Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = yttrium fluoride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4438 KiB  
Article
Y5F3[AsO3]4 and Y5Cl3[AsO3]4: Two Non-Isostructural Yttrium Halide Oxoarsenates(III) and Their Potential as Hosts for Luminescent Eu3+- and Tb3+-Doping
by Ralf J. C. Locke, Martina Mikuta, Florian Ledderboge, Frank C. Zimmer, Henning A. Höppe and Thomas Schleid
Crystals 2025, 15(7), 611; https://doi.org/10.3390/cryst15070611 - 30 Jun 2025
Viewed by 273
Abstract
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure [...] Read more.
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure linked via secondary contacts forms a three-dimensional network 3{[Y5F3]12+} and the remaining part consists of ψ1-tetrahedral [AsO3]3− units, which leave lone-pair channels along [001]. In contrast, platelet-shaped Y5Cl3[AsO3]4 crystals adopt the monoclinic space group C2/c with the lattice parameters a = 1860.56(9) pm, b = 536.27(3) pm, c = 1639.04(8) pm and β = 105.739(3)° for Z = 4. Condensation of [(Y1,2)O8]13− polyhedra via four common edges each leads to fluorite-like 2 {[(Y1,2)O e8/2 ]5−} layers spreading out parallel to the (100) plane. Their three-dimensional linkage occurs via the (Y3)3+ cations with their Cl ligands on the one hand and the As3+ cations with their lone-pairs of electrons on the other, which also form within [AsO3]3− anions lone-pair channels along [010]. Both colorless compounds can be obtained by solid-state reactions from corresponding mixtures of the binaries (Y2O3, As2O3 and YX3 with X = F and Cl) at elevated temperatures of 825 °C, most advantageously under halide-flux assistance (CsBr for Y5F3[AsO3]4 and ZnCl2 for Y5Cl3[AsO3]4). By replacing a few percent of YX3 with EuX3 or TbX3, Eu3+- or Tb3+-doped samples are accessible, which show red or green luminescence upon excitation with ultraviolet radiation. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure of Rare-Earth Metal Compounds)
Show Figures

Figure 1

15 pages, 4195 KiB  
Article
Comparative Analysis of Spectral Broadening Techniques for Optical Temperature Sensing in Yttrium Fluoride (YF3) Doped with Neodymium
by Ruan P. R. Moura, Bárbara M. Cruz, Tatiane S. Lilge, Adriano B. Andrade, Mario E. G. Valerio, Zélia S. Macedo, José J. Rodrigues and Márcio A. R. C. Alencar
Sensors 2025, 25(7), 2324; https://doi.org/10.3390/s25072324 - 6 Apr 2025
Viewed by 491
Abstract
In this work, YF3:Nd3+ powder was synthesized using the microwave-assisted hydrothermal method at a low temperature (140 °C) and short synthesis time (1 h). The photoluminescence and optical temperature sensing properties of YF3:Nd3+ were examined using 800 [...] Read more.
In this work, YF3:Nd3+ powder was synthesized using the microwave-assisted hydrothermal method at a low temperature (140 °C) and short synthesis time (1 h). The photoluminescence and optical temperature sensing properties of YF3:Nd3+ were examined using 800 nm laser excitation, focusing on the emission corresponding to the 4F3/24I9/2 transition of Nd3+. The performance of YF3:Nd3+ as an optical temperature sensor was evaluated using the full width at half maximum (FWHM), band broadening at 30% of maximum intensity (Δλ30%), and valley-to-peak intensity ratio (VPR) techniques. All techniques demonstrated good repeatability and reproducibility. The best results were obtained using the VPR (V1/P1) method, which exhibited the highest relative sensitivity and the lowest temperature uncertainty, with values of 0.69 ± 0.02% K−1 and 0.46 ± 0.09 K at 303 K, respectively. YF3:Nd3+ shows promise as an optical temperature sensor operating entirely within the first biological window. Full article
Show Figures

