Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = xyloketal B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2909 KiB  
Review
Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry
by Wasim Akram, Mohd Rihan, Sakeel Ahmed, Swamita Arora, Sameer Ahmad and Rahul Vashishth
Mar. Drugs 2023, 21(3), 193; https://doi.org/10.3390/md21030193 - 21 Mar 2023
Cited by 22 | Viewed by 6135
Abstract
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained [...] Read more.
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds’ cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed. Full article
(This article belongs to the Special Issue Marine-Derived Compounds Applied in Cardiovascular Disease)
Show Figures

Figure 1

11 pages, 621 KiB  
Review
Marine Compound Xyloketal B as a Potential Drug Development Target for Neuroprotection
by Haifan Gong, Zhengwei Luo, Wenliang Chen, Zhong-Ping Feng, Guan-Lei Wang and Hong-Shuo Sun
Mar. Drugs 2018, 16(12), 516; https://doi.org/10.3390/md16120516 - 19 Dec 2018
Cited by 19 | Viewed by 4414
Abstract
Xyloketal B is a natural compound isolated from the mangrove fungus, Xylaria sp. in the South China Sea. In the past decade, studies have shown that xyloketal B exhibits anti-oxidative, anti-inflammatory, and anti-apoptotic abilities and may serve as a treatment for ischemic stroke. [...] Read more.
Xyloketal B is a natural compound isolated from the mangrove fungus, Xylaria sp. in the South China Sea. In the past decade, studies have shown that xyloketal B exhibits anti-oxidative, anti-inflammatory, and anti-apoptotic abilities and may serve as a treatment for ischemic stroke. Xyloketal B has been shown to interact with both neurons and residential microglial cells and regulate a number of proteins involved in the apoptotic events during ischemia. Such mechanisms include inhibition of specific NADPH oxidase subunits, upregulation of HO-1, increase of Bcl-1/Bax ratio, and downregulation of TLR4 receptor. Both in vitro and in vivo stroke models have validated its potential in preventing ischemia-induced neuronal cell death. This review summarizes our current understanding of the effects of xyloketal B in ischemic conditions. As stroke ranks second in the causes of mortality worldwide and still lacks effective treatment, it is necessary to seek novel therapeutic options. Understanding the role of xyloketal B in ischemic stroke could reveal a new aspect of stroke treatment. Full article
Show Figures

Figure 1

14 pages, 1274 KiB  
Article
Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models
by Youying Zhang, Tian Meng, Ling Zuo, Yu Bei, Qihao Zhang, Zhijian Su, Yadong Huang, Jiyan Pang, Qi Xiang and Hongtu Yang
Mar. Drugs 2017, 15(6), 163; https://doi.org/10.3390/md15060163 - 3 Jun 2017
Cited by 44 | Viewed by 6055
Abstract
The goal of this study was to examine the effects of xyloketal B on nonalcoholic fatty liver disease (NAFLD) and to explore the molecular mechanisms underlying its effects in both in vivo and in vitro models. We discovered an association between xyloketal B [...] Read more.
The goal of this study was to examine the effects of xyloketal B on nonalcoholic fatty liver disease (NAFLD) and to explore the molecular mechanisms underlying its effects in both in vivo and in vitro models. We discovered an association between xyloketal B and the sterol regulatory element-binding protein-1c (SREBP-1c) signaling pathway, which is related to lipid metabolism. Mice were dosed with xyloketal B (5, 10 and 20 mg/kg/d) and atorvastatin (15 mg/kg/d) via intraperitoneal injection once daily for 40 days after being fed a high fat diet plus 10% high fructose liquid (HFD+HFL) for 8 weeks. Xyloketal B significantly improved HFD+HFL-induced hepatic histological lesions and attenuated lipid and glucose accumulation in the blood as well as lipid accumulation in the liver. Xyloketal B increased the expression of CPT1A, and decreased the expression of SREBP-1c and its downstream targeting enzymes such as ACC1, ACL, and FAS. Xyloketal B also significantly reduced lipid accumulation in HepG2 cells treated with free fatty acids (FFAs). These data suggested that xyloketal B has lipid-lowering effects via the SREBP-1c pathway that regulate lipid metabolism. Thus, targeting SREBP-1c activation with xyloketal B may be a promising novel approach for NAFLD treatment. Full article
Show Figures

