Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = zinc oxide sorbent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 978 KB  
Article
An Integrated Sulfide Removal Approach from a Substrate for Biogas Production and the Simultaneous Production of Electricity
by Venko Beschkov, Ivan Angelov, Stefan Stefanov and Ljutzkan Ljutzkanov
Clean Technol. 2025, 7(3), 77; https://doi.org/10.3390/cleantechnol7030077 - 2 Sep 2025
Viewed by 728
Abstract
Sulfides are frequently encountered in natural mineral water and different wastewater streams, and their presence significantly impedes subsequent water treatment or utilization. Sulfide removal, or at least its reduction, can be accomplished in different ways, but there is one straightforward method where sulfide [...] Read more.
Sulfides are frequently encountered in natural mineral water and different wastewater streams, and their presence significantly impedes subsequent water treatment or utilization. Sulfide removal, or at least its reduction, can be accomplished in different ways, but there is one straightforward method where sulfide is captured on a carbon-based sorbent, with the consequent sorbent regeneration producing electricity in liquid fuel cell mode. This multi-functional approach combines sulfide removal, energy generation, and water pre-treatment for various applications. The present work aims to show sulfide removal from sulfide-containing wastewater streams from alcohol and beverage manufacturing. The clean water could be used for biogas production. Sorbent regeneration was performed in fuel cell mode and was accompanied by electricity production. The experiments, conducted in a liquid-phase fuel cell, used electrode compartments that were separated by an anion-exchange membrane. Electroconductive charcoal, produced via the pyrolysis of residues from tire production and doped with zinc oxide, was used as a sorbent. The experimental treatments of vinasse, whey, and stillage for sulfide removal by this method show the sustainable performance of the sorbent for up to twelve consecutive runs. The biogas yield produced from vinasse was increased more than three times for the treated substrate compared to the reference case. Full article
Show Figures

Figure 1

22 pages, 5132 KB  
Article
Zn-Layered Double Hydroxide Intercalated with Graphene Oxide for Methylene Blue Photodegradation and Acid Red Adsorption Studies
by Rahmah H. Al-Ammari, Salwa D. Al-Malwi, Mohamed A. Abdel-Fadeel, Salem M. Bawaked and Mohamed Mokhtar M. Mostafa
Catalysts 2024, 14(12), 897; https://doi.org/10.3390/catal14120897 - 6 Dec 2024
Cited by 8 | Viewed by 3133
Abstract
This study focuses on the synthesis of a novel layered double hydroxide and its application in two environmental remediation processes. Graphene oxide, a two-dimensional material, has potential applications in this field. However, its tendency to agglomerate restricts its usability. Our objective was to [...] Read more.
This study focuses on the synthesis of a novel layered double hydroxide and its application in two environmental remediation processes. Graphene oxide, a two-dimensional material, has potential applications in this field. However, its tendency to agglomerate restricts its usability. Our objective was to increase the morphology and performance of layered double hydroxide (LDH) by combining GO with hydrotalcite. The LDH/GO nanohybrids were utilized as photocatalysts for the degradation of methylene blue (MB) dye and were investigated as sorbents for acid red (A.R) dye in water. In order to achieve this objective, ZnAl-NO3 LDH was synthesized using the co-precipitation method, with a Zn:Al ratio of ~3. Subsequently, the LDH was intercalated with varying ratios of as-received graphene oxide. An array of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) measurements, N2 physisorption, scanning electron microscopy–energy-dispersive X-ray analysis (SEM-EDX), and diffuse reflectance UV–vis spectra (DR UV-vis), were employed to examine the physicochemical properties of the synthesized LDH. These techniques confirmed that the obtained material is zinc-aluminum hydrotalcite intercalated with GO. The addition of graphene oxide (GO) to the layered double hydroxide (LDH) structure improved the performance of the hydrotalcite. As a result, the composite ZnAl-LDH-10 shows significant potential in the field of photocatalytic degradation of MB. Additionally, the incorporation of GO enhanced the absorption of light in the visible region of the spectra, leading to improved elimination of A.R compared to LDH without GO or other ratios of GO. Full article
(This article belongs to the Special Issue Green Chemistry and Catalysis)
Show Figures

