain in Mice. Evid. Based Complement. Altern. Med. 2014, 6. [Google Scholar] [CrossRef]
- Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, Anti-Inflammatory and Antinoceptive Activities of Essential Oil from Ginger. Indian J. Physiol. Pharmacol. 2013, 57, 51–62. [Google Scholar] [PubMed]
- Sulaiman, M.R.; Mohamad, T.A.S.T.; Mossadeq, W.M.S.; Moi, S.; Yusof, M.; Mokhtar, A.F.; Zakaria, Z.A.; Israf, D.A.; Lajis, N. Antinociceptive Activity of the Essential Oil of Zingiber zerumbet. Planta Med. 2010, 76, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.H.; Akhtar, M.N.; Mohamad, A.S.; Perimal, E.K.; Akira, A.; Israf, D.A.; Lajis, N.; Sulaiman, M.R. Antinociceptive effect of the essential oil of Zingiber zerumbet in mice: Possible mechanisms. J. Ethnopharmacol. 2011, 137, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, N.; Barzegar, M.; Sahari, M.A.; Naghdibadi, H. Antioxidant activity and chemical characterization of essential oil of Bunium persicum. Plant Foods Hum. Nutr. 2008, 63, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Collier, H.O.J.; Dinneen, J.C.; Johnson, C.A.; Schneider, C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br. J. Pharmacol. Chem. 1968, 32, 295–310. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Del Río, J.A. Uses and properties of citrus flavonoids. J. Agric. Food Chem. 1997, 45, 4505–4515. [Google Scholar] [CrossRef]
- Elangovan, V.; Sekar, N.; Govindasamy, S. Chemopreventive potential of dietary bioflavonoids against 20-methylcholanthrene-induced tumorigenesis. Cancer Lett. 1994, 87, 107–113. [Google Scholar] [CrossRef]
- Shibata, M.; Ohkubo, T.; Takahashi, H.; Inoki, R. Modified formalin test: Characteristic biphasic pain response. Pain 1989, 38, 347–352. [Google Scholar] [CrossRef]
- Lorenzi, H.; Matos, F.J.A. Plantas medicinais no Brasil: Nativas e exóticas. Nova Odessa, São Paulo Plantarum 2003, 1, 115–118. [Google Scholar]
- Barbosa-Filho, J.M.; Vasconcelos, T.H.C.; Alencar, A.A.; Batista, L.M.; Oliveira, R.A.G.; Guedes, D.N.; Falcão, H.S.; Moura, M.D.; Diniz, M.F.F.M.; Modesto-Filho, J. Plants and their active constituents from South, Central and North America with hypoglycemic activity. Rev. Bras. Farmacogn. 2005, 15, 392–413. [Google Scholar] [CrossRef]
- Taesotikul, T.; Panthong, A.; Kanjanapothi, D.; Verpoorte, R.; Scheffer, J.J.C. Anti-inflammatory, antipyretic and antinociceptive activities of Tabernaemontana pandacaqui Poir. J. Ethnopharmacol. 2003, 84, 31–33. [Google Scholar] [CrossRef]
- Derardt, R.; Jougney, S.; Delevalcee, F.; Falhourt, M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur. J. Pharmacol. 1980, 51, 17–24. [Google Scholar] [CrossRef]
- Tjolsen, A.; Berge, O.G.; Hunskaar, S.; Rosland, J.H.; Hole, K. The formalin test: An evaluation of the method. Pain 2012, 51, 5–17. [Google Scholar] [CrossRef]
- Yeomans, D.C.; Pirec, V.; Proudfit, H.K. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: Behavioral evidence. Pain 1996, 68, 133–140. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, E. caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif. 2006, 39, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.C.; Thakur, V.S. In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses 2006, 49, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.; Bharal, N.; Mediratta, P.K.; Kaur, I.; Sharma, K.K. Antiinflammatory, immunomodulatory and antinociceptive activity of Terminalia arjuna Roxb bark powder in mice and rats. Indian J. Exp. Biol. 2009, 47, 577–583. [Google Scholar] [PubMed]
