Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites
Abstract
:1. Introduction
2. Theoretical Background
2.1. Upconversion from NaYF4:Yb3+/Er3+
2.2. Fluorescence Intensity Ratio in NaYF4:Yb3+/Er3+
3. Materials and Methods
3.1. Samples
3.2. Light-Sheet Microscopy
4. Results and Discussions
4.1. FIR Characterization from UC Spectra
4.2. Two-Dimensional FIR Obtention Using Light-Sheet Imaging
4.3. Three-Dimensional Temperature Mapping
4.3.1. Large Sample: S1
4.3.2. Short Sample: S2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular Temperature Mapping with a Fluorescent Polymeric Thermometer and Fluorescence Lifetime Imaging Microscopy. Nat. Commun. 2012, 3, 705. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, B.Q.; Li, R.; Mei, X. Quantum 3D Thermal Imaging at the Micro-Nanoscale. Nanoscale 2019, 11, 2249–2263. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lifante, J.; Zabala-Gutierrez, I.; de la Fuente-Fernández, M.; Granado, M.; Fernández, N.; Rubio-Retama, J.; Jaque, D.; Marin, R.; Ximendes, E.; et al. Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescence-Lifetime-Based Nanothermometry. Adv. Mater. 2022, 34, 2107764. [Google Scholar] [CrossRef] [PubMed]
- del Rosal, B.; Ruiz, D.; Chaves-Coira, I.; Juárez, B.H.; Monge, L.; Hong, G.; Fernández, N.; Jaque, D. In Vivo Contactless Brain Nanothermometry. Adv. Funct. Mater. 2018, 28, 1806088. [Google Scholar] [CrossRef]
- Sedmak, I.; Podlipec, R.; Urbancic, I.; Strancar, J.; Mortier, M.; Golobic, I. Sensors_Spatial Resolved Temperature Distribution in a Rare-Earth-Doped Transparent Glass-Ceramic. Sensors 2022, 22, 1970. [Google Scholar] [CrossRef]
- Van Swieten, T.P.; Van Omme, T.; Van Den Heuvel, D.J.; Vonk, S.J.W.; Spruit, R.G.; Meirer, F.; Garza, H.H.P.; Weckhuysen, B.M.; Meijerink, A.; Rabouw, F.T.; et al. Mapping Elevated Temperatures with a Micrometer Resolution Using the Luminescence of Chemically Stable Upconversion Nanoparticles. ACS Appl. Nano Mater. 2021, 4, 4208–4215. [Google Scholar] [CrossRef]
- Marciniak, L.; Kniec, K.; Elżbieciak-Piecka, K.; Trejgis, K.; Stefanska, J.; Dramićanin, M. Luminescence Thermometry with Transition Metal Ions. A Review. Coord. Chem. Rev. 2022, 469, 214671. [Google Scholar] [CrossRef]
- Chihara, T.; Umezawa, M.; Miyata, K.; Sekiyama, S.; Hosokawa, N.; Okubo, K.; Kamimura, M.; Soga, K. Biological Deep Temperature Imaging with Fluorescence Lifetime of Rare-Earth-Doped Ceramics Particles in the Second NIR Biological Window. Sci. Rep. 2019, 9, 12806. [Google Scholar] [CrossRef]
- Sekulić, M.; Ristić, Z.; Milićević, B.; Antić, Ž.; Đorđević, V.; Dramićanin, M.D. Li1.8Na0.2TiO3:Mn4+: The Highly Sensitive Probe for the Low-Temperature Lifetime-Based Luminescence Thermometry. Opt. Commun. 2019, 452, 342–346. [Google Scholar] [CrossRef]
- González-Martínez, F.; González-Cortez, O.; Pimentel-Domínguez, R.; Hernández-Cordero, J.; Aguilar, G. Composite Polymer Membranes for Laser-Induced Fluorescence Thermometry. Opt. Mater. Express 2018, 8, 3072. [Google Scholar] [CrossRef]