Figure 1

16 pages, 3719 KB  
Article
Removal of Organic Sulfur Pollutants from Gasification Gases at Intermediate Temperature by Means of a Zinc–Nickel-Oxide Sorbent for Integration in Biofuel Production
by Josemaria Sánchez-Hervás, Isabel Ortiz, Veronica Martí and Alberto Andray
Catalysts 2023, 13(7), 1089; https://doi.org/10.3390/catal13071089 - 11 Jul 2023
Cited by 8 | Viewed by 3981
Abstract
Production of renewable fuels from gasification is based on catalytic processes. Deep desulfurization is required to avoid the poisoning of the catalysts. It means the removal of H2S but also of organic sulfur species. Conventional cleaning consists of a several-step complex [...] Read more.
Production of renewable fuels from gasification is based on catalytic processes. Deep desulfurization is required to avoid the poisoning of the catalysts. It means the removal of H2S but also of organic sulfur species. Conventional cleaning consists of a several-step complex approach comprising catalytic hydro-treating followed by H2S removal. In this work, a single-stage process using a zinc and nickel oxide sorbent has been investigated for the removal of organic sulfur species present in syngas. The process is called reactive adsorption and comes from the refinery industry. The challenge investigated by CIEMAT was to prove for the first time that the concept is also valid for syngas. We have studied the process at a lab scale. Thiophene and benzothiophene, two of the main syngas organic sulfur compounds, were selected as target species to remove. The experimental study comprised the analysis of the effect of temperature (250–450 °C), pressure (1–10 bar), space velocity (2000–3500 h−1), tar components (toluene), sulfur species (H2S), and syngas components (H2, CO, and full syngas CO/CO2/CH4/H2). Operating conditions for removal of thiophene and benzothiophene were determined. Increasing pressure and temperature had a positive effect, and full conversion was achieved at 450 °C, 10 bar and 3500 h−1, accompanied by simultaneous hydrogen sulfide capture by the sorbent in accordance with the reactive adsorption desulfurization (RADS) process. Space velocity and hydrogen content in the syngas had little effect on desulfurization. Thiophene conversions from 39% to 75% were obtained when feeding synthetic syngas mimicking different compositions, spanning from air to steam-oxygen-blown gasification. Toluene, as a model tar component present in syngas, did not strongly affect the removal of thiophene and benzothiophene. H2S inhibited their conversion, falling, respectively, to 2% and 69% at 350 °C and 30% and 80% at 400 °C under full syngas blends. Full article
(This article belongs to the Special Issue Designing Catalytic Desulfurization Processes to Prepare Clean Fuels)
Show Figures