- Park, S.H.; Sim, Y.B.; Lee, J.K.; Kim, S.M.; Kang, Y.J.; Jung, J.S.; Suh, H.W. The analgesic effects and mechanisms of orally administered eugenol. Arch. Pharm. Res. 2011, 34, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Holtman, J.R.; Wala, E.P. Characterization of morphine-induced hyperalgesia in male and female rats. Pain 2005, 114, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.C. Trease and Evans Pharmacognosy, 14th ed.; W.B. Saunders Company: London, UK, 1996; p. 45. [Google Scholar]
- Scheffer, J.J.; Hiltunen, R.; Aynehchi, Y.; von Schantz, M.; Svendsen, A.B. Composition of Essential Oil of Heracleum persicum Fruits. Planta Med. 1984, 50, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Mojab, F.; Rustaiyan, A.H.; Jasbi, A.R. Essential oils of Heracleum Persicum Desf.ex Fischer leaves. J. Pharm. Sci. 2002, 10, 6–8. [Google Scholar]
- Sefidkon, F.; Dabiri, M.; Mohammad, N. Analysis of the oil of Heracleum persicum L. (leaves and flowers). J. Essent. Oil Res. 2004, 16, 295–297. [Google Scholar] [CrossRef]
- Mojab, F.; Nickavar, B. Composition of the Essential Oil of the Root of Heracleum persicum from Iran. Iran. J. Pharm. Res. 2003, 245–247. [Google Scholar]
- Vogel, H.G.; Vogel, W.H. Drug Discovery and Evaluation; Springer: Berlin, Germany, 1997; p. 1. [Google Scholar]
- Pérez-Vásquez, A.; Reyes, A.; Linares, E.; Bye, R.; Mata, R. Phyto- toxins from Hofmeisteria schaffneri: Isolation and synthesis of 2-(2-hydroxy-4-methylphenyl)-2 oxoethyl acetate. J. Nat. Prod. 2005, 68, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vásquez, A.; Reyes, A.; Linares, E.; Bye, R.; Cerda-García-Rojas, C.M.; Mata, R. Phyto-toxic activity and conformational analysis analogs from Hofmeisteria schaffneri. Phytochemistry 2008, 69, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Haeseler, G.; Maue, D.; Grosskreutz, J.; Bufler, J.; Nentwig, B.; Piepenbrock, S.; Dengler, R.; Leuwer, M. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur. J. Anesthesiol. 2002, 19, 571–579. [Google Scholar] [CrossRef]
- Elliot, A.A.; Elliot, J.R. Voltage-dependent inhibition of RCK1K+ channels by phenol, p-cresol, and benzyl alcohol. Mol. Pharmacol. 1997, 51, 475–483. [Google Scholar]
- Mohammadi, B.; Haeseler, G.; Leuwer, M.; Dengler, R.; Krampfl, K.; Bufler, J. Structural requirements of phenol derivatives for direct activation of chloride currents via GABAA receptors. Eur. J. Pharmacol. 2001, 421, 85–91. [Google Scholar] [CrossRef]
- Anamura, S.; Dohi, T.; Shirakawa, M.; Okamoto, H.; Tsujimoto, A. Effects of phenolic dental medicaments on prostaglandin synthesis by microsomes of bovine tooth pulp and rabbit kidney medulla. Arch. Oral Biol. 1988, 33, 555–560. [Google Scholar] [CrossRef]
- Beer, A.M.; Lukanov, J. Sagorchev, Effect of thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine 2007, 14, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Harley, R.M. Evolution and distribution of Eriope (Labiatae) and its relation in Brazil. In Proceedings of a Workshop on Neotropical Distribution Patterns, Rio de Janeiro, Brazil, 12–16 January 1988; Vanzolini, P.E., Heyer, W.R., Eds.; Academia Brasileira de Ciências: Rio de Janeiro, Brazil; pp. 71–120.
