Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = zinc vaporization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 24038 KiB  
Article
Advanced Porosity Control of CP780 Galvanized Steel During Gas Metal Arc Welding with Pulsed Arc
by Carlos Adrián García Ochoa, Jorge Alejandro Verduzco Martínez, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, José Jaime Taha-Tijerina, Ariosto Medina Flores and Maleni García Gómez
Metals 2025, 15(5), 513; https://doi.org/10.3390/met15050513 - 1 May 2025
Viewed by 775
Abstract
This study investigated the control of porosity during gas metal arc welding with pulsed arc (GMAW-P) of complex-phase 780 (CP780) galvanized steel. Due to the Zn coating on this type of steel, porosity forms during welding as a result of Zn vaporization. The [...] Read more.
This study investigated the control of porosity during gas metal arc welding with pulsed arc (GMAW-P) of complex-phase 780 (CP780) galvanized steel. Due to the Zn coating on this type of steel, porosity forms during welding as a result of Zn vaporization. The objective was to optimize the welding parameters to minimize porosity with a design of experiments using an L9 orthogonal array to analyze the effects of peak current (Ip), pulse time (tp), and pulse frequency (f) in high-speed welding conditions. The results showed that porosity was significantly reduced with a peak current of 313 A, a frequency of 10 Hz, and a pulse time of 10 ms, achieving ~0% porosity in the validation welding trials. A microstructural analysis identified allotriomorphic ferrite, Widmanstätten ferrite, acicular ferrite, bainite, and martensite in the heat-affected zone (HAZ). A predictive model to anticipate the percentage of porosity with an R2 of 99.97% was developed, and an ANOVA determined the peak current as the most critical factor in porosity formation. Full article
Show Figures

Figure 1

12 pages, 2992 KiB  
Article
Enhanced Xylan/PVA Composite Films via Nano-ZnO Reinforcement for Sustainable Food Packaging
by Lin Yao, Hui Sun, Chang Yu and Yunxuan Weng
Polymers 2025, 17(8), 1080; https://doi.org/10.3390/polym17081080 - 16 Apr 2025
Viewed by 583
Abstract
The development of biodegradable alternatives to petroleum-based packaging is essential for environmental sustainability. This study presents a novel approach to enhance the performance of hemicellulose-based films by fabricating xylan/polyvinyl alcohol (PVA) composites reinforced with zinc oxide nanoparticles (nano-ZnO). To address nano-ZnO agglomeration, sodium [...] Read more.
The development of biodegradable alternatives to petroleum-based packaging is essential for environmental sustainability. This study presents a novel approach to enhance the performance of hemicellulose-based films by fabricating xylan/polyvinyl alcohol (PVA) composites reinforced with zinc oxide nanoparticles (nano-ZnO). To address nano-ZnO agglomeration, sodium hexametaphosphate (SHMP) was utilized as a dispersant, while sorbitol improved film flexibility. The composite films were prepared via solution casting, and the effects of nano-ZnO content (0–2.5 wt%) on mechanical, thermal, and barrier properties were systematically evaluated. Results showed that at 2 wt% nano-ZnO loading, the tensile strength increased from 15.0 MPa (control) to 26.15 MPa, representing a 74% enhancement, while oxygen permeability decreased from 1.83 to 0.50 (cm3·μm)/(m2·d·kPa). Additionally, the thermal stability also improved due to hydrogen bonding and uniform nanoparticle dispersion. At this optimized loading, the hydrophobcity was also maximized, with the contact angle peaking at 74.4° and water vapor permeability decreasing by 18% (1.53·10−6·g·h−1·m−1·Pa−1). Excessive nano-ZnO loading (>2 wt%) induced particle agglomeration, generating stress concentrators that disrupted the polymer–nanoparticle interface and compromised mechanical integrity. These findings highlight the potential of nano-ZnO-modified xylan/PVA films as sustainable, high-performance alternatives to conventional packaging. The synergistic use of SHMP and nano-ZnO provides a strategy for designing eco-friendly materials with tunable properties, advancing the use of biomass in food preservation applications. Full article
(This article belongs to the Special Issue New Progress of Green Sustainable Polymer Materials)
Show Figures

