An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations
Abstract
:1. Introduction
2. Preliminaries
3. Idea of FNTM
4. Numerical Implementation
4.1. Problem
4.2. Problem
4.3. Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khaliq, A.Q.M.; Twizell, E.H. A family of second order methods for variable coefficient fourth order parabolic partial differential equations. Int. J. Comput. Math. 1987, 23, 63–76. [Google Scholar] [CrossRef]
- Gorman, D.J. Free Vibration Analysisi of Beams and Shafts(Book); Research supported by the National Research Council of Canada; Wiley-Interscience: New York, NY, USA, 1975; 395p. [Google Scholar]
- Andrade, C.; McKee, S. High accuracy ADI methods for fourth order parabolic equations with variable coefficients. J. Comput. Appl. Math. 1977, 3, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Conte, S.D. A stable implicit finite difference approximation to a fourth order parabolic equation. J. ACM 1957, 4, 18–23. [Google Scholar] [CrossRef]
- Royster, W.C.; Conte, S.D. Convergence of finite difference solutions to a solution of the equation of the vibrating rod. Proc. Am. Math. Soc. 1956, 7, 742–749. [Google Scholar] [CrossRef]
- Evans, D.J. A stable explicit method for the finite-difference solution of a fourth-order parabolic partial differential equation. Comput. J. 1965, 8, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.J.; Yousif, W.S. A note on solving the fourth order parabolic equation by the AGE method. Int. J. Comput. Math. 1991, 40, 93–97. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. On the solution of the fourth order parabolic equation by the decomposition method. Int. J. Comput. Math. 1995, 57, 213–217. [Google Scholar] [CrossRef]
- Liao, W.; Zhu, J.; Khaliq, A.Q.M. An efficient high-order algorithm for solving systems of reaction-diffusion equations. Numer. Methods Part. Differ. Equ. 2002, 18, 340–354. [Google Scholar] [CrossRef]
- Jain, M.K.; Iyengar, S.R.K.; Lone, A.G. Higher order difference formulas for a fourth order parabolic partial differential equation. Int. J. Numer. Methods Eng. 1976, 10, 1357–1367. [Google Scholar] [CrossRef]
- Caglar, H.; Caglar, N. Fifth-degree B-spline solution for a fourth-order parabolic partial differential equations. Appl. Math. Comput. 2008, 201, 597–603. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. Analytic treatment for variable coefficient fourth-order parabolic partial differential equations. Appl. Math. Comput. 2001, 123, 219–227. [Google Scholar] [CrossRef]
- Rashidinia, J.; Mohammadi, R. Sextic spline solution of variable coefficient fourth-order parabolic equations. Int. J. Comput. Math. 2010, 87, 3443–3454. [Google Scholar] [CrossRef]
- Aziz, T.; Khan, A.; Rashidinia, J. Spline methods for the solution of fourth-order parabolic partial differential equations. Appl. Math. Comput. 2005, 167, 153–166. [Google Scholar] [CrossRef]
- Biazar, J.; Ghazvini, H. Hes variational iteration method for fourth-order parabolic equations. Comput. Math. Appl. 2007, 54, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Mohyud-Din, S.T. Modified variational iteration technique for solving singular fourth-order parabolic partial differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, e630–e640. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J. The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method. Z. Naturforschung A 2009, 64, 420–430. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, F.; Ahmad, H. Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Comput. Math. Appl. 2019, 78, 2052–2062. [Google Scholar] [CrossRef]
- Rawashdeh, M.; Maitama, S. Finding exact solutions of nonlinear PDEs using the natural decomposition method. Math. Methods Appl. Sci. 2017, 40, 223–236. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H.; Pandir, Y. The natural transform decomposition method for linear and nonlinear partial differential equations. Math. Eng. Sci. Aerosp. (MESA) 2014, 5, 111–126. [Google Scholar]
- Adomian, G. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, F.B.M.; Silambarasan, R. Theory of natural transform. J. MESA 2012, 3, 99–124. [Google Scholar]
- Khan, H.; Shah, R.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method. Entropy 2019, 21, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M.; Baleanu, D. Natural Transform Decomposition Method for Solving Fractional-Order Partial Differential Equations with Proportional Delay. Mathematics 2019, 7, 532. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Khan, H.; Mustafa, S.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Diffusion Equations by Natural Transform Decomposition Method. Entropy 2019, 21, 557. [Google Scholar] [CrossRef] [Green Version]
- Rawashdeh, M.S.; Al-Jammal, H. New approximate solutions to fractional nonlinear systems of partial differential equations using the FNDM. Adv. Differ. Equ. 2016, 1, 235. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, H.; Abdalla, Y.T.; Bachar, I.; Khabir, M.H. Fractional telegraph equation and its solution by natural transform decomposition method. Symmetry 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Prakasha, D.G.; Veeresha, P.; Rawashdeh, M.S. Numerical solution for (2+1)-dimensional time-fractional coupled Burger equations using fractional natural decomposition method. Math. Methods Appl. Sci. 2019, 42, 3409–3427. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Silambarasan, R. Advances in the natural transform. AIP Conf. Proc. 2012, 1493, 106–110. [Google Scholar]
- Khan, Z.H.; Khan, W.A. N-transform properties and applications. NUST J. Eng. Sci. 2008, 1, 127–133. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Sci. Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st ed.; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Mofarreh, F.; Shah, R.; Luangboon, W.; Nonlaopon, K. An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations. Entropy 2021, 23, 1086. https://doi.org/10.3390/e23081086
Agarwal RP, Mofarreh F, Shah R, Luangboon W, Nonlaopon K. An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations. Entropy. 2021; 23(8):1086. https://doi.org/10.3390/e23081086
Chicago/Turabian StyleAgarwal, Ravi P., Fatemah Mofarreh, Rasool Shah, Waewta Luangboon, and Kamsing Nonlaopon. 2021. "An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations" Entropy 23, no. 8: 1086. https://doi.org/10.3390/e23081086
APA StyleAgarwal, R. P., Mofarreh, F., Shah, R., Luangboon, W., & Nonlaopon, K. (2021). An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations. Entropy, 23(8), 1086. https://doi.org/10.3390/e23081086