Figure 1

12 pages, 6512 KiB  
Article
Preparation and Characterization of Uniform and Controlled Silica Encapsulating on Lithium Yttrium Fluoride-Based Upconversion Nanoparticles
by Yahya A. Alzahrani, Abdulmalik M. Alessa, Mona K. Almosaind, Rahaf S. Alarifi, Abdulaziz Alromaeh and Masfer Alkahtani
Nanomaterials 2024, 14(8), 685; https://doi.org/10.3390/nano14080685 - 16 Apr 2024
Cited by 2 | Viewed by 1752
Abstract
In this work, we present an advancement in the encapsulation of lithium yttrium fluoride-based (YLiF4:Yb,Er) upconversion nanocrystals (UCNPs) with silica (SiO2) shells through a reverse microemulsion technique, achieving UCNPs@SiO2 core/shell structures. Key parameters of this approach were optimized [...] Read more.
In this work, we present an advancement in the encapsulation of lithium yttrium fluoride-based (YLiF4:Yb,Er) upconversion nanocrystals (UCNPs) with silica (SiO2) shells through a reverse microemulsion technique, achieving UCNPs@SiO2 core/shell structures. Key parameters of this approach were optimized to eliminate the occurrence of core-free silica particles and ensure a controlled silica shell thickness growth on the UCNPs. The optimal conditions for this method were using 6 mg of UCNPs, 1.5 mL of Igepal CO-520, 0.25 mL of ammonia, and 50 μL of tetraethyl orthosilicate (TEOS), resulting in a uniform silica shell around UCNPs with a thickness of 8 nm. The optical characteristics of the silica-encased UCNPs were examined, confirming the retention of their intrinsic upconversion luminescence (UC). Furthermore, we developed a reliable strategy to avoid the coencapsulation of multiple UCNPs within a single silica shell. This approach led to a tenfold increase in the UC luminescence of the annealed particles compared to their nonannealed counterparts, under identical silica shell thickness and excitation conditions. This significant improvement addresses a critical challenge and amplifies the applicability of the resulting UCNPs@SiO2 core/shell structures in various fields. Full article
Show Figures

Figure 1

11 pages, 4439 KiB  
Article
Lattice Damage, Optical and Electrical Properties Induced by H and C Ions Implantation in Nd:YLF Crystals
by Mei Qiao, Tiejun Wang, Yong Liu, Wanling Cui, Xiaoxin Wang, Zhenxing Wang, Xin Li and Shicai Xu
Crystals 2024, 14(2), 146; https://doi.org/10.3390/cryst14020146 - 31 Jan 2024
Cited by 3 | Viewed by 1561
Abstract
Neodymium-doped yttrium fluoride crystal has emerged as one of the most valuable functional materials, and has thus become a research hotspot and shown promising application value in recent years. In this work, utilizing 460 keV H and 6.0 MeV C ions implantation, the [...] Read more.
Neodymium-doped yttrium fluoride crystal has emerged as one of the most valuable functional materials, and has thus become a research hotspot and shown promising application value in recent years. In this work, utilizing 460 keV H and 6.0 MeV C ions implantation, the damage behavior, lattice structure change, spectral, and electrical characteristics of the Nd:YLF crystal induced by electronic and nuclear energy loss were investigated, utilizing complementary characterization techniques (X-ray diffraction, hardness and elastic (Young’s) modulus, micro-Raman, absorption, fluorescence spectra, and I–V characteristic curve). Thus, the annealing effect on the waveguide properties and the surface damage of the samples was discussed. The fabricated waveguide structure shows potential application in highly sensitive optoelectronic sensors. Full article
Show Figures

Figure 1

14 pages, 3308 KiB  
Article
Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites
by Dannareli Barron-Ortiz, Ruben D. Cadena-Nava, Enric Pérez-Parets, Jacob Licea-Rodriguez, Emilio J. Gualda, Juan Hernandez-Cordero, Pablo Loza-Alvarez and Israel Rocha-Mendoza
Micromachines 2023, 14(11), 2097; https://doi.org/10.3390/mi14112097 - 14 Nov 2023
Cited by 1 | Viewed by 2041
Abstract
We present a combination of light-sheet excitation and two-dimensional fluorescence intensity ratio (FIR) measurements as a simple and promising technique for three-dimensional temperature mapping. The feasibility of this approach is demonstrated with samples fabricated with sodium yttrium fluoride nanoparticles co-doped with rare-earth ytterbium [...] Read more.
We present a combination of light-sheet excitation and two-dimensional fluorescence intensity ratio (FIR) measurements as a simple and promising technique for three-dimensional temperature mapping. The feasibility of this approach is demonstrated with samples fabricated with sodium yttrium fluoride nanoparticles co-doped with rare-earth ytterbium and erbium ions (NaYF4:Yb3+/Er3+) incorporated into polydimethylsiloxane (PDMS) as a host material. In addition, we also evaluate the technique using lipid-coated NaYF4:Yb3+/Er3+ nanoparticles immersed in agar. The composite materials show upconverted (UC) fluorescence bands when excited by a 980 nm near-infrared laser light-sheet. Using a single CMOS camera and a pair of interferometric optical filters to specifically image the two thermally-coupled bands (at 525 and 550 nm), the two-dimensional FIR and, hence, the temperature map can be readily obtained. The proposed method can take optically sectioned (confocal-like) images with good optical resolution over relatively large samples (up to the millimetric scale) for further 3D temperature reconstruction. Full article
(This article belongs to the Special Issue Nanomaterials Photonics)
Show Figures