- Benayas, A.; Del Rosal, B.; Pérez-Delgado, A.; Santacruz-Gómez, K.; Jaque, D.; Hirata, G.A.; Vetrone, F. Nd:YAG Near-Infrared Luminescent Nanothermometers. Adv. Opt. Mater. 2015, 3, 687–694. [Google Scholar] [CrossRef]
- Sánchez-Escobar, S.; Hernández-Cordero, J. Fiber Optic Fluorescence Temperature Sensors Using Up-Conversion from Rare-Earth Polymer Composites. Opt. Lett. 2019, 44, 1194. [Google Scholar] [CrossRef] [PubMed]
- Schartner, E.P.; Monro, T.M. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings. Sensors 2014, 14, 21693–21701. [Google Scholar] [CrossRef]
- Tikhomirov, V.; Driesen, K.; Rodriguez, V.; Gredin, P.; Mortier, M.; Moshchalkov, V.; Zhou, H.; Wissinger, M.; Fallert, J.; Hauschild, R.; et al. Optical Nanoheater Based on the Yb3+-Er3+ Co-Doped Nanoparticles. Opt. Express 2009, 17, 11794–11798. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, M.; Liu, G.K. Analysis of Upconversion Fluorescence Dynamics in NaYF4 Codoped with Er3+ and Yb3+. Spectrosc. Lett. 2007, 40, 259–269. [Google Scholar] [CrossRef]
- Wu, K.; Cui, J.; Kong, X.; Wang, Y. Temperature Dependent Upconversion Luminescence of YbEr Codoped NaYF 4 Nanocrystals. J. Appl. Phys. Sept. 2011, 11, 053510. [Google Scholar] [CrossRef]
- Ćirić, A.; Gavrilović, T.; Dramićanin, M.D. Luminescence Intensity Ratio Thermometry with Er3+: Performance Overview. Crystals 2021, 11, 189. [Google Scholar] [CrossRef]
- Vetrone, F.; Naccache, R.; Zamarrón, A.; De La Fuente, A.J.; Sanz-Rodríguez, F.; Maestro, L.M.; Rodriguez, E.M.; Jaque, D.; Sole, J.G.; Capobianco, J.A. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano 2010, 4, 3254–3258. [Google Scholar] [CrossRef]
- Huisken, J.; Swoger, J.; Bene, D.; Wittbrodt, J.; Stelzer, E.H.K. Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Olarte, O.E.; Andilla, J.; Gualda, E.J.; Loza-Alvarez, P. Light-Sheet Microscopy: A Tutorial. Adv. Opt. Photonics 2018, 10, 111. [Google Scholar] [CrossRef]
- Corsetti, S.; Gunn-Moore, F.; Dholakia, K. Light Sheet Fluorescence Microscopy for Neuroscience. J. Neurosci. Methods 2019, 319, 16–27. [Google Scholar] [CrossRef]
- Keller, P.J.; Schmidt, A.D.; Wittbrodt, J.; Stelzer, E.H.K. Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science 2008, 322, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.J.; Kenny, I.W.; Wolff, C.; Cray, R.; Kumar, A.; Sherwood, D.R.; Matus, D.Q. A Light Sheet Fluorescence Microscopy Protocol for Caenorhabditis Elegans Larvae and Adults. Front. Cell Dev. Biol. 2022, 10, 2021. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tseng, M.L.; Vyas, S.; Hsieh, T.Y.; Wu, J.C.; Chen, S.Y.; Peng, H.F.; Su, V.C.; Huang, T.T.; Kuo, H.Y.; et al. Meta-Lens Light-Sheet Fluorescence Microscopy for in Vivo Imaging. Nanophotonics 2022, 11, 1949–1959. [Google Scholar] [CrossRef]
- Weber, M.; Huisken, J. In Vivo Imaging of Cardiac Development and Function in Zebrafish Using Light Sheet Microscopy. Swiss. Med. Wkly. 2015, 145. [Google Scholar] [CrossRef] [PubMed]