Figure 1

18 pages, 4882 KB  
Article
Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions
by Natalia Niedzbała, Katarzyna Dziergowska, Maja Wełna, Anna Szymczycha-Madeja, Jacek Chęcmanowski, Nathalie Bourgougnon and Izabela Michalak
Processes 2023, 11(2), 393; https://doi.org/10.3390/pr11020393 - 27 Jan 2023
Cited by 4 | Viewed by 4028
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were biosynthesized with the use of an extract derived from seaweed (Sargassum sp.) and used as a sorbent for the removal of Cr(III) ions from wastewater. The biosorption properties of the seaweed itself as [...] Read more.
In this study, zinc oxide nanoparticles (ZnO NPs) were biosynthesized with the use of an extract derived from seaweed (Sargassum sp.) and used as a sorbent for the removal of Cr(III) ions from wastewater. The biosorption properties of the seaweed itself as well as of the post-extraction residue were investigated for comparison. ZnO NPs were characterized with UV–vis, ICP-OES, FTIR, XRD, and SEM techniques. The sorption capacity of the (bio)sorbents was investigated as a function of contact time at different pH values and initial concentrations of metal ions. Sorption kinetics and isotherms were studied in order to comprehend the sorption nature and mechanism. The sorption kinetic data were well-fitted with the pseudo-second-order model, and the highest sorption capacity was calculated for ZnO NPs (137 mg/g), whereas those calculated for Sargassum sp. (82.0 mg/g) and the post-extraction residue (81.3 mg/g) were comparable (at pH 5 and 300 mg of Cr(III) ions/L). The adsorption isotherms for all sorbents were well described using the Langmuir model. According to these findings, ZnO NPs were superior to the sorption properties of the tested biosorbents and can be used as a potential sorbent for the removal of metal ions from wastewater. Renewable seaweed biomass can be used for the sustainable biosynthesis of nanoparticles used for environmental protection. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 4843 KB  
Article
Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+)
by Bandar A. Al-Mur
Water 2023, 15(3), 455; https://doi.org/10.3390/w15030455 - 23 Jan 2023
Cited by 43 | Viewed by 5660
Abstract
This work used a variety of experimental studies to explore the elimination of cadmium and lead ions from aqueous solutions using a novel method for the biosynthesis of nanoparticles of zinc oxide sorbents (ZnO-NPs) from mangrove leaf extract. The influences of important factors [...] Read more.
This work used a variety of experimental studies to explore the elimination of cadmium and lead ions from aqueous solutions using a novel method for the biosynthesis of nanoparticles of zinc oxide sorbents (ZnO-NPs) from mangrove leaf extract. The influences of important factors affecting the adsorption technique were determined, including the pH value, contact duration, the initial concentration of metal ions, nano-adsorbent dose, different temperatures, and interfering ions. To confirm the formation of synthesized ZnO NPs and validate the properties of green-synthesized sorbents, a variety of analytical methods were used, including UV–vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The results showed that the average diameter of the ZnO-NPs was approximately 29.1 nm (spherical at the nano-size regime). The adsorption reaction rate was examined by comparing pseudo-second order against pseudo-first order templates. From the observed records, the adsorption reaction of Cd2+ and Pb2+ on the ZnO-NPs fitted well with the pseudo-second order template. Freundlich, Langmuir, Dubinin–Radushkevich, and Tempkin equilibrium isotherm models were used to evaluate the sorption of Cd2+ and Pb2+ onto the sorbent material. Based on the parameters extracted from each model, as well as the model-fitting values, the preferential isotherms for Pb2+ and Cd2+ ion adsorption on ZnO-NPs were the Dubinin–Radushkevich and Langmuir models, respectively. ZnO-NPs have the potential to be used as an effective and promising adsorbent material for eliminating metal ions from water solutions. Full article
Show Figures

Figure 1

18 pages, 2844 KB  
Article
CO2 Sorbents Based on Spherical Carbon and Photoactive Metal Oxides: Insight into Adsorption Capacity, Selectivity and Regenerability
by Iwona Pełech, Ewelina Kusiak-Nejman, Piotr Staciwa, Daniel Sibera, Joanna Kapica-Kozar, Agnieszka Wanag, Filip Latzke, Karolina Pawłowska, Adrianna Michalska, Urszula Narkiewicz and Antoni W. Morawski
Molecules 2022, 27(20), 6802; https://doi.org/10.3390/molecules27206802 - 11 Oct 2022
Cited by 9 | Viewed by 2281
Abstract
This work aimed to obtain hybrid composites based on photoactive metal oxide and carbon having adsorption properties. The materials, composed of titanium dioxide or zinc oxide and spherical carbon, were obtained from resorcinol-formaldehyde resin, treated in a solvothermal reactor heated with microwaves and [...] Read more.
This work aimed to obtain hybrid composites based on photoactive metal oxide and carbon having adsorption properties. The materials, composed of titanium dioxide or zinc oxide and spherical carbon, were obtained from resorcinol-formaldehyde resin, treated in a solvothermal reactor heated with microwaves and then subjected to carbonization, were received. The functional groups of pure carbon spheres (unsaturated stretching C=C, stretching C−OH and C−H bending vibrations), CS/ZnO and CS/TiO2 samples were determined by FT-IR analysis. The characteristic bands for ZnO and TiO2 were observed below 1000 cm−1. The thermal oxidative properties are similar for TiO2- and ZnO-modified carbon spheres. We have observed that the increased carbon sphere content in nanocomposites results in starting the decomposition process at a lower temperature, therefore, nanocomposites have a broader combustion temperature range. The effect of the oxides’ addition to carbon spheres on their adsorption properties was evaluated in detail by examining CO2 adsorption from the gas phase. The selectivity of CO2 over N2 at a temperature of 25 °C and pressure of 1 bar (a novelty in testing CS-based sorbents) calculated for 3.00 CS/TiO2 and 4.00 CS/ZnO was 15.09 and 16.95, respectively. These nanocomposites exhibit excellent cyclic stability checked over 10 consecutive adsorption–desorption cycles. Full article
(This article belongs to the Special Issue Nanocomposites as a Promising Type of Photocatalyst)
Show Figures

