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Abstract: In the present article, fractional-order diffusion equations are solved using the Natural
transform decomposition method. The series form solutions are obtained for fractional-order diffusion
equations using the proposed method. Some numerical examples are presented to understand the
procedure of the Natural transform decomposition method. The Natural transform decomposition
method has shown the least volume of calculations and a high rate of convergence compared to other
analytical techniques, the proposed method can also be easily applied to other non-linear problems.
Therefore, the Natural transform decomposition method is considered to be one of the best analytical
technique, to solve fractional-order linear and non-linear partial deferential equations, particularly
fractional-order diffusion equation.

Keywords: Natural transform decomposition method; fractional-order of diffusion equations;
Mittag–Leffler function

1. Introduction

The idea of fractional calculus and entropy are attractive and more prevalent for investigating
the dynamics of complex systems. In modern years, fractional calculus (FC) has been progressively
applied in various fields of science. Natural development identified with viscoelasticity, models of
porous electrodes, thermal stresses, electromagnetism, propagation of energy in dissipative systems,
relaxation vibrations, and thermoelasticity are effectively portrayed by fractional differential equations
(FDE’s) [1]. The knowledge of entropy was presented in the field of thermodynamics by Clausius (1862)
and Boltzmann (1896) and was further applied by Shannon (1948) and Jaynes (1957) in information
theory. Newly, more universal entropy measures have being suggested for applications in numerous
varieties of complex systems, outstanding to the relaxation of the additive axiom [2]. The idea of
entropy for calculating the dynamics of multi-particle systems with integer- and fractional-order
behavior was suggested in [3]. The entropy production rate for the fractional diffusion procedure
was considered in [4]. In [5], it has been shown that the total spectral entropy can be used as a
measure of the data, comfortable in a fractional-order model of anomalous diffusion. Entropies based
on fractional calculus [6]. Feng’s first integral method was applied successfully to obtain nonlinear
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space-time fractional modified Korteweg–de Vries equations [7], nonlinear partial differential equations,
third-order dispersion [8,9] in entropy and convexity, fractional derivative advection-diffusion in
two-dimensional semi-conductor systems, and the dynamics of a national soccer league [10]. The exact
solution to differential equations (DEs) of fractional-order with mixed partial derivatives [11] and
space-fractional diffusion equation and Tsallis relative entropy [12]. Diffusion forms contrast from
regular diffusion in that the scattering of particles continues quicker (super diffusion) or slower (sub
diffusion) than for the ordinary case.

Adolf Fick described Fick’s laws of diffusion in 1885. After that, Fick’s second law became known
as the diffusion equation. Diffusion is the mesh movement of atoms or molecules from an area of higher
concentration or great chemical potential to an area of inferior concentration or small chemical potential.
In [13], the researchers generalized the classical diffusion and wave equations—different physical
process such as classical diffusion, slow diffusion, the classical wave equation, and diffusion-wave
hybrid. Many applications of diffusion equation, such as electrochemistry, phase transition, filtration,
electromagnetism, acoustics, biochemistry, cosmology, and dynamics of biological groups [14].
Diffusion is determined by a gradient in chemical potential of the diffusing types. A gradient is
the variation in the value of a number, e.g., concentration, pressure, or temperature with the variation
in one or more variables being frequently distinct. A variation in temperature ended with a distance is
called a temperature gradient, a variation in concentration over a distance is called a concentration
gradient, and a variation in pressure ended with a distance is called a pressure gradient. Scientists have
been attempting to comprehend and diminish the challenges of industrial procedures to accomplish
higher effectiveness [15]. In engineering systems, there are different causes for entropy generation.
In thermal systems, the primary source of entropy generation is mass transfer, heat transfer, viscous
dissipation, coupling among heat, electrical conduction, and chemical reaction, as examined in a
pioneering series of publications by Bejan and co-workers [16,17]. Researchers have used various
techniques for the solution of diffusion equations such as the Collocation method (CM) [18], Diffusion
and Tsallis entropy [19], Entropy production, Symmetric fractional diffusion [20], Finite differences
method in space-fractional diffusion equations [21–23], Homotopy analysis method (HAM) [24],
Homotopy perturbation transform method (HPTM) [25] and Modified homotopy perturbation method
(MHPM) [26], Mehshless method (MM) [27], One-Dimensional alpha fractional diffusion [28], Radial
basis function method (RBFM) [29], and the Variational iteration method (VIM) [30].

