Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = xenolith

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 77489 KB  
Article
Chemistry and Fe Isotopes of Magnetites in the Orbicular Bodies in the Tanling Diorite and Implications for the Skarn Iron Mineralization in the North China Craton
by Ruipeng Li, Shangguo Su and Peng Wang
Minerals 2025, 15(10), 1061; https://doi.org/10.3390/min15101061 - 9 Oct 2025
Viewed by 587
Abstract
Skarn-type iron ore is economically significant, and numerous skarn ore deposits have been identified in the North China Craton. The newly discovered orbicular diorite in this region is distinguished from other analogous rocks due to the accumulation of large magnetite particles, which may [...] Read more.
Skarn-type iron ore is economically significant, and numerous skarn ore deposits have been identified in the North China Craton. The newly discovered orbicular diorite in this region is distinguished from other analogous rocks due to the accumulation of large magnetite particles, which may shed new light on the genesis of this ore type. The magnetite in different parts of the orbicular structure exhibits distinct compositional differences. For example, magnetite at the edge has a small particle size (200 μm) and is associated with the minerals plagioclase and hornblende, indicating that it crystallized from normal diorite magma. By contrast, magnetite in the core has a relatively large particle size (>1000 μm), is associated with apatite and actinolite, and contains apatite inclusions as well as numerous pores. The size of magnetite in the mantle falls between that of the edge and the core. The syngenetic minerals of magnetite in the mantle include epidote and plagioclase. The magnetites in the cores of orbicules have a higher content of Ti, Al, Ni, Cr, Sc, Zn, Co, Ga, and Nb than those in the rim. The δ56Fe value of the core magnetite (0.46‰–0.78‰) is much higher than that of the mantle and rim magnetite in orbicules. Moreover, the δ56Fe value of magnetite increases as the V content of magnetite gradually decreases. This large iron isotope fractionation is likely driven by liquid immiscibility that forms iron-rich melts under high oxygen fugacity. The reaction between magma and carbonate xenoliths (Ca, Mg)CO3 during magma migration generates abundant CO2, which significantly increases the oxygen fugacity of the magmatic system. Under the action of CO2 and other volatile components, liquid immiscibility occurs in the magma chamber, and Fe-rich oxide melts are formed by the melting of carbonate xenoliths. Iron oxides (Fe3O4/Fe2O3) will crystallize close to the liquidus due to high oxygen fugacity. These characteristics of magnetite in the Tanling orbicular diorite (Wuan, China) indicate that diorite magma reacts with carbonate xenoliths to form “Fe-rich melts”, and skarn iron deposits are probably formed by the reaction of intermediate-basic magma with carbonate rocks that generate such “Fe-rich melts”. A possible reaction is as follows: diorite magma + carbonate → (magnetite-actinolite-apatite) + garnet + epidote + feldspar + hornblende + CO2↑. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