Graphical abstract

76 pages, 4956 KiB  
Article
Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact?
by Armen Y. Mulkidjanian, Daria V. Dibrova and Andrey Y. Bychkov
Life 2025, 15(3), 399; https://doi.org/10.3390/life15030399 - 4 Mar 2025
Cited by 1 | Viewed by 2441
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and [...] Read more.
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth’s crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth’s protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

23 pages, 9198 KiB  
Article
ZnO-Embedded Carboxymethyl Cellulose Bioplastic Film Synthesized from Sugarcane Bagasse for Packaging Applications
by Anand Vyas, Sun-pui Ng, Tao Fu and Ifrah Anum
Polymers 2025, 17(5), 579; https://doi.org/10.3390/polym17050579 - 22 Feb 2025
Cited by 2 | Viewed by 1938
Abstract
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent [...] Read more.
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent hydrophilicity and low mechanical strength of CMC present significant challenges. To address these limitations, zinc oxide nanoparticles (ZnO NPs) were employed as a biocompatible and non-toxic reinforcement filler to improve CMC’s properties. A solution casting method which incorporated varying concentrations of ZnO NPs (0%, 5%, 10%, 15%, 20%, and 25%) into the CMC matrix allowed for the preparation of composite bioplastic films, the physicochemical properties of which were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results revealed that the ZnO NPs were well-integrated into the CMC matrix, thereby improving the film’s crystallinity, with a significant shift from amorphousness to the crystalline phase. The uniform dispersion of ZnO NPs and the development of hydrogen bonding between ZnO and the CMC matrix resulted in enhanced mechanical properties, with the film CZ20 exhibiting the greatest tensile strength—15.12 ± 1.28 MPa. This film (CZ20) was primarily discussed and compared with the control film in additional comparison graphs. Thermal stability, assessed via thermogravimetric analysis, improved with an increasing percentage of ZnO Nps, while a substantial decrease in water vapor permeability and oil permeability coefficients was observed. In addition, such water-related properties as water contact angle, moisture content, and moisture absorption were also markedly improved. Furthermore, biodegradability studies demonstrated that the films decomposed by 71.43% to 100% within 7 days under ambient conditions when buried in soil. Thus, CMC-based eco-friendly composite films have the clear potential to become viable replacements for conventional plastics in the packaging industry. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

10 pages, 8894 KiB  
Communication
Preparation and Performance Optimization of Fe2+:ZnSe Solid Solution by High-Pressure–High-Temperature Method
by Lijuan Wang, Haohao Yang, Shiyun Zheng, Xin Fan, Qiong Gao, Fangbiao Wang, Qi Chen, Peng Liu and Linjun Li
Materials 2025, 18(4), 896; https://doi.org/10.3390/ma18040896 - 19 Feb 2025
Viewed by 601
Abstract
In this paper, high-purity zinc selenide (ZnSe) prepared by the Chemical Vapor Deposition (CVD) method was used as the raw material, and iron ion-doped zinc selenide polycrystals were successfully fabricated through the thermal diffusion method at 1100 °C for 30 h. The results [...] Read more.
In this paper, high-purity zinc selenide (ZnSe) prepared by the Chemical Vapor Deposition (CVD) method was used as the raw material, and iron ion-doped zinc selenide polycrystals were successfully fabricated through the thermal diffusion method at 1100 °C for 30 h. The results showed that iron ions (Fe2+) successfully penetrated into the zinc selenide crystals, but the concentration of iron ions inside the crystals was relatively low, and the crystals exhibited numerous defects. To address this issue, we performed secondary sintering and annealing on the samples under high-temperature and high-pressure (HPHT) conditions, with the annealing temperature range set at 900–1200 °C. The results demonstrated that, under the synergistic effects of high temperature and high pressure, the lattice spacing in the crystals significantly decreased, defects were reduced, the distribution of iron ions became more uniform, and the concentration of iron ions in the central region increased. Additionally, the density and hardness of the samples were significantly improved. The method of secondary sintering under high-temperature and high-pressure provides a novel approach for the preparation of iron ion-doped zinc selenide polycrystalline ceramics, contributing to the enhancement of ceramic properties. Full article
Show Figures

Figure 1

22 pages, 7586 KiB  
Review
Potential of Zinc Oxide Nanostructures in Biosensor Application
by Ibrahim M. Maafa
Biosensors 2025, 15(1), 61; https://doi.org/10.3390/bios15010061 - 18 Jan 2025
Cited by 6 | Viewed by 2111
Abstract
The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between [...] Read more.
The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between the bioreceptor and transducer, enhancing sensitivity and reducing detection limits. Furthermore, ZnO’s biocompatibility and non-toxicity make it ideal for in vivo applications, reducing the chances of adverse biological responses. This review paper explores the prospects of ZnO nanostructures in the development of biosensors, focusing on their morphological and structural characteristics. Various synthesis techniques, that include sol-gel, sputtering, and chemical vapor deposition, were successfully employed to prepare different ZnO nanostructures, like nanorods, nanotubes, and nanowires. The various findings in this field underscore the efficacy of ZnO nanostructures in enhancing the specificity and sensitivity of biosensors, presenting a promising avenue for the advancement of point-of-care diagnostic devices. Full article
(This article belongs to the Special Issue Nanomaterials for Biosensors)
Show Figures

Figure 1

17 pages, 5952 KiB  
Article
Enhancement of Biopolymer Film Properties Using Spermidine, Zinc Oxide, and Graphene Oxide Nanoparticles: A Study of Physical, Thermal, and Mechanical Characteristics
by Esmaeil Vafaei, Maryam Hasani, Nasrin Salehi, Farzaneh Sabbagh and Shirin Hasani
Materials 2025, 18(2), 225; https://doi.org/10.3390/ma18020225 - 7 Jan 2025
Cited by 2 | Viewed by 1024
Abstract
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of [...] Read more.
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin–chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties. The results show that adding ZnO and GO nanoparticles increased the tensile strength of the layers from 9.203 MPa to 17.787 MPa in films containing graphene oxide and zinc oxide, although the elongation at break decreased. The incorporation of nanoparticles reduced the water vapor permeability from 0.164 to 0.149 (g.m−2.24 h−1). Moreover, the transparency of the layers ranged from 72.67% to 86.17%, decreasing with higher nanoparticle concentrations. The use of nanoparticles enhanced the light-blocking characteristics of the films, making them appropriate for the preservation of light-sensitive food items. The thermal properties improved with an increase in the melting temperature (Tm) up to 115.5 °C and enhanced the thermal stability in the nanoparticle-containing samples. FTIR analysis confirmed the successful integration of all components within the films. In general, the combination of gelatin and chitosan, along with ZnO, GO, and spermidine, significantly enhanced the properties of the layers, making them stronger and more suitable for biodegradable packaging applications. Full article
Show Figures

Figure 1

26 pages, 8241 KiB  
Article
A Zinc Polyphenolic Compound Increases Maize Resistance Against Infection by Bipolaris maydis
by Luis Felipe Lata-Tenesaca, Marcos José Barbosa Oliveira, Aline Vieira Barros, Leandro Castro Silva, João Américo Wordell Filho and Fabrício Ávila Rodrigues
Plants 2025, 14(1), 77; https://doi.org/10.3390/plants14010077 - 30 Dec 2024
Cited by 1 | Viewed by 934
Abstract
Maize leaf blight (MLB), caused by the fungus Bipolaris maydis, is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this [...] Read more.
Maize leaf blight (MLB), caused by the fungus Bipolaris maydis, is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia® (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by B. maydis by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes. Plants were sprayed with water (control) or Semia® (referred to as induced resistance (IR) stimulus hereafter) and not inoculated or inoculated with B. maydis. The mycelial growth and conidium germination were significantly reduced by the IR stimulus in vitro. The MLB severity was significantly reduced by 76% for IR-stimulus-sprayed plants compared to plants from the control treatment. For infected and IR-stimulus-sprayed plants, the glucose, fructose, sucrose, and starch concentrations were significantly higher compared to inoculated plants from the control treatment. The activity levels of superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase were significantly higher for the IR-stimulus-sprayed plants compared to plants from the control treatment. Less impairment on the photosynthetic apparatus (higher values for leaf gas exchange (rates of net CO2 assimilation, stomatal conductance to water vapor, and transpiration) and chlorophyll a fluorescence (variable-to-maximum Chl a fluorescence ratio, photochemical yield, and yield for dissipation by down-regulation) parameters)) along with a preserved pool of chlorophyll a+b and carotenoids were noticed for infected and IR-stimulus-sprayed plants compared to infected plants from the control treatment. The defense-related genes IGL, CHS02, PR1, PAL3, CHI, and GLU were strongly up-regulated in the leaves of IR-stimulus-sprayed and infected plants compared to infected plants from the control treatment. These findings highlight the potential of using this IR stimulus for MLB management. Full article
Show Figures

Figure 1

15 pages, 5399 KiB  
Article
Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment
by Giuliano Sico, Vincenzo Guarino, Carmela Borriello and Maria Montanino
Nanomaterials 2024, 14(24), 2006; https://doi.org/10.3390/nano14242006 - 13 Dec 2024
Viewed by 1083
Abstract
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible [...] Read more.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures. Exposing nanoparticles (NPs) to acidic vapor solution, spontaneous restructuring pathways are observed as a consequence of NPs tending to reduce their high interfacial energy. Depending on the imposed environmental conditions during the treatment (e.g., temperature, vapor composition), various ZnO thin-film morphologies are produced, from dense to porous ones, as a result of the activation and interplay of different spontaneous interface elimination mechanisms, including dissolution–precipitation, grain boundary migration and grain rotation–coalescence. The influence of VPT on structural/optical properties has been examined via XRD, UV–visible and photoluminescence measurements. Controlling NP junctions and network nanoporosity, VPT appears as promising cost-effective, low-temperature and pressureless post-preparative platform for preparing supported ZnO NP-based films with improved connectivity and mechanical stability, favoring their practical use and integration in flexible devices. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

13 pages, 3796 KiB  
Article
Optimized Iodine Recovery from Zinc Suboxide Derived from Steel Dust Using Alkaline Washing and Air Blowing-Out: A Sustainable Industrial Approach
by Lin Lin, Senlin Tian, Jie Zhao, Dong Wang, Kai Li and Ping Ning
Sustainability 2024, 16(24), 10925; https://doi.org/10.3390/su162410925 - 13 Dec 2024
Viewed by 1359
Abstract
The present paper proposes an advanced process to effectively recover and fully use iodine from steel dust-derived zinc suboxide, with considerations of effectiveness in the process and industrial viability. It includes, for example, alkali wash for the dissolution of iodine into an alkaline [...] Read more.
The present paper proposes an advanced process to effectively recover and fully use iodine from steel dust-derived zinc suboxide, with considerations of effectiveness in the process and industrial viability. It includes, for example, alkali wash for the dissolution of iodine into an alkaline solution from steel dust and uses mechanical vapor recompression (MVR) to concentrate the dissolved iodine by preparing the solution for the air-blowing-out process. The hydrogen iodide is also oxidized under acidic conditions with the addition of hydrogen peroxide to form crude iodine, estimated at about 20 tons annually. As a matter of fact, using this process, up to 1.2 million tons of steel waste dust can be treated in a year, turning what was previously considered waste into something of value. The thermodynamic relationship between iodine recovery and pH value is further discussed in this study, pointing out that under alkaline conditions, iodine is predominantly in the form of iodide (I) and iodate (IO3), while at less than pH 2.8, it is in its molecular form I2. These insights would provide a theoretical backbone for maximum extraction efficiency, guiding process parameters toward optimum recovery and judicious use of the resource. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

7 pages, 1102 KiB  
Proceeding Paper
Controlling the Response of Gas-Sensitive Zinc Oxide Nanostructures to Water Vapor
by Svetlana S. Nalimova, Zamir V. Shomakhov, Vlada V. Miroshkina, Cong D. Bui and Vyacheslav A. Moshnikov
Eng. Proc. 2024, 82(1), 98; https://doi.org/10.3390/ecsa-11-20477 - 26 Nov 2024
Viewed by 261
Abstract
Gas-sensitive devices have great potential for use in a variety of applications, including environmental monitoring, medicine, and various industries. The stability of gas sensors based on zinc oxide can be significantly affected by the presence of water vapors in the atmosphere. Gas-sensitive layers [...] Read more.
Gas-sensitive devices have great potential for use in a variety of applications, including environmental monitoring, medicine, and various industries. The stability of gas sensors based on zinc oxide can be significantly affected by the presence of water vapors in the atmosphere. Gas-sensitive layers based on ZnO nanowires were synthesized by the hydrothermal method. The effect of different seed layers was studied in order to optimize the sensor properties of zinc oxide nanostructures. It was shown that layers consisting of zinc oxide nanowires synthesized using sacrificial doping on the seed layers of ZnO nanoparticles exhibited a moderate response to the vapor of volatile organic compounds, with almost no response to water vapor. Full article
Show Figures

Figure 1

12 pages, 4667 KiB  
Article
Multistimuli Luminescence and Anthelmintic Activity of Zn(II) Complexes Based on 1H-Benzimidazole-2-yl Hydrazone Ligands
by Alexey Gusev, Elena Braga, Alexandr Kaleukh, Michail Baevsky, Mikhail Kiskin and Wolfgang Linert
Inorganics 2024, 12(9), 256; https://doi.org/10.3390/inorganics12090256 - 23 Sep 2024
Viewed by 1099
Abstract
Three novel Zn(II) mononuclear complexes with the general formula ZnL2Cl2 (L = 2-(4-R-phenylmethylene)benzimidazol-2-hydrazines; R-H (1), R-CH3 (2), and R-OCH3 (3)) were synthesized and fully characterized by various means. These complexes demonstrate excitation-dependent emission, which is detected by a [...] Read more.
Three novel Zn(II) mononuclear complexes with the general formula ZnL2Cl2 (L = 2-(4-R-phenylmethylene)benzimidazol-2-hydrazines; R-H (1), R-CH3 (2), and R-OCH3 (3)) were synthesized and fully characterized by various means. These complexes demonstrate excitation-dependent emission, which is detected by a change in the emission color (from blue to green) upon an increase in the excitation wavelength. Moreover complex 1 shows reversible mechanochromic luminescence behavior due to the reversible loss of solvated methanol molecules upon the intense grinding of crystals. In addition, 1 exhibits vapochromic properties, which originate from the adsorption methanol vapor on the crystal surface. The strengthening of anthelmintic activity at the transition from free hydrazones to zinc-based complexes is shown. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

26 pages, 6242 KiB  
Article
Wireless Sensor Node for Chemical Agent Detection
by Zabdiel Brito-Brito, Jesús Salvador Velázquez-González, Fermín Mira, Antonio Román-Villarroel, Xavier Artiga, Satyendra Kumar Mishra, Francisco Vázquez-Gallego, Jung-Mu Kim, Eduardo Fontana, Marcos Tavares de Melo and Ignacio Llamas-Garro
Chemosensors 2024, 12(9), 185; https://doi.org/10.3390/chemosensors12090185 - 11 Sep 2024
Viewed by 1850
Abstract
In this manuscript, we present in detail the design and implementation of the hardware and software to produce a standalone wireless sensor node, called SensorQ system, for the detection of a toxic chemical agent. The proposed wireless sensor node prototype is composed of [...] Read more.
In this manuscript, we present in detail the design and implementation of the hardware and software to produce a standalone wireless sensor node, called SensorQ system, for the detection of a toxic chemical agent. The proposed wireless sensor node prototype is composed of a micro-controller unit (MCU), a radio frequency (RF) transceiver, a dual-band antenna, a rechargeable battery, a voltage regulator, and four integrated sensing devices, all of them integrated in a package with final dimensions and weight of 200 × 80 × 60 mm and 0.422 kg, respectively. The proposed SensorQ prototype operates using the Long-Range (LoRa) wireless communication protocol at 2.4 GHz, with a sensor head implemented on a hetero-core fiber optic structure supporting the surface plasmon resonance (SPR) phenomenon with a sensing section (L = 10 mm) coated with titanium/gold/titanium and a chemically sensitive material (zinc oxide) for the detection of Di-Methyl Methyl Phosphonate (DMMP) vapor in the air, a simulant of the toxic nerve agent Sarin. The transmitted spectra with respect to different concentrations of DMMP vapor in the air were recorded, and then the transmitted power for these concentrations was calculated at a wavelength of 750 nm. The experimental results indicate the feasibility of detecting DMMP vapor in air using the proposed optical sensor head, with DMMP concentrations in the air of 10, 150, and 150 ppm in this proof of concept. We expect that the sensor and wireless sensor node presented herein are promising candidates for integration into a wireless sensor network (WSN) for chemical warfare agent (CWA) detection and contaminated site monitoring without exposure of armed forces. Full article
Show Figures

Figure 1

15 pages, 3590 KiB  
Article
Nanocomposite Coatings of Pectin and Oxide Zinc Nanoparticles to Increase Papaya Shelf Life
by Joelma Saures dos Santos, Caroline Cagnin, Bheatriz Silva Morais de Freitas, Richard Marins da Silva, Glaydson Brasileiro Lopes de Jesus, Celso Martins Belisário, Mariana Buranelo Egea, Josemar Gonçalves de Oliveira Filho and Geovana Rocha Plácido
Coatings 2024, 14(8), 990; https://doi.org/10.3390/coatings14080990 - 6 Aug 2024
Cited by 3 | Viewed by 2044
Abstract
Nanocomposite coatings functionalized with antimicrobial nanoparticles could be a promising alternative for the postharvest preservation of fruits. This study aimed to develop nanocomposite coatings based on pectin incorporated with zinc oxide (NPZ) nanoparticles to preserve the postharvest quality of papaya fruits. The coatings [...] Read more.
Nanocomposite coatings functionalized with antimicrobial nanoparticles could be a promising alternative for the postharvest preservation of fruits. This study aimed to develop nanocomposite coatings based on pectin incorporated with zinc oxide (NPZ) nanoparticles to preserve the postharvest quality of papaya fruits. The coatings were prepared using pectin (3%) and NPZ (0%–0.4%). The materials were characterized for water-related properties (water solubility and water vapor permeability) as well as physical, mechanical, morphological, rheological, and structural properties. The coatings were applied to papaya fruits, which were analyzed for weight loss, firmness, titratable acidity, and soluble solids over nine days of storage. Incorporating NPZ (0%–0.4%) did not affect the films’ water solubility and vapor permeability. However, films with NPZ exhibited lower mechanical properties than pure pectin films. Rheological behavior testing indicated that the pectin solution was a Newtonian fluid, whereas pectin solutions with zinc nanoparticles were non-Newtonian fluids. The pectin coating with 0.2% NPZ was the most effective in preserving the postharvest quality of papaya by reducing fruit weight loss and acidity content. Therefore, the developed coatings incorporated with NPZ showed promise for the postharvest preservation of papaya fruits. Full article
Show Figures

Figure 1

21 pages, 7158 KiB  
Article
Chitosan–Surfactant Composite Nanocoatings on Glass and Zinc Surfaces Prepared from Aqueous Solutions
by Péter Márton, Liza Áder, Dávid Miklós Kemény, Adél Rácz, Dorina Kovács, Norbert Nagy, Gabriella Stefánia Szabó and Zoltán Hórvölgyi
Molecules 2024, 29(13), 3111; https://doi.org/10.3390/molecules29133111 - 29 Jun 2024
Cited by 1 | Viewed by 1216
Abstract
Hydrophobic coatings from chitosan–surfactant composites (ca. 400 nm thick by UV-Vis spectroscopy) for possible corrosion protection were developed on glass and zinc substrates. The surfactants (sodium dodecyl sulfate, SDS or sodium dodecylbenzenesulfonate, and SDBS) were added to the chitosan by two methods: mixing [...] Read more.
Hydrophobic coatings from chitosan–surfactant composites (ca. 400 nm thick by UV-Vis spectroscopy) for possible corrosion protection were developed on glass and zinc substrates. The surfactants (sodium dodecyl sulfate, SDS or sodium dodecylbenzenesulfonate, and SDBS) were added to the chitosan by two methods: mixing the surfactants with the aqueous chitosan solutions before film deposition or impregnating the deposited chitosan films with surfactants from their aqueous solutions. For the mixed coatings, it was found that the lower surface tension of solutions (40–45 mN/m) corresponded to more hydrophobic (80–90°) coatings in every case. The hydrophobicity of the impregnated coatings was especially significant (88° for SDS and 100° for SDBS). Atomic force microscopy studies revealed a slight increase in roughness (max 1.005) for the most hydrophobic coatings. The accumulation of surfactants in the layer was only significant (0.8–1.0 sulfur atomic %) in the impregnated samples according to X-ray photoelectron spectroscopy. Polarization and electron impedance spectroscopy tests confirmed better barrier properties for these samples (40–50% pseudo-porosity instead of 94%). The degree of swelling in a water vapor atmosphere was significantly lower in the case of the impregnated coatings (ca. 25%) than that of the native ones (ca. 75%), measured by spectroscopic ellipsometry. Accordingly, good barrier layer properties require advantageous bulk properties in addition to surface hydrophobicity. Full article
Show Figures

Graphical abstract

Back to TopTop