In the present work, we are applying the Natural transform decomposition method (NTDM) to
solve the following types of diffusion equations.

(1) Two-dimensional fractional-order diffusion equation of the form:

∂γυ

∂tγ
1
=

∂2υ

∂x2
1
+

∂2υ

∂y2
1

, 0 < γ ≤ 1, t1 ≥ 0,

subject to the initial condition

υ(x1, y1, 0) = g(x1, y1).

(2) Three-dimensional fractional-order diffusion equation is given by

∂γυ

∂tγ
1
=

∂2υ

∂x2
1
+

∂2υ

∂y2
1
+

∂2υ

∂z2
1

, 0 < γ ≤ 1, t1 ≥ 0,

subject to the initial condition

υ(x1, y1, z1, 0) = g(x1, y1, z1).

Natural transform and the Adomain decomposition method are two powerful methods that
have been used to develop the Natural transform decomposition method. Many physical phenomena
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that are modeled by PDEs and FPDEs are solved using NTDM, such as the analytical solution of a
coupled system of non-linear PDEs, are suggested in [31], the solution non-linear ODEs are successfully
presented in [32], non-linear PDEs in [33], fractional unsteady flow of a polytropic gas model in [34],
fractional telegraph equations in [35], and the fractional Fokker–Plank equation and Schrödinger
equation in [36]. The accuracy of the proposed method is compared with the solutions obtained
by HPM and MHPM. The comparisons have shown that the proposed method has a higher rate
of convergence than HPM and MHPM. The rest of the article is structured as follows: In Section 2,
we recall several basic properties and define Natural transform and fractional calculus. In Section 3,
the idea of Natural transform decomposition method is discussed. In Section 4, we explain many
problems to maintaining the accuracy and efficiency of the proposed method, and Section 5 is devoted
to the conclusion.

2. Preliminaries

Definition 1. The natural transform of g(t1) is defined as [37,38]

N+[g(t1)] = Q(s, u) =
1
u

∫ ∞

0
e
−st1

u g(t1)dt1; s, u > 0,

where s and u are the transform variables.

Definition 2. The inverse natural transform of a function is defined by

N−[Q(s, u)] = g(t1) =
1

2πi

∫ p+i∞

p−i∞
e

st1
u Q(s, u)ds,

where s and u are the Natural transform variables, p is a real constant, and the integral is taken along s = p in
the complex plane s = x1 + iy1.

Definition 3. Natural Transform of n-th Derivative
If gn(t1) is the n-th derivative of function g(t1), it is given by

N[gn(t1)] = Qn(s, u) =
sn

un Q(s, u)−
n−1

∑
k=0

sn−(k+1)

un−k gk(0), n≥1.

Theorem 1. If H(s, u) and L(s, u) are the transform functions h(t1) and l(t1), respectively, they are given by,

N[h ∗ l] = uH(s, u)L(s, u),

where h ∗ l is the convolution of two functions h and l.

Definition 4. R–L fractional integral

Iγ
x1 g(x1) =

g(x1) if γ = 0
1

Γ(γ)

∫ x1
0 (x1 − υ)γ−1g(υ)dυ if γ > 0,

where Γ denotes the gamma function, defined by

Γ(ω) =
∫ ∞

0
e−x1 x1

ω−1dx1 ω ∈ C.

In their study, Caputo et al. suggested a revised fractional derivative operator in order to overcome
inconsistencies measured in the Riemann–Liouville derivative. The above mathematical statement
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described a Caputo fractional derivative operator of initial and boundary condition for fractional—as
well as integer-order derivatives [39,40].

Definition 5. The Caputo operator of order γ for a fractional derivative is given by the following mathematical
expression for n ∈ N, x1 > 0, g ∈ Ct1 , t1 ≥ −1 [41]:

Dγg(x1) =
∂γg(x1)

∂tγ
1

=


In−γ

[
∂γg(x1)

∂tγ
1

]
, if n− 1 < γ ≤ n, n ∈ N

∂γg(x1)

∂tγ
1

.

Definition 6. TheMittag–Leffler function Eγ(p) for γ > 0 is defined by the following subsequent series

Eγ(p) =
∞

∑
n=0

pn

Γ(γn + 1)
γ > 0 p ∈ C.