Figure 1

21 pages, 1337 KiB  
Article
Xyloketal B Suppresses Glioblastoma Cell Proliferation and Migration in Vitro through Inhibiting TRPM7-Regulated PI3K/Akt and MEK/ERK Signaling Pathways
by Wen-Liang Chen, Ekaterina Turlova, Christopher L. F. Sun, Ji-Sun Kim, Sammen Huang, Xiao Zhong, Yong-Yuan Guan, Guan-Lei Wang, James T. Rutka, Zhong-Ping Feng and Hong-Shuo Sun
Mar. Drugs 2015, 13(4), 2505-2525; https://doi.org/10.3390/md13042505 - 22 Apr 2015
Cited by 66 | Viewed by 9104
Abstract
Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a [...] Read more.
Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a marine compound obtained from mangrove fungus Xylaria sp. (No. 2508) from the South China Sea, and has displayed antioxidant activity and protective effects on endothelial and neuronal oxidative injuries. In this study, we used a glioblastoma U251 cell line to (1) explore the effects of xyloketal B on cell viability, proliferation, and migration; and (2) investigate the underlying molecular mechanisms and signaling pathways. MTT assay, colony formation, wound healing, western blot, and patch clamp techniques were employed. We found that xyloketal B reduced cell viability, proliferation, and migration of U251 cells. In addition, xyloketal B decreased p-Akt and p-ERK1/2 protein expressions. Furthermore, xyloketal B blocked TRPM7 currents in HEK-293 cells overexpressing TRPM7. These effects were confirmed by using a TRPM7 inhibitor, carvacrol, in a parallel experiment. Our findings indicate that TRPM7-regulated PI3K/Akt and MEK/ERK signaling is involved in anti-proliferation and migration effects of xyloketal B on U251 cells, providing in vitro evidence for the marine compound xyloketal B to be a potential drug for treating glioblastoma. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

21 pages, 1681 KiB  
Article
Xyloketal B Attenuates Atherosclerotic Plaque Formation and Endothelial Dysfunction in Apolipoprotein E Deficient Mice
by Li-Yan Zhao, Jie Li, Feng Yuan, Mei Li, Quan Zhang, Ji-Yan Pang, Bin Zhang, Fang-Yun Sun, Hong-Shuo Sun, Qian Li, Lu Cao, Yu Xie, Yong-Cheng Lin, Jie Liu, Hong-Mei Tan, Guan-Lei Wang and Yun-Ying Huang
Mar. Drugs 2015, 13(4), 2306-2326; https://doi.org/10.3390/md13042306 - 14 Apr 2015
Cited by 24 | Viewed by 7170
Abstract
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction [...] Read more.
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction and decrease in nitric oxide (NO) bioavailability are critical for the development of atherosclerotic lesion. We thus examined whether xyloketal B had an influence on the atherosclerotic plaque area in apolipoprotein E-deficient (apoE/−) mice fed a high-fat diet and investigated the underlying mechanisms. We found in our present study that the administration of xyloketal B dose-dependently decreased the atherosclerotic plaque area both in the aortic sinus and throughout the aorta in apoE/− mice fed a high-fat diet. In addition, xyloketal B markedly reduced the levels of vascular oxidative stress, as well as improving the impaired endothelium integrity and NO-dependent aortic vasorelaxation in atherosclerotic mice. Moreover, xyloketal B significantly changed the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt without altering the expression of total eNOS and Akt in cultured human umbilical vein endothelial cells (HUVECs). Here, it increased eNOS phosphorylation at the positive regulatory site of Ser-1177, while inhibiting phosphorylation at the negative regulatory site of Thr-495. Taken together, these findings indicate that xyloketal B has dramatic anti-atherosclerotic effects in vivo, which is partly due to its antioxidant features and/or improvement of endothelial function. Full article
Show Figures