26 pages, 6089 KB  
Article
Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton
by Renzhi Zhu, Pei Ni, Yan Li and Fanglai Wan
Minerals 2025, 15(10), 1009; https://doi.org/10.3390/min15101009 - 24 Sep 2025
Viewed by 642
Abstract
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite [...] Read more.
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite (formerly Group-II). Nevertheless, the petrogenesis of transitional diamond-bearing kimberlites remains poorly understood due to limited research. The diamondiferous transitional Wafangdian kimberlite in the North China Craton (NCC) thus provides a valuable opportunity for a detailed case study. We investigated fresh hypabyssal transitional Wafangdian kimberlites using bulk-rock major and trace element geochemistry to constrain near-primary parental magma compositions and decipher their petrogenesis. Geochemical compositions identify samples affected by crustal contamination based on elevated SiO2, Pb, heavy rare earth element (HREE) concentrations, and Sr isotopic ratios. Compositional variations among macrocrystic samples (MgO: 29.7–31.5 wt.%; SiO2: 30.6–34.7 wt.%; CaO: 3.9–7.5 wt.%; Mg# [atomic Mg/(Mg + Fe2+) × 100]: 85–88) result from substantial entrainment and partial assimilation of peridotite xenoliths (up to 35%). In contrast, variations within aphanitic samples (MgO: 24.0–29.7 wt.%; SiO2: 27.7–30.9 wt.%; CaO: 6.0–11.8 wt.%; Mg#: 81–85) are attributed to fractional crystallization of olivine and phlogopite (~1–32%). Based on these constraints, the near-primary parental magma composition for the Wafangdian kimberlite is estimated as ~29.7 wt.% SiO2, ~29.7 wt.% MgO, and Mg# 85. Trace element concentrations in the transitional Wafangdian kimberlites resemble those of archetypal kimberlites globally (e.g., Nb/U > 26, La/Nb < 1.4, Ba/Nb < 16, Th/Nb < 0.25), indicating a shared convective mantle source. However, the Wafangdian kimberlites exhibit distinct characteristics: εNd(t) values ranging from −3.44 to −1.77, higher Al2O3 and K2O contents, and lower Ce/Pb ratios (10–20) compared to archetypal kimberlites. These features suggest the mantle source region was profoundly influenced by deeply subducted oceanic material. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

33 pages, 8120 KB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 1621
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

23 pages, 12244 KB  
Article
The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate–Carbonatite Complex, NW Anatolia
by Yalçın E. Ersoy, Hikmet Yavuz, İbrahim Uysal, Martin R. Palmer and Dirk Müller
Minerals 2025, 15(8), 867; https://doi.org/10.3390/min15080867 - 17 Aug 2025
Viewed by 1296
Abstract
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on [...] Read more.
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastnäsite. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical–elliptical pelletal lapilli (2–3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate–carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

39 pages, 37908 KB  
Article
Deformation of the “Anorogenic” Wolf River Batholith, Wisconsin, USA: Understanding the Baraboo Orogeny Hinterland
by John P. Craddock, David H. Malone, Erica P. Craddock, Steven J. Baumann, John E. Malone and Ryan Porter
Geosciences 2025, 15(4), 150; https://doi.org/10.3390/geosciences15040150 - 16 Apr 2025
Cited by 2 | Viewed by 1615
Abstract
The Mesoproterozoic (~1470 Ma) Wolf River batholith (WRB) is exposed over 6500 km2, encompassing 11 plutons that crosscut the Archean Marshfield and Proterozoic Penokean terranes. As the WRB is the classically defined anorogenic batholith, to test this hypothesis, seven igneous phases [...] Read more.
The Mesoproterozoic (~1470 Ma) Wolf River batholith (WRB) is exposed over 6500 km2, encompassing 11 plutons that crosscut the Archean Marshfield and Proterozoic Penokean terranes. As the WRB is the classically defined anorogenic batholith, to test this hypothesis, seven igneous phases were analyzed using anisotropy of magnetic susceptibility (AMS), as a proxy for magmatic flow during intrusion, and the samples recorded a sub-horizontal emplacement in six different orientations. Paleopoles from six of eight igneous samples preserve a wide variety of sub-vertical orientations with two reversed and four normal polarities. The synorogenic Baldwin Conglomerate is the youngest rock (<1460 Ga) associated with WRB. Magnetic fabrics are horizontal, but multidomain and paleopole signatures, where interpretable, are sub-vertical. The North American APWP places middle Laurentia at low-latitude during Geon 14, and all our paleopoles are sub-vertical, not sub-horizontal, again suggesting post-intrusion deformation. Moreover, the McCauley gneiss (1886 Ma; U-Pb zircon), Rib Mountain Quartzite (1750 Ma MDA; U-Pb zircon, n = 150), Dells of the Eau Claire rhyolite (1483 Ma; U-Pb zircon, 1469 Ma; monazites-in-garnet), and Baldwin conglomerate (1460 Ma MDA; U-Pb zircons, n = 150) are sub-vertical inliers (xenoliths) in the igneous suite; the Proterozoic Wausau turbidite (1850 Ma MDA; U-Pb zircon, n = 150) was intruded by the WRB and dips 25°W. Here, we present a reinterpretation of the WRB as a deformed synorogenic rather than an anorogenic intrusion. Full article
(This article belongs to the Special Issue Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits)
Show Figures