- Verveer, P.J.; Swoger, J.; Pampaloni, F.; Greger, K.; Marcello, M.; Stelzer, E.H.K. High-Resolution Three-Dimensional Imaging of Large Specimens with Light Sheet-Based Microscopy. Nat. Methods 2007, 4, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Krzic, U.; Gunther, S.; Saunders, T.E.; Streichan, S.J.; Hufnagel, L. Multiview Light-Sheet Microscope for Rapid in Toto Imaging. Nat. Methods 2012, 9, 730–733. [Google Scholar] [CrossRef]
- Olarte, O.E.; Licea-Rodriguez, J.; Palero, J.A.; Gualda, E.J.; Artigas, D.; Mayer, J.; Swoger, J.; Sharpe, J.; Rocha-Mendoza, I.; Rangel-Rojo, R.; et al. Image Formation by Linear and Nonlinear Digital Scanned Light-Sheet Fluorescence Microscopy with Gaussian and Bessel Beam Profiles. Biomed. Opt. Express 2012, 3, 1492–1505. [Google Scholar] [CrossRef]
- Lazzari, G.; Vinciguerra, D.; Balasso, A.; Nicolas, V.; Goudin, N.; Garfa-Traore, M.; Fehér, A.; Dinnyés, A.; Nicolas, J.; Couvreur, P.; et al. Light Sheet Fluorescence Microscopy versus Confocal Microscopy: In Quest of a Suitable Tool to Assess Drug and Nanomedicine Penetration into Multicellular Tumor Spheroids. Eur. J. Pharm. Biopharm. 2019, 142, 195–203. [Google Scholar] [CrossRef]
- Luna-Palacios, Y.Y.; Licea-Rodriguez, J.; Camacho-Lopez, M.D.; Teichert, I.; Riquelme, M.; Rocha-Mendoza, I. Multicolor Light-Sheet Microscopy for a Large Field of View Imaging: A Comparative Study between Bessel and Gaussian Light-Sheets Configurations. J. Biophotonics. 2022, 15, e202100359. [Google Scholar] [CrossRef]
- Haase, M.; Schäfer, H. Upconverting Nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, S.; Han, M.; Li, P.; Zhang, L.; Xu, Z. Synthesis of Water Dispersible Hexagonal-Phase NaYF4:Yb, Er Nanoparticles with High Efficient Upconversion Fluorescence. J. Nanosci. Nanotechnol. 2014, 14, 3597–3601. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Wu, D.; Sathian, J.; Xie, X.; Ryan, M.; Xie, F. Tuning the Upconversion Photoluminescence Lifetimes of NaYF4:Yb3+, Er3+ through Lanthanide Gd3+ Doping. Sci. Rep. 2018, 8, 12683. [Google Scholar] [CrossRef] [PubMed]
- Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [PubMed]
- Jaque, D.; Maestro, L.M.; Escudero, E.; Martín Rodríguez, E.; Capobianco, J.A.; Vetrone, F.; Juarranz De La Fuente, A.; Sanz-Rodríguez, F.; Iglesias-De La Cruz, M.C.; Jacinto, C.; et al. Fluorescent Nano-Particles for Multi-Photon Thermal Sensing. J. Lumin. 2011, 133, 249–253. [Google Scholar] [CrossRef]
- Desirena, H.; De La Rosa, E.; Shulzgen, A.; Shabet, S.; Peyghambarian, N. Er3+ and Yb3+ Concentration Effect in the Spectroscopic Properties and Energy Transfer in Yb3+/Er3+ Codoped Tellurite Glasses. J. Phys. D Appl. Phys. 2008, 41, 095102. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, F.; Xu, J.; Zhou, K.; Chen, C.; Cheng, J.; Li, P. Upconversion Fluorescence Enhancement of NaYF4:Yb/Re Nanoparticles by Coupling with SiO2 Opal Photonic Crystals. J. Mater. Sci. 2019, 54, 8461–8471. [Google Scholar] [CrossRef]
- Berry, M.T.; May, P.S. Disputed Mechanism for NIR-to-Red Upconversion Luminescence in NaYF4: Yb3+,Er3+. J. Phys. Chem. A 2015, 119, 9805–9811. [Google Scholar] [CrossRef]