Theorem 2. Here, we will study the convergence analysis, in the same manner as in [42], of the NTDM
applied to the fractional dispersive PDE of order three. Let us consider the Hilbert space H, which may defined
by H = L2((α, β)X[0, T]) the set of applications:

u : (α, β)X[0, T]→ with
∫
(α,β)X[0,T]

u2(x, s)dsdθ < +∞.

Now we consider the fractional-order of diffusion equations of order three in the above assumptions which
lets us denote

L(u) =
∂γu
∂tγ

,

then the fractional-order of diffusion equations becomes, in an operator form,

L(u) = ϕ
∂2υ(x1, t1)

∂x2
1

− w
∂2υ(x1, t1)

∂y2
1

.

The NTDM reaches convergence if the following two hypotheses are satisfied:

(H1)(L(u)− L(v), u− v)≥k‖u− v‖2; k > 0, ∀u, vεH.

H(2) whatever may be M > 0, there exist a constant C(M) > 0 such that for u, vεH with ‖u‖≤M,
‖v‖≤M we have (L(u)− L(v), u− v)≤C(M)‖u− v‖‖w‖ for every wεH.

3. Idea of Fractional Natural Transform Decomposition Method

In this section, we use the Natural transform decomposition method to find the general solution
fractional-order diffusion equations.

Dγυ(x1, t1) + Lυ(x1, t1) + Nυ(x1, t1) = q(x1, t1), x1, t1 ≥ 0, m− 1 < γ < m, (1)

where Dγ = ∂γ

∂tγ
1

is the Caputo Operator γ, m ∈ N, L and N are respectively linear and non-linear

functions, and q is the source function.
The initial condition is

υ(x1, 0) = k(x1), 0 < γ ≤ 1, t1 > 0. (2)

Applying the Natural transform to Equation (1), we have

N+ [Dγυ(x1, t1)] +N+ [Lυ(x1, t1) + Nυ(x1, t1)] = N+ [q(x1, t1)] , (3)
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and using the differentiation property of Natural transform, we get

sγ

uγ
N+ [υ(x1, t1)]−

sγ−1

uγ
υ(x1, 0) = N+ [q(x1, t1)]−N+ [Lυ(x1, t1) + Nυ(x1, t1)] ,

N+ [υ(x1, t1)] =
1
s

υ(x1, 0) +
uγ

sγ
N+ [q(x1, t1)]−

uγ

sγ
N+ [Lυ(x1, t1) + Nυ(x1, t1)] .

Now υ(x1, 0) = k(x1),

N+ [υ(x1, t1)] =
k(x1)

s
+

uγ

sγ
N+ [q(x1, t1)]−

uγ

sγ
N+ [Lυ(x1, t1) + Nυ(x1, t1)] . (4)

The NTDM solution υ(x1, t1) is represented by the following infinite series:

υ(x1, t1) =
∞

∑
j=0

υj(x1, t1), (5)

and the non-linear terms (if any) in the problem are defined by the infinite series of
Adomian polynomials

Nυ(x1, t1) =
∞

∑
j=0

Aj, (6)

Aj =
1
j!

[
dj

dλj

[
N

∞

∑
j=0

(λjυj)

]]
λ=0

, j = 0, 1, 2... (7)

substituting Equations (5) and (6) into Equation (4), we get

N+

[
∞

∑
j=0

υj(x1, t1)

]
=

k(x1)

s
+

uγ

sγ
N+ [q(x1, t1)]−

uγ

sγ
N+

[
L

∞

∑
j=0

υj(x1, t1) +
∞

∑
j=0

Aj

]
. (8)

Applying the linearity of the Natural transform,

N+ [υ0(x1, t1)] =
k(x1)

s
+

uγ

sγ
N+ [q(x1, t1)] , (9)

N+ [υ1(x1, t1)] = −
uγ

sγ
N+ [Lυ0(x1, t1) + A0] .

Generally, we can write

N+
[
υj+1(x1, t1)

]
= −uγ

sγ
N+

[
Lυj(x1, t1) + Aj

]
, j ≥ 1. (10)

Applying the inverse Natural transform, Equations (9) and (10)

υ0(x1, t1) = k(x1) +N−
[

uγ

sγ
N+ [q(x1, t1)]

]
,

υj+1(x1, t1) = −N−
[

uγ

sγ
N+

[
Lυj(x1, t1) + Aj

]]
. (11)
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4. Results

4.1. Example

Consider the two-dimensional fractional diffusion equation [26]:

∂γυ

∂tγ
1
=

∂2υ

∂x2
1
+

∂2υ

∂y2
1

, 0 < γ ≤ 1, t1 ≥ 0, (12)

with the initial condition

υ(x1, y1, 0) = (1− y1)ex1 . (13)

Taking the Natural transform of Equation (12),

sγ

uγ
N+ [υ(x1, y1, t1)]−

sγ−1

uγ
υ(x1, y1, 0) = N+

[
∂2υ

∂x2
1
+

∂2υ

∂y2
1

]
.