- Joly, A.B. Botânica: Introdução à Taxonomia Vegetal, 12th ed.; Companhia Editora Nacional: São Paulo, Brazil, 1998. [Google Scholar]
- Amresh, G.; Reddy, G.D.; Rao Ch, V.; Singh, P.N. Evaluation of anti-inflammatory activity of Cissampelos pareira root in rats. J. Ethnopharmacol. 2007, 110, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Liapi, C.; Anifandis, G.; Chinou, I.; Kourounakis, A.P.; Theodosopoulos, S.; Galanopoulou, P. Antinociceptive properties of 1,8-Cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents. Planta Med. 2007, 73, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Pol, O. The involvement of the nitric oxide in the effects and expression of opioid receptors during peripheral inflammation. Curr. Med. Chem. 2007, 14, 1945–1955. [Google Scholar] [PubMed]
- Moldenke, H.N. Materials toward a monograph of the genus Lippia. I. Phytologia 1965, 12, 331–334. [Google Scholar]
- Jansen-Jacobs, M.J. Verbenaceae. In Flora of the Guianas, Series A: Phanerogams, Fascicle 4 (148); Görts-van Rijn, A.R.A., Ed.; Koeltz Scientific Books: Königstein, Germany, 1988; Volume 1, p. 116. [Google Scholar]
- Bezerra, P.; Fernandes, A.G.; Craveiro, A.A.; Andrade, C.H.S.; Matos, F.J.A.; Alencar, J.W.; Machado, M.I.L.; Viana, G.S.B.; Matos, F.F.; Rouquayrol, M.Z. Composição química e atividade biológica de óleos essenciais de plantas do Nordeste-gênero. Lippia. Cienc. Cult. 1981, 33, 1–14. [Google Scholar]
- Matos, F.J.A.; Machado, M.I.L.; Craveiro, A.A.; Alencar, J.W.; Silva, M.G.V. Medicinal plants Northeast Brazil containing thymol and carvacrol-Lippia sidoides Cham. and L. gracilis H.B.K (Verbenaceae). J. Essent. Oil Res. 1999, 11, 666–668. [Google Scholar] [CrossRef]
- Silva, W.J.; Dória, G.A.A.; Maia, R.T.; Nunes, R.S.; Carvalho, V.; Blank, A.F.; Alves, P.B.; Marçal, R.M.; Cavalcanti, S.C.H. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 2008, 99, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, F.S.; Peso-Aguiar, M.C.; Assuncão-Albuquerque, M.J. Distribution, feeding behavior and control strategies of the exotic land snail Achatina fulica (Gastropoda: Pulmonata) in the northeast of Brazil. Braz. J. Biol. 2008, 68, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Thakur, S.; Mogil, J.S.; Taché, Y.; Mayer, E.A. Differential effects of chemical and mechanical colonic irritation on behavioral pain response to intraperitoneal acetic in mice. Pain 1999, 81, 163–185. [Google Scholar] [CrossRef]
- Ikeda, Y.; Ueno, A.; Naraba, H.; Oh-Ishi, S. Involvement of vanilloid receptor VR1 and prostanoids in the acetic acid-induced writhing response of mice. Life Sci. 2001, 69, 2911–2919. [Google Scholar] [CrossRef]
- Blumenthal, M.; Hall, T.; Goldberg, A. The ABC Clinical Guide to Herbs; American Botanical Council: Austin, TX, USA, 2003; pp. 59–68. [Google Scholar]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Маtricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Sticher, O. Ätherische Öle und Drogen, die ätherisches Öl enthalten. In Pharmacognosie—Phytopharmazie; Hänsel, R., Sticher, O., Eds.; Springer Medizin Verlag: Heidelberg, Germany, 2007; Volume 1, pp. 1086–1087. [Google Scholar]
- Tomić, M.A.; Vučković, S.M.; Stepanović-Petrović, R.M.; Ugrešić, N.; Prostran, M.S.; Bošković, B. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004, 111, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003, 225, 115–121. [Google Scholar] [PubMed]
- Rocha, N.F.; Rios, E.R.; Carvalho, A.M. Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn Schmiedeberg Arch. Pharmacol. 2011, 384, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Ammon, H.P.T.; Sabieraj, J.; Kaul, R. Mekanismus der antiphlogistischen Wirkung von Kamillenextrakten und-inhalttstoffen. Deutsch Apoth. Ztg. 1996, 136, 1821–1834. [Google Scholar]