Figure 1

28 pages, 16782 KB  
Article
Lithosphere Modification Beneath the North China Craton: Geochemical Constraints of Water Contents from the Damaping Peridotite Xenoliths
by Baoyi Yang, Bo Xu, Yi Zhao and Hui Zhang
Crystals 2025, 15(4), 349; https://doi.org/10.3390/cryst15040349 - 8 Apr 2025
Viewed by 1191
Abstract
The water contents and geochemical evidence of nominally anhydrous minerals in peridotite xenoliths provide critical insights into lithospheric mantle features, offering a deep understanding of cratonic destruction and mantle evolution processes. Damaping, located in the central part of the intra-North China Craton, hosts [...] Read more.
The water contents and geochemical evidence of nominally anhydrous minerals in peridotite xenoliths provide critical insights into lithospheric mantle features, offering a deep understanding of cratonic destruction and mantle evolution processes. Damaping, located in the central part of the intra-North China Craton, hosts abundant mantle peridotite xenoliths’ samples, providing new constraints on lithospheric mantle evolution. In this study, spinel lherzolite samples from Damaping Cenozoic basalts were analyzed for major and trace elements, water content, and oxygen isotope to investigate the factors controlling mantle water distribution and lithospheric mantle modification. The olivines of Damaping spinel lherzolite have a range of Mg# values from 89.73 to 91.01, indicating moderately refractory mantle characteristics. Clinopyroxenes display an LREE-depleted pattern, suggesting a consistency with 1–6% of batch partial melting and 1–5% fractional partial melting. The high (La/Yb)N (0.20–0.73) and low Ti/Eu (3546.98–5919.48) ratios of Damaping clinopyroxenes reveal that the lithosphere mantle beneath the Damaping has undergone silicate metasomatism. The water contents of Damaping clinopyroxenes and orthopyroxenes range from 13.39 to 19.46 ppm and 4.60 to 7.82 ppm, respectively. The water contents of the olivines are below the detection limit (<2 ppm). The whole-rock water contents can be estimated based on the mineral modes and partition coefficients, with values ranging from 3.21 to 5.44 ppm. Partial melting indicators (Mg# in Ol and Ybn in Cpx) correlate with the water content in clinopyroxenes and orthopyroxenes but show no correlation with the redox state (Fe3+/∑Fe ratios in spinel) or metasomatism ((La/Yb)N in clinopyroxene). These results suggest that the degree of partial melting primarily controls the heterogeneous water distribution in Damaping spinel lherzolite, rather than the redox state or metasomatism. The δ18O values of clinopyroxenes from Damaping spinel lherzolites (5.27–5.59‰) fall within the range of mid-ocean ridge basalts (MORB), indicating a mantle source characterized by MORB-like isotopic signatures. The low whole-rock water contents are attributed to lithospheric reheating resulting from asthenospheric upwelling during the Late Mesozoic–Early Cenozoic. Therefore, the lithosphere is predominantly composed of ancient Proterozoic residues, with localized contributions of younger asthenospheric material near deep faults. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