Figure 1

26 pages, 1464 KiB  
Article
Design and Synthesis of Novel Xyloketal Derivatives and Their Protective Activities against H2O2-Induced HUVEC Injury
by Shixin Liu, Rong Luo, Qi Xiang, Xianfang Xu, Liqin Qiu and Jiyan Pang
Mar. Drugs 2015, 13(2), 948-973; https://doi.org/10.3390/md13020948 - 12 Feb 2015
Cited by 17 | Viewed by 6639
Abstract
In this work, we designed and synthesized a series of amide derivatives (113), benzoxazine derivatives (1628) and amino derivatives (2930) from xyloketal B. All 28 new derivatives and seven known compounds [...] Read more.
In this work, we designed and synthesized a series of amide derivatives (113), benzoxazine derivatives (1628) and amino derivatives (2930) from xyloketal B. All 28 new derivatives and seven known compounds (14, 15, 3135) were evaluated for their protection against H2O2-induced HUVEC injury. 23 and 24 exhibited more potential protective activities than other derivatives; and the EC50 values of them and the leading compound 31 (xyloketal B) were 5.10, 3.59 and 15.97 μM, respectively. Meanwhile, a comparative molecular similarity indices analysis (CoMSIA) was constructed to explain the structural activity relationship of these xyloketal derivatives. This 3D QSAR model from CoMSIA suggested that the derived model exhibited good predictive ability in the external test-set validation. Derivative 24 fit well with the COMSIA map, therefore it possessed the highest activity of all compounds. Compounds 23, 24 and 31 (xyloketal B) were further to examine in the JC-1 mitochondrial membrane potential (MMP) assay of HUVECs using flow cytometry (FCM). The result indicated that 23 and 24 significantly inhibited H2O2-induced decrease of the cell mitochondrial membrane potential (ΔΨm) at 25 μM. Collectively, the protective effects of xyloketals on H2O2-induced endothelial cells may be generated from oxidation action by restraining ROS and reducing the MMP. Full article
Show Figures

Graphical abstract

19 pages, 942 KiB  
Article
Marine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury
by Ai-Jiao Xiao, Wenliang Chen, Baofeng Xu, Rui Liu, Ekaterina Turlova, Andrew Barszczyk, Christopher Lf Sun, Ling Liu, Marielle Deurloo, Guan-Lei Wang, Zhong-Ping Feng and Hong-Shuo Sun
Mar. Drugs 2015, 13(1), 29-47; https://doi.org/10.3390/md13010029 - 24 Dec 2014
Cited by 49 | Viewed by 7216
Abstract
Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal [...] Read more.
Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury. Full article
Show Figures