Figure 1

20 pages, 3218 KB  
Article
Serratula coronata L. Mediated Synthesis of ZnO Nanoparticles and Their Application for the Removal of Alizarin Yellow R by Photocatalytic Degradation and Adsorption
by Anastassiya A. Mashentseva, Nurgulim A. Aimanova, Nursanat Parmanbek, Bakhtiyar S. Temirgaziyev, Murat Barsbay and Maxim V. Zdorovets
Nanomaterials 2022, 12(19), 3293; https://doi.org/10.3390/nano12193293 - 22 Sep 2022
Cited by 22 | Viewed by 3131
Abstract
In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method [...] Read more.
In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method using the plant extract of Serratula coronata L. as a reducing and stabilizing agent and characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. Photocatalytic degradation of AY was monitored by UV–visible spectroscopy and the effects of parameters, such as light source type (UV-, visible- and sunlight), incubation time, pH, catalyst dosage and temperature on degradation were investigated. It was demonstrated that the source of light plays an important role in the efficiency of the reaction and the UV-assisted degradation of AY was the most effective, compared to the others. The degradation reaction of AY was found to follow the Langmuir-Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of AY accelerated with increasing temperature, and the lowest activation energy (Ea) was calculated as 3.4 kJ/mol for the UV-light irradiation system, while the Ea values were 4.18 and 7.37 kJ/mol for visible light and sunlight, respectively. The dye removal by the adsorption process was also affected by several parameters, such as pH, sorbent amount and contact time. The data obtained in the kinetics study fit the pseudo-second-order equation best model and the rate constant was calculated as 0.001 g/mg·min. The isotherm analysis indicated that the equilibrium data fit well with the Freundlich isotherm model. The maximum adsorption capacity of AY on biogenic ZnO NPs was 5.34 mg/g. Full article
(This article belongs to the Special Issue Engineering Nanoparticles for Photocatalytic Applications)
Show Figures

Figure 1

23 pages, 8116 KB  
Article
Titan Yellow and Congo Red Removal with Superparamagnetic Iron-Oxide-Based Nanoparticles Doped with Zinc
by Paulina Pietrzyk, Nguyen Thu Phuong, Sunday Joseph Olusegun, Nguyen Hong Nam, Dinh Thi Mai Thanh, Michael Giersig, Paweł Krysiński and Magdalena Osial
Magnetochemistry 2022, 8(8), 91; https://doi.org/10.3390/magnetochemistry8080091 - 14 Aug 2022
Cited by 25 | Viewed by 4940
Abstract
In this work, we present magnetic nanoparticles based on iron oxide doped with zinc synthesized using the wet co-precipitation method for environmental application. The morphology of the samples was revealed by SEM and TEM, which showed particles of granular shape and size of [...] Read more.
In this work, we present magnetic nanoparticles based on iron oxide doped with zinc synthesized using the wet co-precipitation method for environmental application. The morphology of the samples was revealed by SEM and TEM, which showed particles of granular shape and size of about 15 nm. The specific surface areas of the materials using the BET method were within the range of 85.7 to 101.5 m2 g−1 depending on the zinc content in the superparamagnetic iron oxide nanoparticles (SPIONs). Magnetometry was performed to determine the magnetic properties of the particles, indicating superparamagnetism. Synthesized magnetic nanoparticles with different amounts of zinc dopant were used as an adsorbent to remove model pollutant Titan yellow (TY) from the aqueous solutions. Adsorption was determined by investigating the effects of sorbent amount, dye concentration, and contact time. The synthesized material removed Titan yellow quickly and efficiently within the physical adsorption. The adsorption isotherms were consistent with the models proposed by Langmuir and Redlich-Peterson. The monolayer adsorption capacities were 30 and 43 mg g−1 for Fe3O4 and Fe3O4@10%Zn, respectively, for the removal of TY. However, that of Congo red is 59 mg g−1 by Fe3O4@10%Zn. The proposed nanoparticles offer fast and cost-effective water purification, and they can be separated from solution using magnets. Full article
Show Figures

Graphical abstract

19 pages, 4674 KB  
Article
The Effect of the Modification of Carbon Spheres with ZnCl2 on the Adsorption Properties towards CO2
by Iwona Pełech, Piotr Staciwa, Daniel Sibera, Ewelina Kusiak-Nejman, Antoni W. Morawski, Joanna Kapica-Kozar and Urszula Narkiewicz
Molecules 2022, 27(4), 1387; https://doi.org/10.3390/molecules27041387 - 18 Feb 2022
Cited by 17 | Viewed by 3765
Abstract
Zinc chloride and potassium oxalate are often applied as activating agents for carbon materials. In this work, we present the preparation of ZnO/carbon spheres composites using resorcinol-formaldehyde resin as a carbon source in a solvothermal reactor heated with microwaves. Zinc chloride as a [...] Read more.
Zinc chloride and potassium oxalate are often applied as activating agents for carbon materials. In this work, we present the preparation of ZnO/carbon spheres composites using resorcinol-formaldehyde resin as a carbon source in a solvothermal reactor heated with microwaves. Zinc chloride as a zinc oxide source and potassium oxalate as an activating agent were applied. The effect of their addition and preparation conditions on the adsorption properties towards carbon dioxide at 0 °C and 25 °C were investigated. Additionally, for all tested sorbents, the CO2 sorption tests at 40 °C, carried out utilizing a thermobalance, confirmed the trend of sorption capacity measured at 0 and 25 °C. Furthermore, the sample activated using potassium oxalate and modified using zinc chloride (a carbon-to-zinc ratio equal to 10:1) displayed not only a high CO2 adsorption capacity (2.69 mmol CO2/g at 40 °C) but also exhibited a stable performance during the consecutive multicycle adsorption–desorption process. Full article
Show Figures

Figure 1

14 pages, 5322 KB  
Article
Effect of a Support on the Properties of Zinc Oxide Based Sorbents
by Maciej Chomiak, Bartłomiej M. Szyja, Marta Jędrysiak and Janusz Trawczyński
Nanomaterials 2022, 12(1), 89; https://doi.org/10.3390/nano12010089 - 29 Dec 2021
Cited by 3 | Viewed by 2094
Abstract
We present the comparative analysis of three Zn-based sorbents for the process of sulphur removal from hot coal gas. The sorbents were prepared by a slurry impregnation of TiO2, SiO2 and Al2O3, resulting in complex, multiphase [...] Read more.
We present the comparative analysis of three Zn-based sorbents for the process of sulphur removal from hot coal gas. The sorbents were prepared by a slurry impregnation of TiO2, SiO2 and Al2O3, resulting in complex, multiphase materials, with the dominant phases of Zn2TiO4, Zn2SiO4 and ZnAl2O4, respectively. We have analyzed the effect of supports on the phase composition, texture, reducibility and H2S sorption. We have found that the phase composition significantly influences the susceptibility of the investigated materials to reduction by hydrogen. Zn2TiO4 have been found to be the easiest to reduce which correlates with its ability to adsorb the largest amount of hydrogen sulphide—up to 4.2 gS/100 g—compared to the other sorbents, which absorb up to 2.2 gS/100 g. In the case of Zn2SiO4 and ZnAl2O4, this effect also correlates with reducibility—these sorbents have been found to be highly resistant to reduction by hydrogen and to absorb much less hydrogen sulphide. In addition, the capacity of ZnAl2O4 for H2S adsorption decreases in the subsequent work cycles—from 2.2 gS/100 g in the first cycle to 0.8 gS/100 g in the third one. Computational analysis on the DFT level has shown that these materials show different thermodynamic stability of sulphur sites within the unit cells of the sorbents. For Zn2TiO4 and Zn2SiO4, the adsorption is favorable in both the first and second layers of the former and only the top layer of the latter, while for zinc aluminate it is not favorable, which is consistent with the experimental findings. Full article
(This article belongs to the Special Issue The Role of Nanostructured Materials in Energy Related Systems)
Show Figures