21 pages, 10583 KB  
Article
Calcareous Skarn-like Mineral Paragenesis from Unaltered Basalt of the Alaid Volcano (Kuril–Kamchatka Island Arc)
by Elena S. Zhitova, Anton A. Nuzhdaev, Vesta O. Davydova, Rezeda M. Sheveleva, Pavel S. Zhegunov, Ruslan A. Kuznetsov, Anton V. Kutyrev, Maria A. Khokhlova and Natalia S. Vlasenko
Minerals 2025, 15(3), 237; https://doi.org/10.3390/min15030237 - 26 Feb 2025
Viewed by 1339
Abstract
Conditions of high-temperature volcano-related mineral formation are a source of the new and rare minerals and their associations; they are rather fragmentarily described for volcanic systems as a whole, except for several objects characterized in this regard. The study aim is to present [...] Read more.
Conditions of high-temperature volcano-related mineral formation are a source of the new and rare minerals and their associations; they are rather fragmentarily described for volcanic systems as a whole, except for several objects characterized in this regard. The study aim is to present the first results of the mineralogical study of atypical suprasubduction zone neoformation encountered from the Taketomi flank eruption (1933–1934) of the Alaid volcano (Kuril Islands), which has been studied through electron microprobe analyses and powder and single-crystal X-ray diffraction. The following mineral paragenesis is described: diopside, andradite, anorthite, wollastonite, esseneite, wadalite, rhönite-like mineral, fluorite, calcite, apatite, and atacamite. The parageneses of calcium silicates found in volcanic systems are usually interpreted as reworked crustal xenoliths and commonly associated with volcanoes that have a carbonate basement. However, carbonates have not been previously described at the base of the Alaid volcano. Even though the skarn nature of such a mineral paragenesis is possible, we suggest the important role of high-temperature volcanic gases along with the pyrometamorphic effect in the mineral-forming process at depth or in near-surface conditions (fumarole-like type in the form of a system of cracks and burrows). The described mineral paragenesis has not been previously documented, at least for the North Kuril Islands. A detailed mineralogical study of such formations is one of the important steps in understanding the functioning of magmatic systems, the circulation and transformation of natural matter, and mineral-forming processes. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Graphical abstract

12 pages, 2598 KB  
Article
Characterisation of Pelletal Lapilli in Explosive Melilitite–Carbonatite Eruptions: An Example from Mt. Vulture Volcano (Southern Italy)
by Gabriele Carnevale and Vittorio Zanon
Geosciences 2024, 14(12), 349; https://doi.org/10.3390/geosciences14120349 - 18 Dec 2024
Cited by 2 | Viewed by 1694
Abstract
Among the volcaniclastic products of melilitite–carbonatite eruptions, pelletal lapilli are often found, resulting in them being particularly useful for characterising the interface between the erupting magma and its volatile component. Pelletal lapilli, which were erupted during the most recent melilitite–carbonatite volcanic activity of [...] Read more.
Among the volcaniclastic products of melilitite–carbonatite eruptions, pelletal lapilli are often found, resulting in them being particularly useful for characterising the interface between the erupting magma and its volatile component. Pelletal lapilli, which were erupted during the most recent melilitite–carbonatite volcanic activity of the Mt. Vulture volcano, are characterised by a predominantly wehrlitic core with CO2-rich fluid inclusions and a Ca-rich outer portion composed of fine-grained xenocrystic debris of olivine and clinopyroxene, with microcrysts of haüyne and melilite laths (± calcite). The chemical composition of the olivine reflects the interaction with a proto-melilitite–carbonatite melt, which is the main metasomatic agent. The whole-rock analyses of the external portion of pelletal lapilli show values that are comparable with those of extrusive carbonatites. This evidence supports the hypothesis that the primary carbonatite melt was a significant contributor to the CO2-rich magma source that transported the lapilli to the surface. The modelling of the geometric data of the pelletal lapilli structure, together with inferences regarding the role of the CO2 gas phase, the main propellant in an ascending gas-dominated medium, allowed for the reconstruction of a possible scenario where the CO2 expansion and the fluidised spray granulation process are crucial during the volcanic conduit dynamics. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