Applying inverse Natural transform, we get

υ(x1, y1, t1) = N−
[

υ(x1, y1, 0)
s

− uγ

sγ
N+

[
∂2υ

∂x2
1
+

∂2υ

∂y2
1

]]
.

Using the ADM procedure, we get

υ0(x1, y1, t1) = N−
[

υ(x1, y1, 0)
s

]
= N−

[
(1− y1)ex1

s

]
,

υ0(x1, y1, t1) = (1− y1)ex1 , (14)

υj+1(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υj

∂x2
1
+

∂2υj

∂y2
1

]]
, j = 0, 1, 2, ...

for j = 0:

υ1(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ0

∂x2
1
+

∂2υ0

∂y2
1

]]
,

υ1(x1, y1, t1) = N−
[
(1− y1)ex1 uγ

sγ+1

]
= (1− y1)ex1

tγ
1

Γ(γ + 1)
.

(15)

The subsequent terms are

υ2(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ1

∂x2
1
+

∂2υ1

∂y2
1

]]
= (1− y1)ex1

t2γ
1

Γ(2γ + 1)
,

υ3(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ2

∂x2
1
+

∂2υ2

∂y2
1

]]
= (1− y1)ex1

t3γ
1

Γ(3γ + 1)
,

υ3(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ3

∂x2
1
+

∂2υ3

∂y2
1

]]
= (1− y1)ex1

t4γ
1

Γ(4γ + 1)
·

.

.

(16)
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The NTDM solution for Example 4.1 is:

υ(x1, y1, t1) = υ0(x1, y1, t1) + υ1(x1, y1, t1) + υ2(x1, y1, t1) + υ3(x1, y1, t1) + υ4(x1, y1, t1)...

υ(x1, y1, t1) = (1− y1)ex1

(
1 +

tγ
1

Γ(γ + 1)
+

t2γ
1

Γ(2γ + 1)
+

t3γ
1

Γ(3γ + 1)
+

t4γ
1

Γ(4γ + 1)
· ··
)

.

When γ = 1, the NTDM solution is

υ(x1, y1, t1) = (1− y1)ex1

(
1 + t1 +

t2
1

2!
+

t3
1

3!
+

t4
1

4!
· ··
)

. (17)

This result is calculated to the exact solution in a closed form:

υ(x1, y1, t1) = (1− y1)ex1+t1 .

In Figure 1 NTDM solution of Example 4.1 of different value of γ = 1, 0.80, 0.70 and 0.50 and
0 < x, y ≤ 1 are represented by Figure 1a and Figure 1b respectively at y= 1, tε[0, 1] and 0 < x ≤ 1.
From the given graphs it can be observed that both exact and NTMD solutions are in strong agrement
with each other.

Figure 1. The (a) NTDM of υ(x1, y1, t1) of Example 4.1, for different value of γ and (b) y = 0.5.

4.2. Example

Consider the two-dimensional fractional diffusion equation [26]:

∂γυ

∂tγ
1
=

∂2υ

∂x2
1
+

∂2υ

∂y2
1

, 0 < γ ≤ 1, t1 ≥ 0, (18)

with the initial condition

υ(x1, y1, 0) = ex1+y1 . (19)

Taking the Natural transform of Equation (18):

sγ

uγ
N+ [υ(x1, y1, t1)]−

sγ−1

uγ
υ(x1, y1, 0) = N+

[
∂2υ

∂x2
1
+

∂2υ

∂y2
1

]
.
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Applying inverse Natural transform, we get

υ(x1, y1, t1) = N−
[

υ(x1, y1, 0)
s

− uγ

sγ
N+

[
∂2υ

∂x2
1
+

∂2υ

∂y2
1

]]
.