- Cai, Z.P.; Xu, H.Y. Point Temperature Sensor Based on Green Upconversion Emission in an Er:ZBLALiP Microsphere. Sens. Actuators A 2003, 108, 187–192. [Google Scholar] [CrossRef]
- Cui, Y.; Meng, Q.; Shuchen, L.; Sun, W. Temperature Sensing Properties Base on Up-Conversion Luminescence for NaYF 4: Er 3+, Yb 3+ Phosphor. ChemistrySelect 2019, 4, 4316–4323. [Google Scholar] [CrossRef]
- León-Luis, S.F.; Rodríguez-Mendoza, U.R.; Lalla, E.; Lavín, V. Temperature Sensor Based on the Er3+ Green Upconverted Emission in a Fluorotellurite Glass. Sens. Actuators B Chem. 2011, 158, 208–213. [Google Scholar] [CrossRef]
- Prajzler, V.; Neruda, M.; Nekvindová, P. Flexible Multimode Polydimethyl-Diphenylsiloxane Optical Planar Waveguides. J. Mater. Sci. Mater. Electron. 2018, 29, 5878–5884. [Google Scholar] [CrossRef]
- Rojas-Gutierrez, P.A.; DeWolf, C.; Capobianco, J.A. Formation of a Supported Lipid Bilayer on Faceted LiYF4:Tm3+/Yb3+Upconversion Nanoparticles. Part. Part. Syst. Charact. 2016, 33, 865–870. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Y.; Wu, Z.; Chen, B. Concentration Effect and Temperature Quenching of Upconversion Luminescence in BaGd2ZnO5:Er3+/Yb3+ Phosphor. J. Rare Earths 2015, 33, 686–692. [Google Scholar] [CrossRef]
- Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. Experimental Determination of Thermal Conductivity of Water-Agar Gel at Different Concentrations and Temperatures. J. Chem. Eng. Data 2011, 56, 859–864. [Google Scholar] [CrossRef]
- Vlassov, S.; Oras, S.; Timusk, M.; Zadin, V.; Tiirats, T.; Sosnin, I.M.; Lõhmus, R.; Linarts, A.; Kyritsakis, A.; Dorogin, L.M. Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass Microspheres. Materials 2022, 15, 1652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barron-Ortiz, D.; Cadena-Nava, R.D.; Pérez-Parets, E.; Licea-Rodriguez, J.; Gualda, E.J.; Hernandez-Cordero, J.; Loza-Alvarez, P.; Rocha-Mendoza, I. Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites. Micromachines 2023, 14, 2097. https://doi.org/10.3390/mi14112097
Barron-Ortiz D, Cadena-Nava RD, Pérez-Parets E, Licea-Rodriguez J, Gualda EJ, Hernandez-Cordero J, Loza-Alvarez P, Rocha-Mendoza I. Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites. Micromachines. 2023; 14(11):2097. https://doi.org/10.3390/mi14112097
Chicago/Turabian StyleBarron-Ortiz, Dannareli, Ruben D. Cadena-Nava, Enric Pérez-Parets, Jacob Licea-Rodriguez, Emilio J. Gualda, Juan Hernandez-Cordero, Pablo Loza-Alvarez, and Israel Rocha-Mendoza. 2023. "Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites" Micromachines 14, no. 11: 2097. https://doi.org/10.3390/mi14112097
APA StyleBarron-Ortiz, D., Cadena-Nava, R. D., Pérez-Parets, E., Licea-Rodriguez, J., Gualda, E. J., Hernandez-Cordero, J., Loza-Alvarez, P., & Rocha-Mendoza, I. (2023). Volumetric Temperature Mapping Using Light-Sheet Microscopy and Upconversion Fluorescence from Micro- and Nano-Rare Earth Composites. Micromachines, 14(11), 2097. https://doi.org/10.3390/mi14112097