27 pages, 8131 KB  
Article
Formation Conditions of Unusual Extremely Reduced High-Temperature Mineral Assemblages in Rocks of Combustion Metamorphic Complexes
by Igor S. Peretyazhko and Elena A. Savina
Crystals 2024, 14(12), 1052; https://doi.org/10.3390/cryst14121052 - 3 Dec 2024
Cited by 3 | Viewed by 1808
Abstract
New data, including Raman spectroscopy, characterize unusual mineral assemblages from rocks of the Naylga and Khamaryn–Khyral–Khiid combustion metamorphic complexes in Mongolia. Several samples of melilite–nepheline paralava and other thermally altered (metamorphosed) sedimentary rocks contain troilite (FeS), metallic iron Fe0, kamacite α-(Fe,Ni) [...] Read more.
New data, including Raman spectroscopy, characterize unusual mineral assemblages from rocks of the Naylga and Khamaryn–Khyral–Khiid combustion metamorphic complexes in Mongolia. Several samples of melilite–nepheline paralava and other thermally altered (metamorphosed) sedimentary rocks contain troilite (FeS), metallic iron Fe0, kamacite α-(Fe,Ni) or Ni-bearing Fe0, taenite γ-(Fe,Ni) or Ni-rich Fe0, barringerite or allabogdanite Fe2P, schreibersite Fe3P, steadite Fe4P = eutectic α-Fe + Fe3P, wüstite FeO, and cohenite Fe3C. The paralava matrix includes a fragment composed of magnesiowüstite–ferropericlase (FeO–MgO solid solution), as well as of spinel (Mg,Fe)Al2O4 and forsterite. The highest-temperature mineral assemblage belongs to a xenolithic remnant, possibly Fe-rich sinter, which is molten ash left after underground combustion of coal seams. The crystallization temperatures of the observed iron phases were estimated using phase diagrams for the respective systems: Fe–S for iron sulfides and Fe–P ± C for iron phosphides. Iron monosulfides (high-temperature pyrrhotite) with inclusions of Fe0 underwent solid-state conversion into troilite at 140 °C. Iron phosphides in inclusions from the early growth zone of anorthite–bytownite in melilite–nepheline paralava crystallized from <1370 to 1165 °C (Fe2P), 1165–1048 °C (Fe3P), and <1048 °C (Fe4P). Phase relations in zoned spherules consisting of troilite +Fe0 (or kamacite + taenite) +Fe3P ± (Fe3C, Fe4P) reveal the potential presence of a homogeneous Fe–S–P–C melt at T~1350 °C, which separated into two immiscible melts in the 1350–1250 °C range; namely, a dense Fe–P–C melt in the core and a less dense Fe–S melt in the rim. The melts evolved in accordance with cooling paths in the Fe–S and Fe–P–C phase diagrams. Cohenite and schreibersite in the spherules crystallized between 988 °C and 959 °C. The crystallization temperatures of minerals were used to reconstruct redox patterns with respect to the CCO, IW, IM, and MW buffer equilibria during melting of marly limestone and subsequent crystallization and cooling of melilite–nepheline paralava melts. The origin of the studied CM rocks was explained in a model implying thermal alteration of low-permeable overburden domains in reducing conditions during wild subsurface coal fires, while heating was transferred conductively from adjacent parts of ignited coal seams. The fluid (gas) regime in the zones of combustion was controlled by the CCO buffer at excess atomic carbon. Paralava melts exposed to high-temperature extremely reducing conditions contained droplets of immiscible Fe–S–P–C, Fe–S, Fe–P, and Fe–P–C melts, which then crystallized into reduced mineral assemblages. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

