Machine Learning-Assisted Secure Random Communication System
Abstract
1. Introduction
- Incorporation of ML into RCSs: This paper contributes to PLS by proposing the first possible configuration of a machine learning-assisted random communication system (ML-RCS).
- Enhanced data rate and security: Our proposed user and device authentication model shows increased performance and security between a transmitter and legitimate receiver. It strengthens the PLS by covertly conveying the binary information by utilizing noise as the carrier signals. Moreover, the incorporation of an ML algorithm provides increased data rates in comparison to the previously proposed models.
- Baseline model and benchmark for comparison: The paper can be considered as presenting a baseline model for encrypting and decrypting -stable noise signals by utilizing ML algorithms. The proposed methodology for presenting simulation results can be used as a benchmark to compare any ML-RCS proposed in the future.
2. Machine Learning for Physical Layer Security
- User and device authentication via ML.
- Intrusion detection systems via ML.
- Confidentiality using ML.
3. Allied Concepts
3.1. Alpha Stable (-Stable) Distribution
- The α-stable distribution includes several subcategories of α-stable noise: symmetric α-stable (SS) and skewed α-stable (SkS). The overall statistical parameters of the distribution are denoted by (β, , μ), where a random variable R follows R~ (β, , μ). The parameters responsible for defining the distribution are as follows.
- The characteristic exponent () controls the impulsiveness of the distribution and varies within (.
- The skewness () governs the asymmetry of the distribution, with β = −1 creating a leftward skew and β = 1 creating a rightward skew, falling within [−.
- The scale parameter () is the dispersion or scaling of the distribution within ().
- The location parameter () shifts the distribution along the horizontal axis with (−).
3.2. Decision Trees
CART Classifier Algorithm
4. Transmission
Transmitter ‘T’
5. Reception
5.1. AWGN Channel
5.2. Legitimate Receiver ‘LR’
5.2.1. DT-Based Classifier
5.2.2. Pulse Length-Based Classifier
5.3. Demo Transmission
6. Results and Discussion
6.1. Intended Communication
6.1.1. Confusion Matrices
6.1.2. Bit Error Rate Analysis
6.2. Unintended Communication
Confusion Matrices
6.3. Comparative Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, L.; Li, Y.; Chen, D.; Serikawa, S.; Guizani, M.; Lv, Z. A survey on 5G/6G, AI, and robotics. Comput. Electr. Eng. 2021, 95, 107372. [Google Scholar] [CrossRef]
- Celik, A.; Eltawil, A. At the dawn of generative AI era: A tutorial-cum-survey on new frontiers in 6G wireless intelligence. IEEE Open J. Commun. Soc. 2024, 5, 2433–2489. [Google Scholar] [CrossRef]
- He, H.; Wen, C.; Jin, S.; Li, G.Y. Model-driven deep learning for MIMO detection. IEEE Trans. Signal Process. 2020, 68, 1702–1715. [Google Scholar] [CrossRef]
- Weththasinghe, K.; Jayawickrama, B.; He, Y. Machine learning-based channel estimation for 5G new radio. IEEE Wirel. Commun. Lett. 2024, 13, 1133–1137. [Google Scholar] [CrossRef]
- Azimi, Y.; Yousefi, S.; Kalbkhani, H.; Kunz, T. Applications of machine learning in resource management for RAN-slicing in 5G and beyond networks: A survey. IEEE Access 2022, 10, 106581–106612. [Google Scholar] [CrossRef]
- Kee, H.L.M.; Ahmad, N.; Izhar, M.A.M.; Anwar, K.; Ng, S.X. A review on machine learning for channel coding. IEEE Access 2024, 12, 89002–89025. [Google Scholar] [CrossRef]
- Zhou, X.; Song, L.; Zhang, Y. (Eds.) Physical Layer Security in Wireless Communications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Sullivan, S.; Brighente, A.; Kumar, S.A.P.; Conti, M. 5G security challenges and solutions: A review by OSI layers. IEEE Access 2021, 9, 116294–116314. [Google Scholar] [CrossRef]
- Pradhan, A.; Das, S.; Piran, M.J.; Han, Z. A survey on physical layer security of ultra/hyper reliable low latency communication in 5G and 6G networks: Recent advancements, challenges, and future directions. IEEE Access 2024, 12, 112320–112353. [Google Scholar] [CrossRef]