- Kim, S.; Jung, E.; KimJ, H.; Park, Y.H.; Lee, J.; Park, D. Inhibitory effects of (−)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem. Toxicol. 2011, 49, 2580–2585. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.M.H.; Gonçalves, J.C.R.; Cruz, J.S.; Araújo, D.A.M. Evaluation of the sesquiterpene (−)-α-bisabolol as a novel peripheral nervous blocker. Neurosci. Lett. 2010, 472, 11–15. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Leal-Cardoso, J.H.; Fonteles, M.C. Pharmacological effects of essential oils of plants of the northeast of Brazil. An. Acad. Bras. Ciênc. 1999, 71, 207–213. [Google Scholar] [PubMed]
- Mozaffarian, V. A Dictionary of Iranian Plant Names; Farhang Mo’aser Publishers: Tehran, Iran, 1996; Volume 1, p. 1. [Google Scholar]
- Sonboli, A.; Salehi, P.; Yousefzadi, M. Antimicrobial activity and chemical composition of the essential oil of Nepeta crispa Willd. from Iran. Z. Naturforsch. 2004, 59, 653–656. [Google Scholar] [CrossRef]
- De Paula, J.P.; Carneiro, M.R.G.; Paumgartten, F.J.R. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J. Ethnopharmacol. 2003, 88, 253–260. [Google Scholar] [CrossRef]
- Makonnen, E.; Debella, A.; Zerihun, L.; Abebe, D.; Teka, F. Antipyretic properties of the aqueous and ethanol extracts of the leaves of Ocimum suave and Ocimum lamiifolium in mice. J. Ethnopharmacol. 2003, 88, 85–91. [Google Scholar] [CrossRef]
- Telci, I.; Bayram, E.; Yilmaz, G.; Avci, B. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochem. Syst. Ecol. 2006, 34, 489–497. [Google Scholar] [CrossRef]
- Pessoa, L.M.; Morais, S.M.; Bevilaqua, C.M.; Luciano, J.H.S. Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Vet. Parasitol. 2002, 109, 59–63. [Google Scholar] [CrossRef]
- Adigüzel, A.; Gulluce, M.; Sengul, M.; Ogutcu, H.; Sahin, F.; Karaman, I. Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turk. J. Biol. 2005, 29, 155–160. [Google Scholar]
- Franca, C.S.; Menezes, F.S.; Costa, L.C.B.; Niculau, E.S.; Alves, P.B.; Pinto, J.E.B.; Marçal, R.M. Analgesic and antidiarrheal properties of Ocimum selloi essential oil in mice. Fitoterapia 2008, 79, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Marchioro, M.; Arrigoni-Blank, M.F.; Mourão, R.H.V.; Antoniolli, A.R. Anti-nociceptive activity of the aqueous extract of Erythrina velutina leaves. Fitoterapia 2005, 76, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.A.; Sulainamn, M.R.; Gopalan, H.K.; Ghani, Z.D.F.A.; Mohd, R.N.S.R.; Mat Jais, A.M.; Abdullah, F. Antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract in experimental animal model. Yakugaku Zasshi 2007, 127, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.S. Peripherally-acting opioids. Pain Physician 2008, 11, 121–132. [Google Scholar]
- Peana, A.T.; de Montis, G.; Sechi, S.; Sircana, G.; DʼAquila, P.S.; Pippia, P. Effects of (−)-linalool in the acute hyperalgesia induced by carrageenan, l-glutamate and prostaglandin E2. Eur. J. Pharmacol. 2004, 497, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Fürst, S. Transmitters involved in antinociception in the spinal cord. Brain Res. Bull. 1999, 48, 129–141. [Google Scholar] [CrossRef]