Using ADM procedure, we get

υ0(x1, y1, t1) = N−
[

υ(x1, y1, 0)
s

]
= N−

[
ex1+y1

s

]
,

υ0(x1, y1, t1) = ex1+y1 , (20)

υj+1(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υj

∂x2
1
+

∂2υj

∂y2
1

]]
, j = 0, 1, 2, ...

for j = 0:

υ1(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ0

∂x2
1
+

∂2υ0

∂y2
1

]]
,

υ1(x1, y1, t1) = N−
[

2ex1+y1 uγ

sγ+1

]
= 2ex1+y1

tγ
1

Γ(γ + 1)
.

(21)

υ2(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ1

∂x2
1
+

∂2υ1

∂y2
1

]]
= 4ex1+y1

t2γ
1

Γ(2γ + 1)
,

υ3(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ2

∂x2
1
+

∂2υ2

∂y2
1

]]
= 8ex1+y1

t3γ
1

Γ(3γ + 1)
,

υ3(x1, y1, t1) = N−
[

uγ

sγ
N+

[
∂2υ3

∂x2
1
+

∂2υ3

∂y2
1

]]
= 16ex1+y1

t4γ
1

Γ(4γ + 1)
.

.

.

(22)

The NTDM solution for Example 4.2 is

υ(x1, y1, t1) = υ0(x1, y1, t1) + υ1(x1, y1, t1) + υ2(x1, y1, t1) + υ3(x1, y1, t1) + υ4(x1, y1, t1) · ··

υ(x1, y1, t1) = ex1+y1

(
1 +

tγ
1

Γ(γ + 1)
+

(2tγ
1 )

2

Γ(2γ + 1)
+

(2tγ
1 )

3

Γ(3γ + 1)
+

(2tγ
1 )

4

Γ(4γ + 1)
· ··
)

.

When γ = 1, then the NTDM solution is

υ(x1, y1, t1) = ex1+y1

(
1 + 2t1 +

(2t1)
2

2!
+

(2t1)
3

3!
+

(2t1)
4

4!
· ··
)

. (23)

This result is calculated to the exact solution in a closed form:

υ(x1, y1, t1) = ex1+y1+t1 .

In Figure 2 NTDM solution of Example 4.2 of different value of γ = 1, 0.80, 0.70 and 0.50 and
0 < x, y ≤ 1 are represented by Figure 2a and Figure 2b respectively at y= 1, tε[0, 1] and 0 < x ≤ 1.
From the given graphs it can be observed that both exact and NTDM solutions are in strong agrement
with each other.
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Figure 2. The (a) NTDM solutions of υ(x1, y1, t1) of Example 4.2, for different values of γ and (b) y = 1.

4.3. Example

Consider the three-dimensional fractional diffusion equation [25]:

∂γυ

∂tγ
1
=

∂2υ

∂x2
1
+

∂2υ

∂y2
1
+

∂2υ

∂z2
1

, 0 < γ ≤ 1, t1 ≥ 0, (24)

with the initial condition

υ(x1, y1, z1, 0) = sin x1 sin y1 sin z1. (25)

Taking the Natural transform of Equation (24),

sγ

uγ
N+ [υ(x1, y1, z1, t1)]−

sγ−1

uγ
υ(x1, y1, z1, 0) = N+

[
∂2υ

∂x2
1
+

∂2υ

∂y2
1
+

∂2υ

∂z2
1

]
.

Applying inverse Natural transform, we get

υ(x1, y1, z1, t1) = N−
[

υ(x1, y1, z1, 0)
s

− uγ

sγ
N+

[
∂2υ

∂x2
1
+

∂2υ

∂y2
1
+

∂2υ

∂z2
1

]]
.

Using ADM procedure, we get

υ0(x1, y1, z1, t1) = N−
[

υ(x1, y1, z1, 0)
s

]
= N−

[
sin x1 sin y1 sin z1

s

]
,

υ0(x1, y1, z1, t1) = sin x1 sin y1 sin z1, (26)

υj+1(x1, y1, z1, t1) = N−
[

uγ

sγ
N+

[
∂2υj

∂x2
1
+

∂2υj

∂y2
1
+

∂2υj

∂z2
1

]]
, j = 0, 1, 2, ...

for j = 0:

υ1(x1, y1, z1, t1) = N−
[

uγ

sγ
N+

[
∂2υ0

∂x2
1
+

∂2υ0

∂y2
1
+

∂2υ0

∂z2
1

]]
,

υ1(x1, y1, z1, t1) = N−
[

2 sin x1 sin y1 sin z1uγ

sγ+1

]
= −3 sin x1 sin y1 sin z1

tγ
1

Γ(γ + 1)
.