- Mitev, M.; Chorti, A.; Poor, H.V.; Fettweis, G.P. What physical layer security can do for 6G security. IEEE Open J. Veh. Technol. 2023, 4, 375–388. [Google Scholar] [CrossRef]
- Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.; Gao, X. A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [Google Scholar] [CrossRef]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Commun. Surv. Tutor. 2019, 21, 1773–1828. [Google Scholar] [CrossRef]
- Kelley, B.; Ara, I. An intelligent and private 6G air interface using physical layer security. In Proceedings of the IEEE Military Communications Conference (MILCOM), Rockville, MD, USA, 28 November–2 December 2022; pp. 968–973. [Google Scholar] [CrossRef]
- Ayaz, F.; Sheng, Z.; Ho, I.W.; Tiany, D.; Ding, Z. Blockchain-enabled FD-NOMA based vehicular network with physical layer security. In Proceedings of the IEEE 95th Vehicular Technology Conference (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Li, M.; Xue, P.; Yuan, H.; Han, Y. Physical layer security for CR-NOMA network with cooperative jamming. Tsinghua Sci. Technol. 2024, 30, 708–720. [Google Scholar] [CrossRef]
- Xia, S.; Li, D.; Zhao, X.; Zhou, J.; Du, J.; Wang, Q.; Hou, W.; Lv, R. Research on the physical layer security for industrial 5G private networks. In Proceedings of the IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 8–10 December 2023; pp. 816–819. [Google Scholar]
- Singh, R.; Ahmad, I.; Huusko, J. The role of physical layer security in satellite-based networks. In Proceedings of the European Conference on Networks and Communications (EuCNC), Gothenburg, Sweden, 6–9 June 2023; pp. 36–41. [Google Scholar] [CrossRef]
- Ara, I.; Kelley, B. Physical layer security for 6G: Toward achieving intelligent native security at layer-1. IEEE Access 2024, 12, 82800–82824. [Google Scholar] [CrossRef]
- Meng, R.; Xu, B.; Xu, X.; Sun, M.; Wang, B.; Han, S.; Lv, S.; Zhang, P. A survey of machine learning-based physical-layer authentication in wireless communications. J. Netw. Comput. Appl. 2024, 235, 104085. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y.; Lian, L.; Tao, M. Importance-Aware Resource Allocations for MIMO Semantic Communication. Entropy 2025, 27, 605. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Zhao, M.; Zhu, J.; Zhang, S. Knowledge-driven machine learning and applications in wireless communications. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 454–467. [Google Scholar] [CrossRef]
- Alsalman, D. A comparative study of anomaly detection techniques for IoT security using adaptive machine learning for IoT threats. IEEE Access 2024, 12, 14719–14730. [Google Scholar] [CrossRef]
- Shree, S.R. Autonomous development of theoretical framework for intelligence automation system using decision tree algorithm. Comput. Electr. Eng. 2022, 102, 108131. [Google Scholar] [CrossRef]
- Eljialy, A.E.M.; Uddin, M.Y.; Ahmad, S. Novel framework for an intrusion detection system using multiple feature selection methods based on deep learning. Tsinghua Sci. Technol. 2024, 29, 948–958. [Google Scholar] [CrossRef]
- Alrayes, F.S.; Zakariah, M.; Amin, S.U.; Khan, Z.I.; Helal, M. Intrusion detection in IoT systems using denoising autoencoder. IEEE Access 2024, 12, 122401–122425. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Xiong, X.; Ren, Q.; Huang, J. A Novel Framework for Enhancing Decision-Making in Autonomous Cyber Defense Through Graph Embedding. Entropy 2025, 27, 622. [Google Scholar] [CrossRef]
- Hong, S.; Kim, K.; Lee, S.-H. A hybrid jamming detection algorithm for wireless communications: Simultaneous classification of known attacks and detection of unknown attacks. IEEE Commun. Lett. 2023, 27, 1769–1773. [Google Scholar] [CrossRef]
- Pitafi, S.; Anwar, T.; Widia, I.D.M.; Yimwadsana, B. Revolutionizing perimeter intrusion detection: A machine learning-driven approach with curated dataset generation for enhanced security. IEEE Access 2023, 11, 106954–106966. [Google Scholar] [CrossRef]
- Xing, J.; Lv, T.; Zhang, X. Cooperative relay based on machine learning for enhancing physical layer security. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- He, D.; Liu, C.; Quek, T.Q.S.; Wang, H. Transmit antenna selection in MIMO wiretap channels: A machine learning approach. IEEE Wirel. Commun. Lett. 2018, 7, 634–637. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Gai, K. Decision tree-based privacy protection in federated learning: A survey. In Proceedings of the IEEE 10th Conference on Big Data Security on Cloud (BigDataSecurity), New York, NY, USA, 6–8 May 2024; pp. 119–124. [Google Scholar] [CrossRef]
- El Zein, Y.; Lemay, M.; Huguenin, K. PrivaTree: Collaborative privacy-preserving training of decision trees on biomedical data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 21, 1–13. [Google Scholar] [CrossRef]
- Alex, S.; Dhanaraj, K.J.; Deepthi, P.P. Private and energy-efficient decision tree-based disease detection for resource-constrained medical users in mobile healthcare networks. IEEE Access 2022, 10, 17098–17112. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, N.; Kirschen, D.S.; Du, E.; Cheng, Y.; Kang, C. Sparse oblique decision tree for power system security rules extraction and embedding. IEEE Trans. Power Syst. 2021, 36, 1605–1615. [Google Scholar] [CrossRef]
- Boztas, G.; Tuncer, T.; Aydogmus, O.; Yildirim, M. A DCSLBP based intelligent machine malfunction detection model using sound signals for industrial automation systems. Comput. Electr. Eng. 2024, 119, 109541. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, C.-C.; Hung, C.-C.; Lin, J.-F.; Hsu, S.-Y. SecDT: Privacy-preserving outsourced decision tree classification without polynomial forms in edge-cloud computing. IEEE Trans. Signal Inf. Process. Netw. 2022, 8, 1037–1048. [Google Scholar] [CrossRef]
- Elsadig, M.A. Detection of denial-of-service attack in wireless sensor networks: A lightweight machine learning approach. IEEE Access 2023, 11, 83537–83552. [Google Scholar] [CrossRef]
- Al-Quayed, F.; Ahmad, Z.; Humayun, M. A situation-based predictive approach for cybersecurity intrusion detection and prevention using machine learning and deep learning algorithms in wireless sensor networks of Industry 4.0. IEEE Access 2024, 12, 34800–34819. [Google Scholar] [CrossRef]
- Xue, L.; Liu, D.; Huang, C.; Lin, X.; Shen, X.S. Secure and privacy-preserving decision tree classification with lower complexity. J. Commun. Inf. Netw. 2020, 5, 16–25. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, C.; Wang, R.; Duan, H.; Nepal, S. Optimizing secure decision tree inference outsourcing. IEEE Trans. Dependable Secure Comput. 2022, 20, 3079–3092. [Google Scholar] [CrossRef]
- Elsadig, M.A.; Gafar, A. Covert channel detection: Machine learning approaches. IEEE Access 2022, 10, 38391–38405. [Google Scholar] [CrossRef]
- Gu, C.; Cao, X. Research on information hiding technology. In Proceedings of the International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April 2012; pp. 2035–2037. [Google Scholar]
- Cek, M.E.; Savaci, F.A. Stable non-Gaussian noise parameter modulation in digital communication. Electron. Lett. 2009, 45, 1256–1257. [Google Scholar] [CrossRef]
- Cek, M.E. Covert communication using skewed α-stable distributions. Electron. Lett. 2015, 51, 116–118. [Google Scholar] [CrossRef]
- Ahmed, A.; Savaci, F.A. Random communication system based on skewed alpha-stable levy noise shift keying. Fluct. Noise Lett. 2017, 16, 1750024. [Google Scholar] [CrossRef]
- Ahmed, A.; Savaci, F.A. Synchronization of alpha-stable levy noise-based random communication system. IET Commun. 2018, 12, 276–282. [Google Scholar] [CrossRef]
- Cek, M.E. M-ary alpha-stable noise modulation in spread-spectrum communication. Fluct. Noise Lett. 2015, 14, 1550022. [Google Scholar] [CrossRef]
- Savaci, F.A.; Ahmed, A. Inverse system approach to design alpha-stable noise-driven random communication systems. IET Commun. 2020, 14, 910–913. [Google Scholar] [CrossRef]
- Ahmed, A.; Savaci, F.A. Measure of covertness based on the imperfect synchronization of an eavesdropper in random communication systems. In Proceedings of the 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2017; pp. 638–641. [Google Scholar]