- Argoff, C. Mechanisms of pain transmission and pharmacologic management. Curr. Med. Res. Opin. 2011, 27, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.; Passos, G.F.; Vitor, C.E.; Koepp, J.; Mazzuco, T.L.; Pianowski, L.F.; Campos, M.M.; Calixto, J.B. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br. J. Pharmacol. 2007, 151, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Passos, G.F.; Fernandes, E.S.; da Cunha, F.M.; Ferreira, J.; Pianowski, L.F.; Campos, M.M.; Calixto, J.B. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J. Ethnopharmacol. 2010, 110, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.F.; Marcon, R.; Dutra, R.C.; Claudino, R.F.; Cola, M.; Leite, D.F.; Calixto, J.B. β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway. Am. J. Pathol. 2011, 178, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, G.; Samain, M.S.; Reynders, M.; Goetghebeur, P. Taxonomy of the Peperomia species (Piperaceae) with pseudo-epiphyllous inflorescences, including four new species. Bot. J. Linnean Soc. 2008, 157, 177–199. [Google Scholar] [CrossRef]
- Schultes, R.E.; Raffauf, R.F. The Healing Forest: Medicinal and Toxic Plants of the Northwest Amazonia; Dioscorides Press: Portland, OR, USA, 1990; Volume 1, p. 1. [Google Scholar]
- Silva, A.C.M.; Andrade, E.H.A.; Carreira, L.M.M.; Guimarães, E.F.; Maia, J.G.S. Essential oil Composition of Peperomia serpens (Sw.) Loud. J. Essent. Oil Res. 2008, 18, 269–271. [Google Scholar] [CrossRef]
- Vinegar, R.; Truax, J.F.; Selph, J.L.; Johnston, P.R. Antagonism of pain and hyperalgesia anti-inflammatory drugs. Handb. Exp. Pharmacol. 1979, 50, 208–222. [Google Scholar]
- Correa, C.R.; Calixto, J.B. Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br. J. Pharmacol. 1996, 110, 193–198. [Google Scholar] [CrossRef]
- Lima, M.E.L.; Cordeiro, Y.; Young, M.C.M.; Sobral, M.E.G.; Moreno, P.R.H. Antimicrobial activity of the essential oil from two specimens of Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae) native from São Paulo State—Brazil. Pharmacologyonline 2006, 3, 589–593. [Google Scholar]
- Paula, J.A.M.; Paula, J.R.; Bara, M.T.F.; Rezende, M.H.; Ferreira, H.D. Pharmacognostic study about Pimenta pseudocaryophyllus (Gomes) L.R. Landrum leaves—Myrtaceae. Braz. J. Pharmacogn. 2008, 18, 265–278. [Google Scholar] [CrossRef]
- Dos Santos, B.C.B.; da Silva, J.C.T.; Guerrero, P.G.; Leitão, G.G.; Barata, L.E.S. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography. J. Chromatogr. A 2009, 1216, 4303–4306. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, A.B.; Yaksh, T.L. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J. Pharmacol. Exp. Ther. 1992, 263, 136–146. [Google Scholar] [PubMed]
- Santos, A.R.S.; Vedana, E.M.; de Freitas, G.A. Antinociceptive effect of meloxicam in reurogenic and inflammatory nociceptive models in mice. Inflamm. Res. 1998, 47, 302–307. [Google Scholar] [CrossRef] [PubMed]
- De Campos, R.O.; Alves, R.V.; Kyle, D.J.; Chakravarty, S.; Mavunkel, B.J.; Calixto, J.B. Antioedematogenic and antinociceptive actions of NPC 18521, a novel bradykinin B2 receptor antagonist. Eur. J. Pharmacol. 1996, 316, 277–286. [Google Scholar] [CrossRef]
- Santos, A.R.S.; Calixto, J.B. Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997, 31, 381–389. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Ghannadi, A.; Pezeshkian, S.K. Antinociceptive and anti inflammatory effects of Satureja hortensis L. extracts and essential oil. J. Ethnopharmacol. 2002, 82, 83–87. [Google Scholar] [CrossRef]
- Gulluce, M.; Sokmen, M.; Daferera, D.; Agar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sokmen, A.; Sahin, F. In vitro antibacterial, antifungal and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Sadraei, H.; Ghannadi, A.R.; Mohseni, M. Antispasmodic and anti-diarrhoeal effect of Satureja hortensis L. essential oil. J. Ethnopharmacol. 2000, 71, 187–192. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Zolfaghari, B.; Yousefi, A. Antinociceptive and anti-inflammatory activities of Satureja hortensis seed essential oil, hydroalcoholic and polyphenolic extracts in animal models. Med. Princ. Pract. 2012, 21, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Le, B.D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacology 2001, 53, 597–652. [Google Scholar]