Figure 1

14 pages, 3834 KB  
Article
Deactivation Model Study of High Temperature H2S Wet-Desulfurization by Using ZnO
by Arda Hatunoglu, Alessandro Dell’Era, Luca Del Zotto, Andrea Di Carlo, Erwin Ciro and Enrico Bocci
Energies 2021, 14(23), 8019; https://doi.org/10.3390/en14238019 - 1 Dec 2021
Cited by 6 | Viewed by 3911
Abstract
High-temperature desulfurization techniques are fundamental for the development of reliable and efficient conversion systems of low-cost fuels and biomass that answer to the nowadays environmental and energy security issues. This is particularly true for biomass gasification coupled to SOFC systems where the sulfur [...] Read more.
High-temperature desulfurization techniques are fundamental for the development of reliable and efficient conversion systems of low-cost fuels and biomass that answer to the nowadays environmental and energy security issues. This is particularly true for biomass gasification coupled to SOFC systems where the sulfur content has to be minimized before being fed to the SOFC. Thus, commercially available zinc oxide has been studied and characterized as a desulfurizing agent in a fixed-bed reactor at high temperatures from 400 °C to 600 °C. The sorbent material was characterized by XRD, BET, SEM, and EDS analyses before and after adsorption. The sorbent’s sorption capacity has been evaluated at different temperatures, as well as the breakthrough curves. Moreover, the kinetic parameters as the initial sorption rate constant k0, the deactivation rate constant kd, and the activation energy have been calculated using the linearized deactivation model. The best performances have been obtained at 550 °C, obtaining a sorption capacity of 5.4 g per 100 g of sorbent and a breakthrough time of 2.7 h. These results can be used to extend ZnO desulfurization techniques to a higher temperature than the ones used today (i.e., 550 °C with respect to 400 °C). Full article
(This article belongs to the Special Issue Advances in Biomass Waste Gasification)
Show Figures

Figure 1

13 pages, 31645 KB  
Article
Pollutants Sorbent Made of Cotton Fabric Modified with Chitosan-Glutaraldehyde and Zinc Oxide Particles
by Vesislava Toteva, Desislava Staneva and Ivo Grabchev
Materials 2021, 14(12), 3242; https://doi.org/10.3390/ma14123242 - 11 Jun 2021
Cited by 7 | Viewed by 2981
Abstract
The paper reports on the preparation of composite materials by modifying cotton fabric with a layer of crosslinked glutaraldehyde chitosan containing zinc oxide particles. The ability of chitosan to form complexes with zinc ions has been used to control the size, structure, and [...] Read more.
The paper reports on the preparation of composite materials by modifying cotton fabric with a layer of crosslinked glutaraldehyde chitosan containing zinc oxide particles. The ability of chitosan to form complexes with zinc ions has been used to control the size, structure, and distribution of the particles on the fiber surface. The three different obtained materials have been characterized by optical and scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and fluorescent analysis. It has been found that the interaction of the ZnO particles with the functional groups of chitosan affects its swelling ability in water and thus determines its sorption properties. The capacity of the materials to wipe water-soluble (textile reactive dye) and water-insoluble (crude oil and oil products) contaminants has been compared. The effect that the amount of zinc oxide has on the ability of the materials to remove contaminants has also been studied. The possibility for adsorption–desorption of the crude oil and reuse of the sorbent material has been investigated as well. Full article
(This article belongs to the Special Issue Innovative Textile Materials)
Show Figures