Figure 1

31 pages, 1444 KiB  
Article
Synthesis and Neuroprotective Action of Xyloketal Derivatives in Parkinson’s Disease Models
by Shichang Li, Cunzhou Shen, Wenyuan Guo, Xuefei Zhang, Shixin Liu, Fengyin Liang, Zhongliang Xu, Zhong Pei, Huacan Song, Liqin Qiu, Yongcheng Lin and Jiyan Pang
Mar. Drugs 2013, 11(12), 5159-5189; https://doi.org/10.3390/md11125159 - 18 Dec 2013
Cited by 36 | Viewed by 9292
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting people over age 55. Oxidative stress actively participates in the dopaminergic (DA) neuron degeneration of PD. Xyloketals are a series of natural compounds from marine mangrove fungus strain No. 2508 that have [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting people over age 55. Oxidative stress actively participates in the dopaminergic (DA) neuron degeneration of PD. Xyloketals are a series of natural compounds from marine mangrove fungus strain No. 2508 that have been reported to protect against neurotoxicity through their antioxidant properties. However, their protection versus 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity is only modest, and appropriate structural modifications are necessary to discover better candidates for treating PD. In this work, we designed and synthesized 39 novel xyloketal derivatives (139) in addition to the previously reported compound, xyloketal B. The neuroprotective activities of all 40 compounds were evaluated in vivo via respiratory burst assays and longevity-extending assays. During the zebrafish respiratory burst assay, compounds 1, 9, 23, 24, 36 and 39 strongly attenuated reactive oxygen species (ROS) generation at 50 μM. In the Caenorhabditis elegans longevity-extending assay, compounds 1, 8, 15, 16 and 36 significantly extended the survival rates (p < 0.005 vs. dimethyl sulfoxide (DMSO)). A total of 15 compounds were tested for the treatment of Parkinson’s disease using the MPP+-induced C. elegans model, and compounds 1 and 8 exhibited the highest activities (p < 0.005 vs. MPP+). In the MPP+-induced C57BL/6 mouse PD model, 40 mg/kg of 1 and 8 protected against MPP+-induced dopaminergic neurodegeneration and increased the number of DA neurons from 53% for the MPP+ group to 78% and 74%, respectively (p < 0.001 vs. MPP+ group). Thus, these derivatives are novel candidates for the treatment of PD. Full article
Show Figures

Graphical abstract

19 pages, 1166 KiB  
Article
Xyloketal B Exhibits Its Antioxidant Activity through Induction of HO-1 in Vascular Endothelial Cells and Zebrafish
by Zhen-Xing Li, Jian-Wen Chen, Feng Yuan, Yun-Ying Huang, Li-Yan Zhao, Jie Li, Huan-Xing Su, Jie Liu, Ji-Yan Pang, Yong-Cheng Lin, Xi-Lin Lu, Zhong Pei, Guan-Lei Wang and Yong-Yuan Guan
Mar. Drugs 2013, 11(2), 504-522; https://doi.org/10.3390/md11020504 - 18 Feb 2013
Cited by 38 | Viewed by 7243
Abstract
We previously reported that a novel marine compound, xyloketal B, has strong antioxidative actions in different models of cardiovascular diseases. Induction of heme oxygenase-1 (HO-1), an important endogenous antioxidant enzyme, has been considered as a potential therapeutic strategy for cardiovascular diseases. We here [...] Read more.
We previously reported that a novel marine compound, xyloketal B, has strong antioxidative actions in different models of cardiovascular diseases. Induction of heme oxygenase-1 (HO-1), an important endogenous antioxidant enzyme, has been considered as a potential therapeutic strategy for cardiovascular diseases. We here investigated whether xyloketal B exhibits its antioxidant activity through induction of HO-1. In human umbilical vein endothelial cells (HUVECs), xyloketal B significantly induced HO-1 gene expression and translocation of the nuclear factor-erythroid 2-related factor 2 (Nrf-2) in a concentration- and time-dependent manner. The protection of xyloketal B against angiotensin II-induced apoptosis and reactive oxygen species (ROS) production could be abrogated by the HO-1 specific inhibitor, tin protoporphyrin-IX (SnPP). Consistently, the suppressive effects of xyloketal B on NADPH oxidase activity could be reversed by SnPP in zebrafish embryos. In addition, xyloketal B induced Akt and Erk1/2 phosphorylation in a concentration- and time-dependent manner. Furthermore, PI3K inhibitor LY294002 and Erk1/2 inhibitor U0126 suppressed the induction of HO-1 and translocation of Nrf-2 by xyloketal B, whereas P38 inhibitor SB203580 did not. In conclusion, xyloketal B can induce HO-1 expression via PI3K/Akt/Nrf-2 pathways, and the induction of HO-1 is mainly responsible for the antioxidant and antiapoptotic actions of xyloketal B. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Fungi)
Show Figures

Figure 1

Back to TopTop