- Gupta, R.K. Flora Nainitalensis: A Handbook of the Flowering Plants of Nainital; Navyug Traders: New Delhi, India, 1968. [Google Scholar]
- Santos, F.A.; Jeferson, F.A.; Santos, C.C.; Silveira, E.R.; Rao, V.S. Antinociceptive effect of leaf essential oil from Croton sonderianus in mice. Life Sci. 2005, 77, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
- Sayyah, M.; Saroukhani, G.; Peirovi, A.; Kamalinejad, M. Analgesic and anti-inflammatory activity of the leaf essential oil of Laurus nobilis Linn. Phytother. Res. 2003, 17, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Ghannadi, A.; Sharif, B. Anti-inflammatory and analgesic properties of leaf extracts and essential oil of Lavandula angustifolia Mill. J. Ethnopharmacol. 2003, 89, 67–71. [Google Scholar] [CrossRef]
- Golshani, S.; Karamkhani, F.; Monsef-esfehani, H.R.; Abdollahi, M. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J. Pharm. Pharm. Sci. 2004, 7, 76–79. [Google Scholar] [PubMed]
- Koudou, J.; Abena, A.A.; Ngaissona, P.; Bessière, J.M. Chemical composition and pharmacological activity of essential oil of Canarium schweinfurthii. Fitoterapia 2005, 76, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.S.; Gomes, P.B.; Lucetti, D.L.; Diogenes, J.P.; Sousa, F.C.; Silva, M.G. Evaluation of antiinflammatory and antinociceptive activities of the essential oil (EO) of Ocimum micranthum Willd. From Northeastern Brazil. Phytother. Res. 2005, 19, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, K.R. Practical Pharmacology, Techniques and Experiments; Nirali Prakashan: Pune, India, 2007. [Google Scholar]
- Hiruma-Lima, C.A.; Gracioso, J.S.; Bighetti, E.J.B.; Germonsen, L.R.; Souza Brito, A.R.M. The juice of fresh leaves of Boerhaavia diffusa markedly reduces pain in mice. J. Ethnopharmacol. 2000, 71, 267–274. [Google Scholar] [CrossRef]
- Campbell, W.E.; Gammon, D.W.; Smith, P.; Abrahams, M.; Purves, T. Composition and antimalarial activity in vitro of the essential oil of Tetradenia riparia. Planta Med. 1997, 63, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.B.G.; Martins, R.G.; Cavalheiro, J.A. Histoquímica e atividade antibacteriana de folhas do incenso (Tetradenia riparia). Rev. Bras. Biociênc. 2008, 14, 127–140. [Google Scholar]
- Rahim, G.; Qureshi, R.; Gulfraz, M.; Arshad, M.; Rahim, S. Preliminary phytochemical screening and ethnomedicinal uses of Teucrium stocksianum from Malakand Division. J. Med. Plants Res. 2012, 6, 704–707. [Google Scholar]
- Wilson, P.G.; OʼBrien, M.M.; Gadek, P.A.; Quinn, C.J. Myrtaceae revisited: A reassessment of infrafamilial groups. Am. J. Bot. 2001, 88, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, M.T.; Bacchi, E. Folha de Eugenia uniflora L. (Pitanga): Propriedades farmacobotânicas, químicas e farmacológicas. Rev. Inst. Adolfo Lutz 2003, 2, 55–61. [Google Scholar]
- Rosário, A.S.; Secco, R.S.; da Silva, J.B.F. Notas sobre Ugni Turcz. (Myrtaceae) na Amazônia Brasileira. Acta Amazon. 2004, 34, 139–141. [Google Scholar] [CrossRef]
- Cunha, T.M.; Verri, W.A., Jr.; Silva, J.S.; Poole, S.; Cunha, F.Q.; Ferreira, S.H. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl. Acad. Sci. USA 2005, 102, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.F.; Sun, W.Z.; Lin, J.K.; Lin-Shiau, S.Y. Activation of transcription factors of nuclear factor kappa B, activator protein-1 and octamer factors in hyperalgesia. Eur. J. Pharmacol. 2000, 402, 61–68. [Google Scholar] [CrossRef]
- Mendell, J.R.; Sahenk, Z. Painful sensory neuropathy. N. Engl. J. Med. 2003, 348, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Kress, M. Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett. 2004, 361, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V. Indian Valerianaceae: A Monograph on a Medicinally Important Family; Scientific Publishers: Jodhpur, India, 1999; pp. 48–49. [Google Scholar]
- Chatrou, L.W.; Rainer, H.; Maas, P.J.M.; Smith, N.; Mori, S.A.; Henderson, A.; Stevenson, D.W.; Heald, S.V. Flowering Plants of the Neotropics, in Annonaceae (Soursop, Family); PUP: New Jersey, NJ, USA, 2004; Volume 1, pp. 18–20. [Google Scholar]
- Maas, P.J.M.; Westra, L.Y.T.; Rainer, H.; Lobão, A.Q.; Erkens, R.H.J. An updated index to genera, species and infraspecific taxa of Neotropical Annonaceae. Nord. J. Bot. 2011, 29, 257–356. [Google Scholar] [CrossRef]
- Costa, E.V.; Pinheiro, M.L.B.; de Souza, A.D.; Barison, A.; Campos, F.R.; Valdez, R.H.; Ueda-Nakamura, T.; Filho, B.P.; Nakamura, C.V. Trypanocidal activity of oxoaporphine and pyrimidine-β-carboline alkaloids from the branches of Annona foetida mart. (annonaceae). Molecules 2011, 16, 9714–9720. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.G.; Sheehan, M.J.; Tyers, M.B. Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to μ- and κ-opioid receptor agonists. Br. J. Pharmacol. 1987, 91, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.G.; Oliveira, G.F.; Melo, M.S.; Cavalcanti, S.C.; Antoniolli, A.R.; Bonjardim, L.R.; Silva, F.A.; Santos, J.P.; Rocha, R.F.; Moreira, J.C.; et al. Bioassayguided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin. Pharmacol. Toxicol. 2010, 107, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Colares, A.V.; Almeida-Souza, F.; Taniwaki, N.N. In vitro antileishmanial activity of essential oil of Vanillosmopsis arborea (Asteraceae) baker. Evid. Based Complement. Altern. Med. 2013, 7. [Google Scholar] [CrossRef]
- Leite, G.D.O.; Leite, L.H.I.; Sampaio, R.D.S. Modulation of topical inflammation and visceral nociception by Vanillosmopsis arborea essential oil in mice. Biomed. Prev. Nutr. 2011, 1, 216–222. [Google Scholar] [CrossRef]
- Leite, G.D.O.; Leite, L.H.I.; Sampaio, R.D.S. (−)-α-Bisabolol attenuates visceral nociception and inflammation in mice. Fitoterapia 2011, 82, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Meng, I.D.; Hu, J.W.; Benetti, A.P.; Bereiter, D.A. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: Cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls and projections to the parabrachial area. J. Neurophysiol. 1997, 77, 43–56. [Google Scholar] [PubMed]
- De Felipe, C.; Gonzalez, G.G.; Gallar, J.; Belmonte, C. Quantification and immunocytochemical characteristics of trigeminal ganglion neurons projecting to the cornea: Effect of corneal wounding. Eur. J. Pain 1999, 3, 31–39. [Google Scholar] [CrossRef]
- Belmonte, C.; Gallar, J.; Pozo, M.A.; Rebollo, I. Excitation by irritant chemical substances of sensory afferent units in the cat’s cornea. J. Physiol. 1991, 437, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Gallar, J.; Pozo, M.A.; Tuckett, R.P.; Belmonte, C. Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat’s cornea. J. Physiol. 1993, 468, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Carstens, E.; Kuenzler, N.; Handwerker, H.O. Activation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to oral or ocular mucosa. J. Neurophysiol. 1998, 80, 465–492. [Google Scholar] [PubMed]
- Ro, J.Y.; Capra, N.F.; Lee, J.S.; Masri, R.; Chun, Y.H. Hypertonic saline-induced muscle nociception and c-fos activation are partially mediated by peripheral NMDA receptors. Eur. J. Pain 2007, 11, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Maurya, S.; Catalan, C.; Lampasona, M.P. Studies on essential oils, Part 42: Chemical, antifungal, antimicrobial and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr. J. 2005, 20, 1–6. [Google Scholar] [CrossRef]