(27)
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The subsequent terms are:

υ2(x1, y1, z1, t1) = N−
[

uγ

sγ
N+

[
∂2υ1

∂x2
1
+

∂2υ1

∂y2
1
+

∂2υ1

∂z2
1

]]
= (−3)2 sin x1 sin y1 sin z1

t2γ
1

Γ(2γ + 1)
,

υ3(x1, y1, z1, t1) = N−
[

uγ

sγ
N+

[
∂2υ2

∂x2
1
+

∂2υ2

∂y2
1
+

∂2υ2

∂z2
1

]]
= (−3)3 sin x1 sin y1 sin z1

t3γ
1

Γ(3γ + 1)
,

υ3(x1, y1, z1, t1) = N−
[

uγ

sγ
N+

[
∂2υ3

∂x2
1
+

∂2υ3

∂y2
1
+

∂2υ3

∂z2
1

]]
= (−3)4 sin x1 sin y1 sin z1

t4γ
1

Γ(4γ + 1)
,

.

.

.

υj(x1, y1, z1, t1) = N−
[

uγ

sγ
N+

[
∂2υj

∂x2
1
+

∂2υj

∂y2
1
+

∂2υj

∂z2
1

]]
= (−3)j sin x1 sin y1 sin z1

tjγ
1

Γ(jγ + 1)
.

(28)

The NTDM solution for Example 4.3 is

υ(x1, y1, z1, t1) = υ0(x1, y1, z1, t1) + υ1(x1, y1, z1, t1) + υ2(x1, y1, z1, t1) + υ3(x1, y1, z1, t1) + · · ·

υ(x1, y1, z1, t1) = sin x1 sin y1 sin z1

(
1−

3tγ
1

Γ(γ + 1)
+

(−3tγ
1 )

2

Γ(2γ + 1)
+

(−3tγ
1 )

3

Γ(3γ + 1)
+

(−3tγ
1 )

4

Γ(4γ + 1)
· ··
)

.

When γ = 1, then the NTDM solution is

υ(x1, y1, z1, t1) = sin x1 sin y1 sin z1

(
1− 3t1 +

(−3t1)
2

2!
+

(−3t1)
3

3!
+

(−3t1)
4

4!
· ··
)

. (29)

This result is calculated to the exact solution in a closed form:

υ(x1, y1, z1, t1) = e−3t1 sin x1 sin y1 sin z1.

Similarly, in Figure 3 the numerical values of the Example 4.3 show the accuracy and efficiency
of the NTDM at different values of γ. In Figure 3a,b we consider fixed order γ = 1 for piecewise
approximation values of x1, y1 in the domain 0 ≤ x1, y1 ≤ 10. Figure 3c represents the graphs of
NTDM solution at γ = 0.50, and error Figure 3d at γ = 1 respectively of Example 4.3. It is cleared
from the Figure 3a,b that NTDM solution are in good agreement with the exact solution of the
problems. The small difference from the solutions graph of the problem, because the solution of the
fractional-order problems creates a little deviation from the solution at integer order problem.



Entropy 2019, 21, 557 11 of 13

Figure 3. The (a) Exact and (b) NTDM solutions of υ(x1, y1, z1, t1) of Example 4.3, at γ = 1, (c) at
γ = 0.50 and (d) Error plot at γ = 1.

5. Conclusions

In this paper, the analytical solutions of fractional-order diffusion equations are determined,
using NTDM. The NTDM solutions are obtained at fractional and integer orders for all problems.
The results revealed the highest agreement with the exact solutions for the problems. The NTDM
solutions for some numerical examples have shown the validity of the proposed method. It is also
investigated that the fractional-order solutions are convergent to the exact solution for the problems
as fractional-order approaches integer-order. The implementation of NTDM to illustrative examples
have also confirmed that the fractional-order mathematical model can be the best representation of
any experimental data compared to the integer-order model. Moreover, by taking different fractional
orders, we can find a way to set a suitable mathematical model for any experimental data, and thus
find reasonable consequences. Hence, it is concluded that NTDM is the best tool for the solution of
FPDEs compared to ADM, VIM, and DTM discussed in literature. NTDM provides the highest rate
of convergence to the exact solution for the problems. In the future, NTDM can be used to find the
analytical solution of other non-linear FPDEs, which are frequently used in science and engineering.
NTDM solutions for fractional-order problems will prove the best understanding of the real world
problems represented by FPDEs.
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