15 pages, 10534 KB  
Article
Genetic Type and Formation Evolution of Mantle-Derived Olivine in Ultramafic Xenolith of Damaping Basalt, Northern North China Block
by Cun Zhang, Fan Yang, Zengsheng Li, Leon Bagas, Lu Niu, Xinyi Zhu and Jianjun Li
Minerals 2024, 14(12), 1207; https://doi.org/10.3390/min14121207 - 27 Nov 2024
Cited by 1 | Viewed by 2143
Abstract
Olivine in deep-seated ultramafic xenoliths beneath the North China Block serves as a crucial proxy for decoding the compositions, properties, and evolution of the lithospheric mantle. Here, we conduct an investigation on olivine (including gem-grade) hosted in ultramafic xenoliths from Damaping basalt in [...] Read more.
Olivine in deep-seated ultramafic xenoliths beneath the North China Block serves as a crucial proxy for decoding the compositions, properties, and evolution of the lithospheric mantle. Here, we conduct an investigation on olivine (including gem-grade) hosted in ultramafic xenoliths from Damaping basalt in the northern part of the North China Block. This contribution presents the results from petrographic, Raman spectroscopic, and major and trace elemental studies of olivine, with the aim of characterising the formation environment and genetic type of the olivine. The analysed olivine samples are characterised by high Mg# values (close to 91%) possessing refractory to fertile features and doublet bands with unit Raman spectra beams of 822 and 853 cm−1, which are indicative of a forsterite signature. Major and trace geochemistry of olivine indicates the presence of mantle xenolith olivine. All the analytical olivine assays ≤0.1 wt % CaO, ~40 wt % SiO2, and ≤0.05 wt % Al2O3. Furthermore, olivine displays significantly different concentrations of Ti, Y, Sc, V, Co, and Ni. The Ni/Co values in olivine range from 21.21 to 22.98, indicating that the crystallisation differentiation of basic magma relates to oceanic crust recycling. The V/Sc values in mantle/xenolith olivine vary from 0.54 to 2.64, indicating a more oxidised state of the mantle. Rare earth element (REE) patterns show that the LREEs and HREEs of olivine host obviously differentiated characteristics. The HREE enrichments of olivine and the LREE depletion of clinopyroxene further assert that the mantle in the Damaping area underwent partial melting. The wide variations of Mg# values in olivine and the Cr# values in clinopyroxene, along with major element geochemistry indicate transitional characteristics of different peridotite xenoliths. This is possibly indicative of a newly accreted lithospheric mantle interaction with an old lithospheric mantle at the time of the basaltic eruption during the Paleozoic to Cenozoic. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 23345 KB  
Article
Clinopyroxenite-Wehrlite Porya Guba Complex with Fe-Ti-V and PGE-Cu-Ni Mineralization in the Northeastern Part of the Fennoscandian Shield: Evidence of Post-Orogenic Formation from Sm-Nd Isotope System
by Pavel A. Serov and Nikolay Yu. Groshev
Minerals 2024, 14(11), 1099; https://doi.org/10.3390/min14111099 - 29 Oct 2024
Viewed by 1088
Abstract
The Porya Guba clinopyroxenite–wehrlite complex is located in the core of the Lapland–Kola collisional orogen (~2.0–1.9 billion years old) in the northeastern part of the Fennoscandian Shield and contains iron–titanium–vanadium and nickel–copper mineralization with platinum group elements (PGEs). The controversial geological position of [...] Read more.
The Porya Guba clinopyroxenite–wehrlite complex is located in the core of the Lapland–Kola collisional orogen (~2.0–1.9 billion years old) in the northeastern part of the Fennoscandian Shield and contains iron–titanium–vanadium and nickel–copper mineralization with platinum group elements (PGEs). The controversial geological position of the complex within the mafic granulites of the Kolvitsa mélange (pre-, syn- or post-orogenic) is clarified by Sm-Nd isotopic dating of the rocks and mineralization. The Sm-Nd age of the barren clinopyroxenites that dominate the complex is 1858 ± 34 Ma (εNd(T) = −1.5) and is interpreted as the time of its emplacement as evidenced by a sample from the largest intrusion, named Zhelezny. This age is younger than that of the peak of granulite metamorphism in the host rocks (1925–1915 Ma) and coincides within error with the age of rutile from granulites (1880–1870 Ma), indicating the time at which cooling to 450 °C occurs. Emplacement in the cooled rocks is confirmed by the detection of quenching zones in clinopyroxenites around granulite xenoliths. Magnetite ores, as well as mineralized pyroxenites with sulfide disseminations, are formed during a late stage of the complex development, as suggested by active assimilation of granulite xenoliths by these rocks. The isotopic age of mineralized pyroxenites enriched in PGEs is 1832 ± 35 Ma (εNd(T) = –2.0), while the age of magnetite ores is 1823 ± 19 Ma (εNd(T) = –2.5). Thus, the obtained isotopic data indicate that the emplacement of the Porya Guba complex and probably other small mafic–ultramafic intrusions in the Kolvitsa mélange granulites took place after the end of the Lapland–Kola collision. Full article
Show Figures