- Koch, C.; Reichling, J.; Schneele, J. Inhibitory effect of essential oils against herpes simplex vírus type-2. Phytomedicine 2008, 15, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.L.; Lutz, R.B. Ginger. Am. J. Health Syst. Pharm. 2000, 57, 945–947. [Google Scholar] [PubMed]
- Habsah, M.; Amran, M.; Mackeen, M.M.; Lajis, N.H.; Kikuzaki, H.; Nakatani, N.; Rahman, A.A.; Ghafar; Ali, A.M. Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. J. Ethnopharmacol. 2000, 72, 403–410. [Google Scholar] [CrossRef]
- Bentley, G.A.; Newton, S.H.; Starr, J. Evidence for an action of morphine and the enkephalins on sensory nerve endings in the mouse peritoneum. Br. J. Pharmacol. 1981, 73, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Dhara, A.K.; Suba, V.; Sen, T.; Pal, S.; Nag Chaudhuri, A.K. Preliminary studies on the anti-inflammatory and analgesic activity of themethanolic fraction of the root extract of Tragia involucrate. J. Ethnopharmacol. 2000, 72, 265–268. [Google Scholar] [CrossRef]
- Calixto, J.B.; Kassuya, C.A.; Andre, E.; Ferreira, J. Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol. Ther. 2005, 106, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Beirith, A.; Santos, A.R.; Calixto, J.B. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Res. 2002, 924, 219–228. [Google Scholar] [CrossRef]
- Ferreira, J.; Triches, K.M.; Medeiros, R.; Calixto, J.B. Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice. Pain 2005, 117, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Numazaki, M.; Tominaga, T.; Toyooka, H.; Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J. Biol. Chem. 2002, 277, 13375–13378. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.A.; Kovacs, K.J.; Cooper, J.C.; Kitto, K.F. Transient changes in the synthesis of nitric oxide result in long-term as well as short-term changes in acetic acid-induced writhing in mice. Pain 2000, 86, 103–111. [Google Scholar] [CrossRef]
- Schmidtko, A.; Tegeder, I.; Geisslinger, G. No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci. 2009, 32, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Anbar, M.; Gratt, B.M. Role of nitric oxide in the physiopathology of pain. J. Pain Symptom Manag. 1997, 14, 225–254. [Google Scholar] [CrossRef]
- Abacioglu, N.; Tunctan, B.; Akbulut, E.; Cakici, I. Participation of the components of l-arginine/nitric oxide/cGMP cascade by chemically-induced abdominal constriction in the mouse. Life Sci. 2000, 67, 1127–1137. [Google Scholar] [CrossRef]
- Jain, N.K.; Patil, C.S.; Singh, A.; Kulkarni, S.K. Sildenafil-induced peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Brain Res. 2001, 909, 170–178. [Google Scholar] [CrossRef]
- Pyne, N.J.; Arshavsky, V.; Lochhead, A. cGMP signal termination. Biochem. Soc. Trans. 1996, 24, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Lawson, K. Potassium channel activation: A potential therapeutic approach? Pharmacol. Ther. 1996, 70, 39–63. [Google Scholar] [CrossRef]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmento-Neto, J.F.; Do Nascimento, L.G.; Felipe, C.F.B.; De Sousa, D.P. Analgesic Potential of Essential Oils. Molecules 2016, 21, 20. https://doi.org/10.3390/molecules21010020
Sarmento-Neto JF, Do Nascimento LG, Felipe CFB, De Sousa DP. Analgesic Potential of Essential Oils. Molecules. 2016; 21(1):20. https://doi.org/10.3390/molecules21010020
Chicago/Turabian StyleSarmento-Neto, José Ferreira, Lázaro Gomes Do Nascimento, Cícero Francisco Bezerra Felipe, and Damião Pergentino De Sousa. 2016. "Analgesic Potential of Essential Oils" Molecules 21, no. 1: 20. https://doi.org/10.3390/molecules21010020