Graphical abstract

15 pages, 2866 KB  
Article
Hydrogen Sulfide Adsorption by Iron Oxides and Their Polymer Composites: A Case-Study Application to Biogas Purification
by Camilla Costa, Matteo Cornacchia, Marcello Pagliero, Bruno Fabiano, Marco Vocciante and Andrea Pietro Reverberi
Materials 2020, 13(21), 4725; https://doi.org/10.3390/ma13214725 - 22 Oct 2020
Cited by 25 | Viewed by 6944
Abstract
An experimental study of hydrogen sulfide adsorption on a fixed bed for biogas purification is proposed. The adsorbent investigated was powdered hematite, synthesized by a wet-chemical precipitation method and further activated with copper (II) oxide, used both as produced and after pelletization with [...] Read more.
An experimental study of hydrogen sulfide adsorption on a fixed bed for biogas purification is proposed. The adsorbent investigated was powdered hematite, synthesized by a wet-chemical precipitation method and further activated with copper (II) oxide, used both as produced and after pelletization with polyvinyl alcohol as a binder. The pelletization procedure aims at optimizing the mechanical properties of the pellet without reducing the specific surface area. The active substrate has been characterized in its chemical composition and physical properties by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA) and N2 physisorption/desorption for the determination of surface area. Both powders and pellets have been tested as sorbents for biogas purification in a fixed bed of a steady-state adsorption column and the relevant breakthrough curves were determined for different operating conditions. The performance was critically analyzed and compared with that typical of other commercial sorbents based on zinc oxide or relying upon specific compounds supported on a chemically inert matrix (SulfaTreat®). The technique proposed may represent a cost-effective and sustainable alternative to commercial sorbents in conventional desulphurization processes. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 2669 KB  
Article
Influence of Wooden Sawdust Treatments on Cu(II) and Zn(II) Removal from Water
by Zdenka Kovacova, Stefan Demcak, Magdalena Balintova, Cocencepcion Pla and Inga Zinicovscaia
Materials 2020, 13(16), 3575; https://doi.org/10.3390/ma13163575 - 13 Aug 2020
Cited by 49 | Viewed by 4519
Abstract
Organic waste materials and semi-products containing cellulose are used as low-cost adsorbents that are able to compete with conventional sorbents. In addition, their capacity to bind heavy metal ions can be intensified by chemical treatments using mineral and organic acids, bases, oxidizing agents, [...] Read more.
Organic waste materials and semi-products containing cellulose are used as low-cost adsorbents that are able to compete with conventional sorbents. In addition, their capacity to bind heavy metal ions can be intensified by chemical treatments using mineral and organic acids, bases, oxidizing agents, and organic compounds. In this paper, we studied the biosorption capacity of natural and modified wooden sawdust of poplar, cherry, spruce, and hornbeam in order to remove heavy metals from acidic model solutions. The Fourier transform infrared spectroscopy (FTIR) spectra showed changes of the functional groups due to the alkaline modification of sawdust, which manifested in the considerably increased intensity of the hydroxyl peaks. The adsorption isotherm models clearly indicated that the adsorptive behavior of metal ions in treated sawdust satisfied not only the Langmuir model, but also the Freundlich model. The adsorption data obtained for studied sorbents were better fitted by the Langmuir isotherm model for both metals, except for spruce sawdust. Surface complexation and ion exchange are the major mechanisms involved in metal ion removal. We investigated the efficiency of the alkaline modified sawdust for metal removal under various initial concentrations of Cu(II) and Zn(II) from model solutions. The highest adsorption efficiency values (copper 94.3% at pH 6.8 and zinc 98.2% at pH 7.3) were obtained for poplar modified by KOH. For all types of sawdust, we found that the sorption efficiency of modified sorbents was higher in comparison to untreated sawdust. The value of the pH initially increased more in the case of modified sawdust (8.2 for zinc removal with spruce NaOH) and then slowly decreased (7.0 for Zn(II) with spruce NaOH). Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters)
Show Figures

Figure 1

Back to TopTop