Figure 1

23 pages, 103115 KB  
Article
Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean)
by Igor S. Peretyazhko, Elena A. Savina and Irina A. Pulyaeva
Geosciences 2024, 14(10), 252; https://doi.org/10.3390/geosciences14100252 - 25 Sep 2024
Cited by 3 | Viewed by 1783
Abstract
New data obtained from core samples of two boreholes and dredged samples from the Alba Guyot in the Magellan Seamount Trail (MST), Western Pacific, including the 40Ar/39Ar age determinations of basanite, and the mineralogy of basanite, tuff, tuffite, mantle-derived inclusions [...] Read more.
New data obtained from core samples of two boreholes and dredged samples from the Alba Guyot in the Magellan Seamount Trail (MST), Western Pacific, including the 40Ar/39Ar age determinations of basanite, and the mineralogy of basanite, tuff, tuffite, mantle-derived inclusions in basanite and tuff (lherzolite xenolith and Ol, Cpx, and Opx xenocrysts), and calcareous nannofossil biostratigraphy, have implications for the guyot′s development and history. Volcanic units in the upper part of the Alba Guyot main edifice and its Oma Vlinder satellite, at sea depths between 3600 and 2200 m, were deposited during the Cretaceous 112 to 86 Ma interval. In the following ~60 myr, the Alba Guyot became partly submerged and denuded with the formation of a flat summit platform while the respective fragment of the Pacific Plate was moving to the Northern Hemisphere. Volcanic activity in the northeastern part of the guyot summit platform was rejuvenated in the Miocene (24–15 Ma) and produced onshore basanitic volcanoes and layers of tuff in subaerial and tuffite in shallow-water near-shore conditions. In the Middle-Late Miocene (10–6 Ma), after the guyot had submerged, carbonates containing calcareous nannofossils were deposited on the porous surfaces of tuff and tuffite. Precipitation of the Fe-Mn crust (Unit III) recommenced during the Pliocene–Pleistocene (<1.8 Ma) when the guyot summit reached favorable sea depths. The location of the MST guyots in the northwestern segment of the Pacific Plate near the Mariana Trench, along with the Miocene age and alkali-basaltic signatures of basanite, provide first evidence for petit-spot volcanism on the Alba Guyot. This inference agrees with the geochemistry of Cenozoic petit-spot basaltic rocks from the Pacific and Miocene basanite on the Alba Guyot. Petit-spot volcanics presumably originated from alkali-basaltic melts produced by decompression partial melting of carbonatized peridotite in the metasomatized oceanic lithosphere at the Lithosphere–Asthenosphere Boundary level. The numerous volcanic cones with elevations of up to 750 m high and 5.1 km in basal diameter, discovered on the Alba summit platform, provide the first evidence of voluminous Miocene petit-spot basanitic volcanism upon the Cretaceous guyots and seamounts of the Pacific. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