Figure 1

13 pages, 10800 KiB  
Article
Oxygen Vacancy Ordering and Molten Salt Corrosion Behavior of ZnO-Doped CeYSZ for Solid Oxide Membranes
by Hwanseok Lee and Heesoo Lee
Nanomaterials 2023, 13(20), 2790; https://doi.org/10.3390/nano13202790 - 18 Oct 2023
Viewed by 1542
Abstract
Although 4Ce4YSZ has high corrosion resistance, it faces challenges concerning its sinterability and ionic conductivity. Therefore, we studied destabilization behavior caused by corrosion and oxygen vacancy ordering according to ZnO doping. Powders of (4Ce4YSZ)1−x(ZnO)x (x = 0.5, 1, 2, 4 [...] Read more.
Although 4Ce4YSZ has high corrosion resistance, it faces challenges concerning its sinterability and ionic conductivity. Therefore, we studied destabilization behavior caused by corrosion and oxygen vacancy ordering according to ZnO doping. Powders of (4Ce4YSZ)1−x(ZnO)x (x = 0.5, 1, 2, 4 mol%) were synthesized using the sol-gel method. With the addition of ZnO, the cubic phase increased, and secondary phases were not observed. The (111) peak showed a higher angle shift in ZnO-doped 4Ce4YSZ compared to 4Ce4YSZ, and TEM-SAED revealed a reduction in the spacing of the (011)t plane, suggesting lattice contraction due to the substitution of the smaller Zn2+ (60 Å) for Zr4+ (84 Å) in the lattice. The local atomic structure analysis was conducted using EXAFS to investigate the oxygen vacancy ordering behavior. Zr K-edge Fourier transform data revealed a decrease in the Zr-O1 peak intensity with an increasing amount of ZnO doping, indicating an increase in oxygen vacancies. The Zr-O1 peak position shifted to the right, leading to an increase in the Zr-O1 interatomic distance. In the Y K-edge Fourier transform data, the Y-O1 peak intensity did not decrease, and there was little variation in the Y-O1 interatomic distance. These results suggest that the oxygen vacancies formed due to ZnO doping are located in the neighboring oxygen shell of Zn, rather than in the neighboring oxygen shells of Y and Zr. Impedance measurements were conducted to measure the conductivity, and as the amount of ZnO doping increased, the total conductivity increased, while the activation energy decreased. The increase in oxygen vacancies by ZnO doping contributed to the enhancement of conductivity, and it is considered that these created oxygen vacancies did not interact with Zn2+ and did not form defect associations. Fluoride-based molten salts were introduced to the specimens to assess the corrosion behavior in a molten salt environment. Yttrium depletion layers (YDLs) were formed on the surfaces of all specimens due to the leaching of yttrium. However, Ce remained relatively stable at the interface according to EDS line scans, suggesting a reduction in the phase transformation (cubic, tetragonal to monoclinic) typically associated with yttrium leaching in YSZ. Full article
(This article belongs to the Special Issue Nanostructured Metal Oxides: From Growth to Application)
Show Figures

Figure 1

12 pages, 1446 KiB  
Article
Efficiency Dependence of Radiation-Assisted Ceramic Synthesis Based on Metal Oxides and Fluorides on Initial Powder Particle Sizes
by Victor Lisitsyn, Elena Polisadova, Liudmila Lisitsyna, Aida Tulegenova, Igor Denisov and Mikhail Golkovski
Photonics 2023, 10(10), 1084; https://doi.org/10.3390/photonics10101084 - 27 Sep 2023
Cited by 4 | Viewed by 1269
Abstract
The study is devoted to investigating the efficiency dependence of radiation-assisted ceramic synthesis based on metal oxides and fluorides on initial powder particle sizes. The synthesis was performed for 30 series of ceramic samples, including MgO, Al2O3, ZnO, ZrO [...] Read more.
The study is devoted to investigating the efficiency dependence of radiation-assisted ceramic synthesis based on metal oxides and fluorides on initial powder particle sizes. The synthesis was performed for 30 series of ceramic samples, including MgO, Al2O3, ZnO, ZrO2, MgF2, and complex compositions: cerium-activated yttrium-aluminum garnet (Y3Al5O12), spinel AlMgO4, and tungstate MgWO4. The synthesis efficiency was evaluated on the mixture weight magnitude losses, morphology, and relative weight of the obtained ceramic samples. Based on the analysis of the synthesis results and measuring the particle distribution spectra of the initial materials, the criteria for selecting the initial materials were established, and possible explanations for the correlation between synthesis efficiency and the initial materials morphology were proposed. Full article
Show Figures

Figure 1

13 pages, 6368 KiB  
Article
Chemical Adsorption of HF, HCl, and H2O onto YF3 and Isostructural HoF3 Surfaces by First Principles
by Jennifer Anders, Henrik Wiedenhaupt and Beate Paulus
Crystals 2023, 13(4), 555; https://doi.org/10.3390/cryst13040555 - 23 Mar 2023
Cited by 2 | Viewed by 2313
Abstract
The two elements, yttrium and holmium, form a geochemical twin pair as their cations possess equivalent ratios of charge to radius. However, despite their equal electrostatics, a subtle difference in their fluoride or chloride affinity is known within solutions. In this work, we [...] Read more.
The two elements, yttrium and holmium, form a geochemical twin pair as their cations possess equivalent ratios of charge to radius. However, despite their equal electrostatics, a subtle difference in their fluoride or chloride affinity is known within solutions. In this work, we investigated whether this affinity gap is also present within the solid phase and how it depends on the surface configuration. We modeled adsorptions onto β-YF3 (waimirite) and isostructural β-HoF3 by periodic density functional theory. To draw conclusions on the affinity toward fluoride and chloride vs. water, adsorbates of HF, HCl, or H2O onto any of the four highly abundant surfaces of (010), (100), (011), and (101) were studied. Among others, the conformational landscape was explored by 200 ps of ab initio molecular dynamics. For stoichiometric surfaces of both MF3, we indeed found stronger adsorptions for HF than HCl. All (hkl)·H2O showed slightly stronger adsorption energies for HoF3, while for HF and HCl, the metal preferences varied by the surface. While (100) showed the strongest preference for HoF3, (101) preferred YF3 by the same magnitude. Full article
(This article belongs to the Special Issue First Principles Calculation for Crystalline Materials)
Show Figures

Figure 1

10 pages, 935 KiB  
Article
The In Vitro Effect of Laser Irradiation (Er:YAG and CO2) and Chemical Reagents (Hydrogen Peroxide, Sodium Hypochlorite, Chlorhexidine, or Sodium Fluoride) Alone or in Combination on Reducing Root Caries Bacteria
by Nitya Reddy, Janina Golob Deeb, Todd Kitten, Caroline K. Carrico and Kinga Grzech-Leśniak
Int. J. Mol. Sci. 2022, 23(24), 15732; https://doi.org/10.3390/ijms232415732 - 12 Dec 2022
Cited by 8 | Viewed by 2286
Abstract
(1) Lasers have been used for the treatment of dentinal hypersensitivity and bacterial reductions in periodontology. The purpose of this in vitro study was to evaluate the effect of Carbon Dioxide (CO2) and Erbium-doped Yttrium Aluminum Garnet (Er:YAG) lasers with chlorhexidine [...] Read more.
(1) Lasers have been used for the treatment of dentinal hypersensitivity and bacterial reductions in periodontology. The purpose of this in vitro study was to evaluate the effect of Carbon Dioxide (CO2) and Erbium-doped Yttrium Aluminum Garnet (Er:YAG) lasers with chlorhexidine (CHX), hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), or sodium fluoride (NaF) on the viability of oral bacteria associated with root caries. (2) Streptococcus mutans, Streptococcus sanguinis, and Enterococcus faecalis were grown in Brain Heart Infusion (BHI) broth, diluted to an OD660 of 0.5, and treated with antiseptics with or without simultaneous irradiation with the Er:YAG and CO2 lasers for 30 s repeated three times. The treatment groups consisted of 1: no treatment, 2: 0.5% H2O2 alone, 3: 0.5% NaOCl alone, 4: 0.12% CHX alone, 5: 2% NaF alone, 6: laser alone, 7: laser with 0.5% H2O2, 8: laser with 0.5% NaOCl, 9: laser with 0.12% CHX, and 10: laser with 2% NaF for both lasers. The microbial viability was determined through plating and viable colonies were counted, converted into CFU/mL, and transformed into log form. The statistical analysis was performed using a two-tailed paired t-test. (3) The use of CO2 and Er:YAG lasers alone failed to show statistically significant antibacterial activity against any of the bacteria. The only effective monotreatment was CHX for S. mutans. The combined treatment of 0.5% NaOCl with Er:YAG produced the greatest reduction in overall viability. (4) The combination of the Er:YAG laser with 0.5% NaOCl resulted in the largest reduction in bacterial survival when compared to monotherapies with antimicrobial solutions or lasers. Full article
(This article belongs to the Special Issue Antimicrobial Biomaterials: Recent Progress)
Show Figures

Figure 1

13 pages, 2990 KiB  
Article
Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium Fluoride Nanoparticles
by Małgorzata Skwierczyńska, Natalia Stopikowska, Piotr Kulpiński, Magdalena Kłonowska, Stefan Lis and Marcin Runowski
Nanomaterials 2022, 12(11), 1926; https://doi.org/10.3390/nano12111926 - 4 Jun 2022
Cited by 9 | Viewed by 3058
Abstract
In this study, an optical thermometer based on regenerated cellulose fibers modified with YF3: 20% Yb3+, 2% Er3+ nanoparticles was developed. The presented sensor was fabricated by introducing YF3 nanoparticles into cellulose fibers during their formation by [...] Read more.
In this study, an optical thermometer based on regenerated cellulose fibers modified with YF3: 20% Yb3+, 2% Er3+ nanoparticles was developed. The presented sensor was fabricated by introducing YF3 nanoparticles into cellulose fibers during their formation by the so-called Lyocell process using N-methylmorpholine N-oxide as a direct solvent of cellulose. Under near-infrared excitation, the applied nanoparticles exhibited thermosensitive upconversion emission, which originated from the thermally coupled levels of Er3+ ions. The combination of cellulose fibers with upconversion nanoparticles resulted in a flexible thermometer that is resistant to environmental and electromagnetic interferences and allows precise and repeatable temperature measurements in the range of 298–362 K. The obtained fibers were used to produce a fabric that was successfully applied to determine human skin temperature, demonstrating its application potential in the field of wearable health monitoring devices and providing a promising alternative to thermometers based on conductive materials that are sensitive to electromagnetic fields. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

10 pages, 8432 KiB  
Article
Features of the Process Obtaining of Mg-Zn-Y Master Alloy by the Metallothermic Recovery Method of Yttrium Fluoride Melt
by Sergey Savchenkov and Ilia Beloglazov
Crystals 2022, 12(6), 771; https://doi.org/10.3390/cryst12060771 - 26 May 2022
Cited by 6 | Viewed by 2882
Abstract
At present, magnesium master alloys with such rare earth metals (REM) as yttrium are used in the production of alloys of magnesium and aluminum. These alloys especially the system Mg-6Zn-1Y-0,5Zr are commonly used in the aircraft and automotive industries. The article is devoted [...] Read more.
At present, magnesium master alloys with such rare earth metals (REM) as yttrium are used in the production of alloys of magnesium and aluminum. These alloys especially the system Mg-6Zn-1Y-0,5Zr are commonly used in the aircraft and automotive industries. The article is devoted to the exploration of the synthesis process features for ternary magnesium master alloys with yttrium and zinc. The authors used X-ray fluorescence analysis (XRF), differential thermal analysis (DTA), and X-ray spectral analysis (XRD). Optical microscopy was used to conduct microstructural studies. The thermal effects that occur during metallothermic reactions of yttrium reduction from the YF3-NaCl-KCl-CaCl2 salt mixture with a melt of magnesium and zinc were investigated, and the temperatures of these effects were determined. It has been confirmed that the metallothermic reaction of yttrium reduction proceeds from the precursors of the composition: Na1.5Y2.5F9, NaYF4, Na5Y9F32, and KY7F22, and starts at a temperature of 471 °C. The results of experimental studies of the process of metallothermic reduction of yttrium from the salt mixture YF3-NaCl-KCl-CaCl2 are presented in detail. These experiments were carried out in a pit furnace at temperatures ranging from 650 to 700 °C, and it was found that, at a synthesis temperature of 700 °C, the yttrium yield is up to 99.1–99.8%. The paper establishes rational technological regimes for the synthesis (temperature 700 °C, exposure for 25 min, the ratio of chlorides to yttrium fluoride 6:1, periodic stirring of the molten metal) at which the yttrium yield reaches up to 99.8%. The structure of the master alloy samples obtained during the experiments was studied. That structure can be distinguished by a uniform distribution of ternary intermetallic compounds (Mg3YZn6) in the bulk of the double magnesium–zinc eutectic. Studies have been carried out on testing the obtained ternary master alloy as an alloying material in the production of alloys of the Mg-6Zn-1Y-0.5Zr system, while the digestibility of yttrium ranged from 91 to 95%. Full article
Show Figures

Figure 1

18 pages, 3567 KiB  
Article
Achieving Effective Multimodal Imaging with Rare-Earth Ion-Doped CaF2 Nanoparticles
by Zhenfeng Yu, Yuanyuan He, Timo Schomann, Kefan Wu, Yang Hao, Ernst Suidgeest, Hong Zhang, Christina Eich and Luis J. Cruz
Pharmaceutics 2022, 14(4), 840; https://doi.org/10.3390/pharmaceutics14040840 - 11 Apr 2022
Cited by 16 | Viewed by 3955 | Correction
Abstract
Nowadays, cancer poses a significant hazard to humans. Limitations in early diagnosis techniques not only result in a waste of healthcare resources but can even lead to delays in diagnosis and treatment, consequently reducing cure rates. Therefore, it is crucial to develop an [...] Read more.
Nowadays, cancer poses a significant hazard to humans. Limitations in early diagnosis techniques not only result in a waste of healthcare resources but can even lead to delays in diagnosis and treatment, consequently reducing cure rates. Therefore, it is crucial to develop an imaging probe that can provide diagnostic information precisely and rapidly. Here, we used a simple hydrothermal method to design a multimodal imaging probe based on the excellent properties of rareearth ions. Calcium fluoride co-doped with yttrium, gadolinium, and neodymium (CaF2:Y,Gd,Nd) nanoparticles (NPs) is highly crystalline, homogeneous in morphology, and displays a high biosafety profile. In addition, in vitro and ex vivo experiments explored the multimodal imaging capability of CaF2:Y,Gd,Nd and demonstrated the efficient performance of CaF2:Y,Gd,Nd during NIR-II fluorescence/ photoacoustic/magnetic resonance imaging. Collectively, our novel diagnosis nanoparticle will generate new ideas for the development of multifunctional nanoplatforms for disease diagnosis and treatment.
Full article
(This article belongs to the Special Issue Novel Nanoparticle-Based Treatment and Imaging Modalities)
Show Figures

Figure 1

24 pages, 1734 KiB  
Review
Polymeric Dental Nanomaterials: Antimicrobial Action
by Pavel Yudaev, Vladimir Chuev, Bogdan Klyukin, Andrey Kuskov, Yaroslav Mezhuev and Evgeniy Chistyakov
Polymers 2022, 14(5), 864; https://doi.org/10.3390/polym14050864 - 22 Feb 2022
Cited by 55 | Viewed by 8184
Abstract
This review aims to describe and critically analyze studies published over the past four years on the application of polymeric dental nanomaterials as antimicrobial materials in various fields of dentistry. Nanoparticles are promising antimicrobial additives to restoration materials. According to published data, composites [...] Read more.
This review aims to describe and critically analyze studies published over the past four years on the application of polymeric dental nanomaterials as antimicrobial materials in various fields of dentistry. Nanoparticles are promising antimicrobial additives to restoration materials. According to published data, composites based on silver nanoparticles, zinc(II), titanium(IV), magnesium(II), and copper(II) oxide nanoparticles, chitosan nanoparticles, calcium phosphate or fluoride nanoparticles, and nanodiamonds can be used in dental therapy and endodontics. Composites with nanoparticles of hydroxyapatite and bioactive glass proved to be of low efficiency for application in these fields. The materials applicable in orthodontics include nanodiamonds, silver nanoparticles, titanium(IV) and zinc(II) oxide nanoparticles, bioactive glass, and yttrium(III) fluoride nanoparticles. Composites of silver nanoparticles and zinc(II) oxide nanoparticles are used in periodontics, and nanodiamonds and silver, chitosan, and titanium(IV) oxide nanoparticles are employed in dental implantology and dental prosthetics. Composites based on titanium(IV) oxide can also be utilized in maxillofacial surgery to manufacture prostheses. Composites with copper(II) oxide nanoparticles and halloysite nanotubes are promising materials in the field of denture prosthetics. Composites with calcium(II) fluoride or phosphate nanoparticles can be used in therapeutic dentistry for tooth restoration. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials)
Show Figures

Graphical abstract

12 pages, 2682 KiB  
Article
Studying the Nonlinear Optical Properties of Fluoride Laser Host Materials in the Ultraviolet Wavelength Region
by Duong Van Pham, Diep Van Nguyen, Tu Xuan Nguyen, Kieu Anh Thi Doan, Quan Minh Le, Minh Hong Pham and Marilou Cadatal-Raduban
Appl. Sci. 2022, 12(1), 372; https://doi.org/10.3390/app12010372 - 31 Dec 2021
Cited by 1 | Viewed by 1947
Abstract
Fluoride host materials doped with trivalent cerium ions have previously been demonstrated as successful laser materials in the ultraviolet wavelength region. However, the nonlinear optical properties of the fluoride hosts in this wavelength region have not been investigated yet, although nonlinearity could result [...] Read more.
Fluoride host materials doped with trivalent cerium ions have previously been demonstrated as successful laser materials in the ultraviolet wavelength region. However, the nonlinear optical properties of the fluoride hosts in this wavelength region have not been investigated yet, although nonlinearity could result in undesirable effects such as self-focusing and pulse distortion when these fluoride materials are used as gain media in high-power, ultrashort pulse laser oscillator and amplifier systems. In this work, the nonlinear refractive index of lithium calcium aluminum fluoride (LiCaAlF6), lithium strontium aluminum fluoride (LiSrAlF6), lanthanum fluoride (LaF3), and yttrium lithium fluoride (YLiF4) fluoride host materials are determined using the Kramers–Krönig relation model in the ultraviolet wavelength region. Self-focusing conditions, particularly at the peak laser emission wavelength of these materials, are further analyzed. Results show that LiCaAlF6 has the smallest nonlinear refractive index and self-focusing, making it an ideal host material under the conditions of ultrashort pulse and ultrahigh-power laser generation. Full article
Show Figures

Figure 1

11 pages, 5719 KiB  
Article
Surface Analysis of Chamber Coating Materials Exposed to CF4/O2 Plasma
by Seung Hyun Park, Kyung Eon Kim and Sang Jeen Hong
Coatings 2021, 11(1), 105; https://doi.org/10.3390/coatings11010105 - 18 Jan 2021
Cited by 22 | Viewed by 7866
Abstract
Coating the inner surfaces of high-powered plasma processing equipment has become crucial for reducing maintenance costs, process drift, and contaminants. The conventionally preferred alumina (Al2O3) coating has been replaced with yttria (Y2O3) due to the [...] Read more.
Coating the inner surfaces of high-powered plasma processing equipment has become crucial for reducing maintenance costs, process drift, and contaminants. The conventionally preferred alumina (Al2O3) coating has been replaced with yttria (Y2O3) due to the long-standing endurance achieved by fluorine-based etching; however, the continuous increase in radio frequency (RF) power necessitates the use of alternative coating materials to reduce process shift in a series of high-powered semiconductor manufacturing environments. In this study, we investigated the fluorine-based etching resistance of atmospheric pressure-sprayed alumina, yttria, yttrium aluminum garnet (YAG), and yttrium oxyfluoride (YOF). The prepared ceramic-coated samples were directly exposed to silicon oxide etching, and the surfaces of the plasma-exposed samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. We found that an ideal coating material must demonstrate high plasma-induced structure distortion by the fluorine atom from the radical. For endurance to fluorine-based plasma exposure, the bonding structure with fluoride was shown to be more effective than oxide-based ceramics. Thus, fluoride-based ceramic materials can be promising candidates for chamber coating materials. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

Back to TopTop