- Ahmed, A.; Bosnić, Z. A covert α-stable noise-based extended random communication by incorporating multiple inverse systems. IEEE Access 2025, 13, 13675–13685. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, W.; Zhou, K.; Hua, J. A covert digital communication system using skewed α-stable distributions for Internet of Things. IEEE Access 2020, 8, 113131–113141. [Google Scholar] [CrossRef]
- Ahmed, A.; Savaci, F.A. Covert electromagnetic nanoscale communication system in the terahertz channel. J. Circuits Syst. Comput. 2020, 29, 2050126. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y. An adaptive parameter estimation algorithm of radar linear frequency modulation signal based on nonlinear transform under different α-stable distribution noise environments. IEEE J. Miniatur. Air Space Syst. 2023, 4, 389–399. [Google Scholar] [CrossRef]
- Peppas, K.P.; Mathiopoulos, P.T. Space shift keying (SSK) transmission over Rayleigh fading channels and symmetric α-stable noise. IEEE Access 2024, 12, 40569–40581. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Chen, Y.; Zhao, N.; Han, Y.; Zhang, N. Multiantenna spectrum sensing with α-stable noise for cognitive radio-enabled IoT. IEEE Internet Things J. 2024, 11, 21546–21558. [Google Scholar] [CrossRef]
- Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes; Chapman & Hall/CRC: New York, NY, USA, 1994; pp. 23–45. [Google Scholar]
- Janicki, A.; Weron, A. Simulation and Chaotic Behavior of α-Stable Stochastic Processes; Marcel Dekker: New York, NY, USA, 1994; pp. 30–75. [Google Scholar]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Alharbi, A.A. Classification performance analysis of decision tree-based algorithms with noisy class variable. Discrete Dyn. Nat. Soc. 2024, 2024, 6671395. [Google Scholar] [CrossRef]
- Abrishami, M.; Dadkhah, S.; Neto, E.C.P.; Xiong, P.; Iqbal, S.; Ray, S.; Ghorbani, A.A. Label noise detection in IoT security based on decision tree and active learning. In Proceedings of the IEEE 19th International Conference on Smart Communities (HONET), Marietta, GA, USA, 19–21 December 2022; pp. 46–53. [Google Scholar] [CrossRef]
- Luan, S.; Zhang, Y.; Chen, H.; Wang, C. Automatic modulation classification: Decision tree based on error entropy and global-local feature-coupling network under mixed noise and fading channels. IEEE Wirel. Commun. Lett. 2022, 11, 1703–1707. [Google Scholar] [CrossRef]
- Kuruoglu, E.E. Density parameter estimation of skewed α-stable distributions. IEEE Trans. Signal Process. 2001, 49, 2192–2201. [Google Scholar] [CrossRef]
Configuration | Model Flexibility | Description |
---|---|---|
FT | Low | Many leaves to make many fine distinctions between classes. (maximum splits = 100) |
MT | Medium | Medium number of leaves for finer distinctions between classes. (maximum splits = 20) |
CT | High | Few leaves to make coarse distinctions between classes. (maximum splits = 4) |
Parameter | Selected Values |
---|---|
0.6, 0.8, 1.1 | |
−0.8, −0.9, −1 | |
0.8, 0.9, 1 | |
1.6, 1.8, 2 | |
15, 25, 35 |
Symbol | Definition | Utilized Values |
---|---|---|
dispersion of noise generated to represent ‘0’ or ‘1’ | 1 | |
dispersion of channel noise | [0.316, 10] | |
MSNRdB | mixed signal-to-noise ratio | [−10, 5] |
Parameter | Selected Values |
---|---|
[−1, 0) | |
[0, 1] | |
[0, 2] | |
] |
RCSs | Achieved BER = 10−3 at MSNRdB | Utilized N |
---|---|---|
Cek, M.E. [44] | −6 | 2000 |
Ahmed, A.; Savaci, F.A. [45] | −6 | 1000 |
Ahmed, A.; Savaci, F.A. [46] | −8 | 500 |
Cek, M.E. [47] | −6 | 1600 |
Savaci, F.A.; Ahmed, A [48] | −5 | 1000 |
Ahmed, A.; Bosnić, Z [50] | −4 | 1000 |
Xu et al. [51] | −12 | 2000 |
Ahmed, A.; Savaci, F.A. [52] | −5 | 500 |
Proposed ML-RCS | −12 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Bosnić, Z. Machine Learning-Assisted Secure Random Communication System. Entropy 2025, 27, 815. https://doi.org/10.3390/e27080815
Ahmed A, Bosnić Z. Machine Learning-Assisted Secure Random Communication System. Entropy. 2025; 27(8):815. https://doi.org/10.3390/e27080815
Chicago/Turabian StyleAhmed, Areeb, and Zoran Bosnić. 2025. "Machine Learning-Assisted Secure Random Communication System" Entropy 27, no. 8: 815. https://doi.org/10.3390/e27080815
APA StyleAhmed, A., & Bosnić, Z. (2025). Machine Learning-Assisted Secure Random Communication System. Entropy, 27(8), 815. https://doi.org/10.3390/e27080815