1 pages, 142 KB  
Correction
Correction: Leeman et al. U-Pb LA-ICP-MS Zircon Dating of Crustal Xenoliths: Evidence of the Archean Lithosphere Beneath the Snake River Plain. Minerals 2024, 14, 578
by William P. Leeman, Jeffrey D. Vervoort and S. Andrew DuFrane
Minerals 2024, 14(9), 886; https://doi.org/10.3390/min14090886 - 30 Aug 2024
Viewed by 652
Abstract
There were three errors in the original publication [...] Full article
19 pages, 7801 KB  
Article
Gemological and Chemical Characterization of Gem-Grade Peridot from Yiqisong, Jilin Province
by Jina Li, Yi Zhao and Bo Xu
Crystals 2024, 14(8), 689; https://doi.org/10.3390/cryst14080689 - 27 Jul 2024
Viewed by 3005
Abstract
Peridot has a long history and is deeply loved by people for its unique olive-green color. The Yiqisong peridot deposit in Jilin Province is a newly discovered peridot deposit that still deserves systematic research. In this study, gemological and chemical analyses of thirty-three [...] Read more.
Peridot has a long history and is deeply loved by people for its unique olive-green color. The Yiqisong peridot deposit in Jilin Province is a newly discovered peridot deposit that still deserves systematic research. In this study, gemological and chemical analyses of thirty-three Yiqisong peridot samples were carried out to investigate the gemological characteristics, as well as the mantle properties and formation conditions of the Yiqisong. In addition, we identified gemological differences in peridot between Yiqisong, Tanzania, and Arizona. The Yiqisong peridot samples have typical peridot gemological characteristics. The UV–visible spectrum indicated that Fe is the chromogenic element. The infrared spectra and Raman spectra of different samples are consistent, which indicates that the Yiqisong peridot belongs to forsterite. The contents of Ni and V in Yiqisong peridot are generally low, distinguishing it from peridot found in Tanzania and Arizona. The major and trace elements of samples show that the Yiqisong peridot is derived from the spinel lherzolite xenoliths with the P–T formation conditions of 813–1087 °C and 21–22 kbar. The Yisqisong peridot samples have relatively high Fo values (up to 91.6), supporting their origin from a moderate refractory lithosphere mantle. Therefore, this study provides gemological, mineralogical, and chemical evidence that fills the research gap in peridot deposit studies and lays the foundation for follow-up investigations of gem-grade peridot deposits. Full article
(This article belongs to the Special Issue The Progress of In-Situ Study of Mineralogy and Gemmology)
Show Figures

Figure 1

11 pages, 1033 KB  
Article
U-Pb LA-ICP-MS Zircon Dating of Crustal Xenoliths: Evidence of the Archean Lithosphere Beneath the Snake River Plain
by William P. Leeman, Jeffrey D. Vervoort and S. Andrew DuFrane
Minerals 2024, 14(6), 578; https://doi.org/10.3390/min14060578 - 30 May 2024
Cited by 2 | Viewed by 1821 | Correction
Abstract
New U-Pb zircon ages are reported for granulite facies crustal xenoliths brought to the surface by mafic lavas in the Snake River Plain. All samples yield Meso-to-Neoarchean ages (2.4–3.6 Ga) that significantly expand the known extent of the Archean Wyoming Craton at least [...] Read more.
New U-Pb zircon ages are reported for granulite facies crustal xenoliths brought to the surface by mafic lavas in the Snake River Plain. All samples yield Meso-to-Neoarchean ages (2.4–3.6 Ga) that significantly expand the known extent of the Archean Wyoming Craton at least as far west as the west-central Snake River Plain. Most zircon populations indicate multiple growth episodes with complexity increasing eastward, but they bear no record of major Phanerozoic magmatic episodes in the region. To extrapolate this work further west to the inferred craton boundary, zircons from southwestern Idaho batholith granodiorites were also analyzed. Although most batholith zircons record Cretaceous formation ages, all samples have zircons with inherited cores—with some recording Proterozoic ages (approaching 2 Ga). These data enhance our perspectives regarding lithosphere architecture beneath southern Idaho and adjacent areas and its possible influence on Cenozoic magmatism associated with the Snake River Plain–Yellowstone “melting anomaly”. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop