Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = workspace monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7611 KB  
Article
4D BIM-Based Enriched Voxel Map for UAV Path Planning in Dynamic Construction Environments
by Ashkan Golpour, Moslem Sheikhkhoshkar, Mostafa Khanzadi, Morteza Rahbar and Saeed Banihashemi
Systems 2025, 13(10), 917; https://doi.org/10.3390/systems13100917 - 18 Oct 2025
Viewed by 263
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly integral to construction site management, supporting monitoring, inspection, and data collection tasks. Effective UAV path planning is essential for maximizing operational efficiency, particularly in complex and dynamic construction environments. While previous BIM-based approaches have explored representation models [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly integral to construction site management, supporting monitoring, inspection, and data collection tasks. Effective UAV path planning is essential for maximizing operational efficiency, particularly in complex and dynamic construction environments. While previous BIM-based approaches have explored representation models such as space graphs, grid patterns, and voxel models, each has limitations. Space graphs, though common, rely on predefined spatial spaces, making them less suitable for projects still under construction. Voxel-based methods, considered well-suited for 3D indoor navigation, suffer from three key challenges: (1) a disconnect between the BIM and voxel models, limiting data integration; (2) the computational cost and time required for voxelization, hindering real-time application; and (3) inadequate support for 4D BIM integration during active construction phases. This research introduces a novel framework that bridges the BIM–voxel gap via an enriched voxel map, eliminates the need for repeated voxelization, and incorporates 4D BIM and additional model data such as defined workspaces and safety buffers around fragile components. The framework’s effectiveness is demonstrated through path planning simulations on BIM models from two real-world construction projects under varying scenarios. Results indicate that the enriched voxel map successfully creates a connection between BIM model and voxel model, while covering every timestamp of the project and element attributes during path planning without requiring additional voxel map creation. Full article
Show Figures

Figure 1

22 pages, 4434 KB  
Article
Assessing Lighting Quality and Occupational Outcomes in Intensive Care Units: A Case Study from the Democratic Republic of Congo
by Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Nsenda Lukumwena, Hicham Mastouri and Manuel Gameiro da Silva
Int. J. Environ. Res. Public Health 2025, 22(10), 1511; https://doi.org/10.3390/ijerph22101511 - 1 Oct 2025
Viewed by 612
Abstract
This study presents a comprehensive assessment of lighting conditions in the Intensive Care Units (ICUs) of two major hospitals in the Democratic Republic of Congo (DRC): Hospital du Cinquantenaire in Kinshasa and Jason Sendwe Hospital in Lubumbashi. A mixed-methods approach was employed, integrating [...] Read more.
This study presents a comprehensive assessment of lighting conditions in the Intensive Care Units (ICUs) of two major hospitals in the Democratic Republic of Congo (DRC): Hospital du Cinquantenaire in Kinshasa and Jason Sendwe Hospital in Lubumbashi. A mixed-methods approach was employed, integrating continuous illuminance monitoring with structured staff surveys to evaluate visual comfort in accordance with the EN 12464-1 standard for indoor workplaces. Objective measurements revealed that more than 52.2% of the evaluated ICU workspaces failed to meet the recommended minimum illuminance level of 300 lux. Subjective responses from healthcare professionals indicated that poor lighting significantly reduced job satisfaction by 40%, lowered self-rated task performance by 30%, decreased visual comfort scores from 4.1 to 2.6 (on a 1–5 scale), and increased the prevalence of well-being symptoms (eye fatigue, headaches) by 25–35%. Frequent complaints included eye strain, glare, and discomfort with posture, with these issues often exacerbated during the rainy season due to reduced natural daylight. The study highlights critical deficiencies in current lighting infrastructure and emphasizes the need for urgent improvements in clinical environments. Moreover, inconsistent energy supply to these healthcare settings also impacts the assurance of visual comfort. To address these shortcomings, the study recommends transitioning to energy-efficient LED lighting, enhancing access to natural light, incorporating circadian rhythm-based lighting systems, enabling individual lighting control at workstations, and ensuring a consistent power supply via the integration of solar inverters to the grid supply. These interventions are essential not only for improving healthcare staff performance and safety but also for supporting better patient outcomes. The findings offer actionable insights for hospital administrators and policymakers in the DRC and similar low-resource settings seeking to enhance environmental quality in critical care facilities. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

32 pages, 10402 KB  
Article
Merging Visible Light Communications and Smart Lighting: A Prototype with Integrated Dimming for Energy-Efficient Indoor Environments and Beyond
by Cătălin Beguni, Eduard Zadobrischi and Alin-Mihai Căilean
Sensors 2025, 25(19), 6046; https://doi.org/10.3390/s25196046 - 1 Oct 2025
Viewed by 396
Abstract
This article proposes an improved Visible Light Communication (VLC) solution that, besides the indoor lighting and data transfer, offers an energy-efficient alternative for modern workspaces. Unlike Light-Fidelity (LiFi), designed for high-speed data communication, VLC primarily targets applications where fast data rates are not [...] Read more.
This article proposes an improved Visible Light Communication (VLC) solution that, besides the indoor lighting and data transfer, offers an energy-efficient alternative for modern workspaces. Unlike Light-Fidelity (LiFi), designed for high-speed data communication, VLC primarily targets applications where fast data rates are not essential. The developed prototype ensures reliable communication under variable lighting conditions, addressing low-speed requirements such as test bench monitoring, occupancy detection, remote commands, logging or access control. Although the tested data rate was limited to 100 kb/s with a Bit Error Rate (BER) below 10−7, the key innovation is the light dimming dynamic adaptation. Therefore, the system self-adjusts the LED duty cycle between 10% and 90%, based on natural or artificial ambient light, to maintain a minimum illuminance of 300 lx at the workspace level. Additionally, this work includes a scalability analysis through simulations conducted in an office scenario with up to six users. The results show that the system can adjust the lighting level and maintain the connectivity according to users’ presence, significantly reducing energy consumption without compromising visual comfort or communication performance. With this light intensity regulation algorithm, the proposed solution demonstrates real potential for implementation in smart indoor environments focused on sustainability and connectivity. Full article
Show Figures

Figure 1

29 pages, 7962 KB  
Article
Design and Validation of a Compact, Low-Cost Sensor System for Real-Time Indoor Environmental Monitoring
by Vincenzo Di Leo, Alberto Speroni, Giulio Ferla and Juan Diego Blanco Cadena
Buildings 2025, 15(19), 3440; https://doi.org/10.3390/buildings15193440 - 23 Sep 2025
Viewed by 565
Abstract
The growing interest in smart buildings and the integration of IoT-based technologies is driving the development of new tools for monitoring and optimizing indoor environmental quality (IEQ). However, many existing solutions remain expensive, invasive and inflexible. This paper presents the design and validation [...] Read more.
The growing interest in smart buildings and the integration of IoT-based technologies is driving the development of new tools for monitoring and optimizing indoor environmental quality (IEQ). However, many existing solutions remain expensive, invasive and inflexible. This paper presents the design and validation of a compact, low-cost, and real-time sensor system, conceived for seamless integration into indoor environments. The system measures key parameters—including air temperature, relative humidity, illuminance, air quality, and sound pressure level—and is embeddable in standard office equipment with minimal impact. Leveraging 3D printing and open-source hardware/software, the proposed solution offers high affordability (approx. EUR 33), scalability, and potential for workspace retrofits. To assess the system’s performance and relevance, dynamic simulations were conducted to evaluate metrics such as the Mean Radiant Temperature (MRT) and illuminance in an open office layout. In addition, field tests with a functional prototype enabled model validation through on-site measured data. The results highlighted significant local discrepancies—up to 6.9 °C in MRT and 28 klx in illuminance—compared to average conditions, with direct implications for thermal and visual comfort. These findings demonstrate the system’s capacity to support high-resolution environmental monitoring within IoT-enabled buildings, offering a practical path toward the data-driven optimization of occupant comfort and energy efficiency. Full article
Show Figures

Figure 1

31 pages, 11649 KB  
Article
Development of Shunt Connection Communication and Bimanual Coordination-Based Smart Orchard Robot
by Bin Yan and Xiameng Li
Agronomy 2025, 15(8), 1801; https://doi.org/10.3390/agronomy15081801 - 25 Jul 2025
Viewed by 536
Abstract
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of [...] Read more.
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of a six-degree-of-freedom bimanual apple-harvesting robot. Leveraging the kinematic architecture of the AUBO-i5 manipulator, three spatial layout configurations for dual-arm systems were evaluated, culminating in the adoption of a “workspace-overlapping Type B” arrangement. A functional prototype of the bimanual apple-harvesting system was subsequently fabricated. The study further involved developing control architectures for two end-effector types: a compliant gripper and a vacuum-based suction mechanism, with corresponding operational protocols established. A networked communication framework for parallel arm coordination was implemented via Ethernet switching technology, enabling both independent and synchronized bimanual operation. Additionally, an intersystem communication protocol was formulated to integrate the robotic vision system with the dual-arm control architecture, establishing a modular parallel execution model between visual perception and motion control modules. A coordinated bimanual harvesting strategy was formulated, incorporating real-time trajectory and pose monitoring of the manipulators. Kinematic simulations were executed to validate the feasibility of this strategy. Field evaluations in modern Red Fuji apple orchards assessed multidimensional harvesting performance, revealing 85.6% and 80% success rates for the suction and gripper-based arms, respectively. Single-fruit retrieval averaged 7.5 s per arm, yielding an overall system efficiency of 3.75 s per fruit. These findings advance the technological foundation for intelligent apple-harvesting systems, offering methodologies for the evolution of precision agronomic automation. Full article
(This article belongs to the Special Issue Smart Farming: Advancing Techniques for High-Value Crops)
Show Figures

Figure 1

25 pages, 11175 KB  
Article
AI-Enabled Condition Monitoring Framework for Autonomous Pavement-Sweeping Robots
by Sathian Pookkuttath, Aung Kyaw Zin, Akhil Jayadeep, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2306; https://doi.org/10.3390/math13142306 - 18 Jul 2025
Viewed by 562
Abstract
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, [...] Read more.
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, and pose safety risks. This study introduces an AI-driven condition monitoring (CM) framework designed to detect terrain unevenness and slope gradients in real time, distinguishing between safe and unsafe conditions. As system vibration levels and energy consumption vary with terrain unevenness and slope gradients, vibration and current data are collected for five CM classes identified: safe, moderately safe terrain, moderately safe slope, unsafe terrain, and unsafe slope. A simple-structured one-dimensional convolutional neural network (1D CNN) model is developed for fast and accurate prediction of the safe to unsafe classes for real-time application. An in-house developed large-scale autonomous pavement-sweeping robot, PANTHERA 2.0, is used for data collection and real-time experiments. The training dataset is generated by extracting representative vibration and heterogeneous slope data using three types of interoceptive sensors mounted in different zones of the robot. These sensors complement each other to enable accurate class prediction. The dataset includes angular velocity data from an IMU, vibration acceleration data from three vibration sensors, and current consumption data from three current sensors attached to the key motors. A CM-map framework is developed for real-time monitoring of the robot by fusing the predicted anomalous classes onto a 3D occupancy map of the workspace. The performance of the trained CM framework is evaluated through offline and real-time field trials using statistical measurement metrics, achieving an average class prediction accuracy of 92% and 90.8%, respectively. This demonstrates that the proposed CM framework enables maintenance teams to take timely and appropriate actions, including the adoption of suitable maintenance strategies. Full article
Show Figures

Figure 1

28 pages, 5922 KB  
Article
Thoughtseeds: A Hierarchical and Agentic Framework for Investigating Thought Dynamics in Meditative States
by Prakash Chandra Kavi, Gorka Zamora-López, Daniel Ari Friedman and Gustavo Patow
Entropy 2025, 27(5), 459; https://doi.org/10.3390/e27050459 - 24 Apr 2025
Viewed by 1623
Abstract
The Thoughtseeds Framework introduces a novel computational approach to modeling thought dynamics in meditative states, conceptualizing thoughtseeds as dynamic attentional agents that integrate information. This hierarchical model, structured as nested Markov blankets, comprises three interconnected levels: (i) knowledge domains as information repositories, (ii) [...] Read more.
The Thoughtseeds Framework introduces a novel computational approach to modeling thought dynamics in meditative states, conceptualizing thoughtseeds as dynamic attentional agents that integrate information. This hierarchical model, structured as nested Markov blankets, comprises three interconnected levels: (i) knowledge domains as information repositories, (ii) the Thoughtseed Network where thoughtseeds compete, and (iii) meta-cognition regulating awareness. It simulates focused-attention Vipassana meditation via rule-based training informed by empirical neuroscience research on attentional stability and neural dynamics. Four states—breath_control, mind_wandering, meta_awareness, and redirect_breath—emerge organically from thoughtseed interactions, demonstrating self-organizing dynamics. Results indicate that experts sustain control dominance to reinforce focused attention, while novices exhibit frequent, prolonged mind_wandering episodes, reflecting beginner instability. Integrating Global Workspace Theory and the Intrinsic Ignition Framework, the model elucidates how thoughtseeds shape a unitary meditative experience through meta-awareness, balancing epistemic and pragmatic affordances via active inference. Synthesizing computational modeling with phenomenological insights, it provides an embodied perspective on cognitive state emergence and transitions, offering testable predictions about meditation skill development. The framework yields insights into attention regulation, meta-cognitive awareness, and meditation state emergence, establishing a versatile foundation for future research into diverse meditation practices (e.g., Open Monitoring, Non-Dual Awareness), cognitive development across the lifespan, and clinical applications in mindfulness-based interventions for attention disorders, advancing our understanding of the nature of mind and thought. Full article
(This article belongs to the Special Issue Integrated Information Theory and Consciousness II)
Show Figures

Figure 1

16 pages, 6589 KB  
Article
A System for Surgeon Fatigue Monitoring in Robotic Surgery
by Reenu Arikkat Paul and Abhilash Pandya
Robotics 2025, 14(4), 40; https://doi.org/10.3390/robotics14040040 - 31 Mar 2025
Cited by 1 | Viewed by 1466
Abstract
Surgeon fatigue during robotic surgery is an often-overlooked factor contributing to patient harm. This study presents the design, development, and testing of a real-time fatigue monitoring system aimed at enhancing safety in robotic surgery using the da Vinci surgical system. The system monitors [...] Read more.
Surgeon fatigue during robotic surgery is an often-overlooked factor contributing to patient harm. This study presents the design, development, and testing of a real-time fatigue monitoring system aimed at enhancing safety in robotic surgery using the da Vinci surgical system. The system monitors critical fatigue indicators, including instrument collisions, blink rate, and workspace utilization, delivering immediate feedback to surgeons to mitigate fatigue-induced errors. The system was verified with simulated fatigue scenarios, such as reduced blink rates, abrupt tool movements, and inefficient utilization of the surgical workspace. The verification testing showed that the system detected fatigue-related indicators and provided timely alerts. This research underscores the potential of integrating advanced real-time monitoring technologies into robotic-assisted surgical practice to improve safety and efficiency. By identifying early signs of fatigue, the system facilitates immediate interventions, potentially preventing surgical errors. Additionally, the data collected can inform proactive future scheduling strategies to address surgeon fatigue. While the system demonstrated promising performance in simulated environments, further validation through subject studies and clinical trials is essential to establish its efficacy in real-world surgical settings. Full article
(This article belongs to the Special Issue Development of Biomedical Robotics)
Show Figures

Figure 1

34 pages, 4668 KB  
Article
A User-Centric Smart Library System: IoT-Driven Environmental Monitoring and ML-Based Optimization with Future Fog–Cloud Architecture
by Sarkan Mammadov and Enver Kucukkulahli
Appl. Sci. 2025, 15(7), 3792; https://doi.org/10.3390/app15073792 - 30 Mar 2025
Viewed by 2183
Abstract
University libraries are essential academic spaces, yet existing smart systems often overlook user perception in environmental optimization. A key challenge is the lack of adaptive frameworks balancing objective sensor data with subjective user experience. This study introduces an Internet of Things (IoT)-powered framework [...] Read more.
University libraries are essential academic spaces, yet existing smart systems often overlook user perception in environmental optimization. A key challenge is the lack of adaptive frameworks balancing objective sensor data with subjective user experience. This study introduces an Internet of Things (IoT)-powered framework integrating real-time sensor data, image-based occupancy tracking, and user feedback to enhance study conditions via machine learning (ML). Unlike prior works, our system fuses objective measurements and subjective input for personalized assessment. Environmental factors—including air quality, sound, temperature, humidity, and lighting—were monitored using microcontrollers and image processing. User feedback was collected via surveys and incorporated into models trained using Logistic Regression, Decision Trees, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNNs), Extreme Gradient Boosting (XGBoost), and Naive Bayes. KNNs achieved the highest F1 score (99.04%), validating the hybrid approach. A user interface analyzes environmental factors, identifying primary contributors to suboptimal conditions. A scalable fog–cloud architecture distributes computation between edge devices (fog) and cloud servers, optimizing resource management. Beyond libraries, the framework extends to other smart workspaces. By integrating the IoT, ML, and user-driven optimization, this study presents an adaptive decision support system, transforming libraries into intelligent, user-responsive environments. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in the Internet of Things)
Show Figures

Figure 1

17 pages, 5755 KB  
Article
A Hybrid Architecture for Safe Human–Robot Industrial Tasks
by Gaetano Lettera, Daniele Costa and Massimo Callegari
Appl. Sci. 2025, 15(3), 1158; https://doi.org/10.3390/app15031158 - 24 Jan 2025
Cited by 3 | Viewed by 1905
Abstract
In the context of Industry 5.0, human–robot collaboration (HRC) is increasingly crucial for enabling safe and efficient operations in shared industrial workspaces. This study aims to implement a hybrid robotic architecture based on the Speed and Separation Monitoring (SSM) collaborative scenario defined in [...] Read more.
In the context of Industry 5.0, human–robot collaboration (HRC) is increasingly crucial for enabling safe and efficient operations in shared industrial workspaces. This study aims to implement a hybrid robotic architecture based on the Speed and Separation Monitoring (SSM) collaborative scenario defined in ISO/TS 15066. The system calculates the minimum protective separation distance between the robot and the operators and slows down or stops the robot according to the risk assessment computed in real time. Compared to existing solutions, the approach prevents collisions and maximizes workcell production by reducing the robot speed only when the calculated safety index indicates an imminent risk of collision. The proposed distributed software architecture utilizes the ROS2 framework, integrating three modules: (1) a fast and reliable human tracking module based on the OptiTrack system that considerably reduces latency times or false positives, (2) an intention estimation (IE) module, employing a linear Kalman filter (LKF) to predict the operator’s next position and velocity, thus considering the current scenario and not the worst case, and (3) a robot control module that computes the protective separation distance and assesses the safety index by measuring the Euclidean distance between operators and the robot. This module dynamically adjusts robot speed to maintain safety while minimizing unnecessary slowdowns, ensuring the efficiency of collaborative tasks. Experimental results demonstrate that the proposed system effectively balances safety and speed, optimizing overall performance in human–robot collaborative industrial environments, with significant improvements in productivity and reduced risk of accidents. Full article
Show Figures

Figure 1

13 pages, 1294 KB  
Proceeding Paper
IoT-Enabled Intelligent Health Care Screen System for Long-Time Screen Users
by Subramanian Vijayalakshmi, Joseph Alwin and Jayabal Lekha
Eng. Proc. 2024, 82(1), 96; https://doi.org/10.3390/ecsa-11-20364 - 25 Nov 2024
Viewed by 608
Abstract
With the rapid rise in technological advancements, health can be tracked and monitored in multiple ways. Tracking and monitoring healthcare gives the option to give precise interventions to people, enabling them to focus more on healthier lifestyles by minimising health issues concerning long [...] Read more.
With the rapid rise in technological advancements, health can be tracked and monitored in multiple ways. Tracking and monitoring healthcare gives the option to give precise interventions to people, enabling them to focus more on healthier lifestyles by minimising health issues concerning long screen time. Artificial Intelligence (AI) techniques like the Large Language Model (LLM) technology enable intelligent smart assistants to be used on mobile devices and in other cases. The proposed system uses the power of IoT and LLMs to create a virtual personal assistant for long-time screen users by monitoring their health parameters, with various sensors for the real-time monitoring of seating posture, heartbeat, stress levels, and the motion tracking of eye movements, etc., to constantly track, give necessary advice, and make sure that their vitals are as expected and within the safety parameters. The intelligent system combines the power of AI and Natural Language Processing (NLP) to build a virtual assistant embedded into the screens of mobile devices, laptops, desktops, and other screen devices, which employees across various workspaces use. The intelligent screen, with the integration of multiple sensors, tracks and monitors the users’ vitals along with various other necessary health parameters, and alerts them to take breaks, have water, and refresh, ensuring that the users stay healthy while using the system for work. These systems also suggest necessary exercises for the eyes, head, and other body parts. The proposed smart system is supported by user recognition to identify the current user and suggest advisory actions accordingly. The system also adapts and ensures that the users enjoy proper relaxation and focus when using the system, providing a flexible and personalised experience. The intelligent screen system monitors and improves the health of employees who have to work for a long time, thereby enhancing the productivity and concentration of employees in various organisations. Full article
Show Figures

Figure 1

24 pages, 10479 KB  
Article
Automatic Indoor Thermal Comfort Monitoring Based on BIM and IoT Technology
by Wenli Liang, Guofeng Qiang, Lei Fan, Haoyu Zhang, Zihao Ye and Shu Tang
Buildings 2024, 14(11), 3361; https://doi.org/10.3390/buildings14113361 - 23 Oct 2024
Cited by 4 | Viewed by 2796
Abstract
Building Information Modeling (BIM) and Internet of Thing (IoT) integration technologies can improve operational efficiency in the operational phase of construction projects. Currently, research on the integration of BIM and IoT has yet to ensure secure data transmission and lacks real-time data processing [...] Read more.
Building Information Modeling (BIM) and Internet of Thing (IoT) integration technologies can improve operational efficiency in the operational phase of construction projects. Currently, research on the integration of BIM and IoT has yet to ensure secure data transmission and lacks real-time data processing capabilities. This study builds a framework to collect and analyze BIM and IoT data in real time. The framework is verified to be effective through a case study in an office building. The monitoring system can automatically calculate the Predicted Mean Vote (PMV) value, upload and update real-time temperature and humidity data, and visualize thermal comfort through heat maps. The proposed integration approach offers building management strategies to enhance thermal comfort in office environments, fostering a more inclusive and accommodating workspace that acknowledges the diverse cultural backgrounds of occupants. Full article
(This article belongs to the Special Issue Sustainable and Smart Energy Systems in the Built Environment)
Show Figures

Figure 1

22 pages, 4999 KB  
Article
A Framework for Enhanced Human–Robot Collaboration during Disassembly Using Digital Twin and Virtual Reality
by Timon Hoebert, Stephan Seibel, Manuel Amersdorfer, Markus Vincze, Wilfried Lepuschitz and Munir Merdan
Robotics 2024, 13(7), 104; https://doi.org/10.3390/robotics13070104 - 12 Jul 2024
Cited by 4 | Viewed by 4816
Abstract
This paper presents a framework that integrates digital twin and virtual reality (VR) technologies to improve the efficiency and safety of human–robot collaborative systems in the disassembly domain. With the increasing complexity of the handling of end-of-life electronic products and as the related [...] Read more.
This paper presents a framework that integrates digital twin and virtual reality (VR) technologies to improve the efficiency and safety of human–robot collaborative systems in the disassembly domain. With the increasing complexity of the handling of end-of-life electronic products and as the related disassembly tasks are characterized by variabilities such as rust, deformation, and diverse part geometries, traditional industrial robots face significant challenges in this domain. These challenges require adaptable and flexible automation solutions that can work safely alongside human workers. We developed an architecture to address these challenges and support system configuration, training, and operational monitoring. Our framework incorporates a digital twin to provide a real-time virtual representation of the physical disassembly process, allowing for immediate feedback and dynamic adjustment of operations. In addition, VR is used to simulate and optimize the workspace layout, improve human–robot interaction, and facilitate safe and effective training scenarios without the need for physical prototypes. A unique case study is presented, where the collaborative system is specifically applied to the disassembly of antenna amplifiers, illustrating the potential of our comprehensive approach to facilitate engineering processes and enhance collaborative safety. Full article
(This article belongs to the Special Issue Digital Twin-Based Human–Robot Collaborative Systems)
Show Figures

Figure 1

18 pages, 3003 KB  
Article
Integrating Internet of Things (IoT) Approach to Post-Occupancy Evaluation (POE): An Experimental At-the-Moment Occupant Comfort Control System
by Eziaku Rasheed, Kris Wang, Ali Hashemi, Masoud Mahmoodi and Kajavathani Panchalingam
Buildings 2024, 14(7), 2095; https://doi.org/10.3390/buildings14072095 - 9 Jul 2024
Cited by 1 | Viewed by 2416
Abstract
This paper describes an empirical experiment of Internet of Things (IoT)’s integration in the Post-Occupancy Evaluation (POE) process. The experiment aimed to trial a novel IoT approach to enabling building user responsiveness to prevalent IEQ for individualised comfort. The purpose is to provide [...] Read more.
This paper describes an empirical experiment of Internet of Things (IoT)’s integration in the Post-Occupancy Evaluation (POE) process. The experiment aimed to trial a novel IoT approach to enabling building user responsiveness to prevalent IEQ for individualised comfort. The purpose is to provide a system that mitigates a common issue of centralised air conditioning that limits occupants’ control over their immediate environment. To achieve this, an IoT platform was developed with smart IEQ monitoring sensors and wearable devices and trialled with PhD researchers in a shared university workspace. The findings provided empirical evidence of IoT’s enhanced benefits to improving user control over their individual comfort and enabling positive energy behaviour in buildings. Specifically, the IoT system provided real-time insight into CO2 concentration data while enabling responsive occupant interaction with their immediate environment and at-the-moment mitigation actions. Outputs of the experiment showed that the perceptions of participants about the stuffiness of the air, productivity, and healthy environment were significantly better after taking the mitigation action compared to before. Also, we found a significant relationship between measured CO2 concentration readings and perceived air stuffiness (p = 0.004) and productivity (p = 0.006) and a non-significant relationship between CO2 concentration readings and perceived healthy environment (p = 0.058). Interestingly, we observed that irrespective of the similarities in recorded CO2 concentration readings being within acceptable ranges (632–712 ppm), the perception of air stuffiness significantly differed (p = 0.018) before and after the mitigation actions. The effectiveness of the developed IoT platform was evidenced as most of the participants found the process very easy to participate in with little interruptions to their work as little time was consumed. The results are useful in modifying approaches to building occupant comfort and energy behaviour in commercial and residential settings. Full article
(This article belongs to the Special Issue Energy Consumption and Environmental Comfort in Buildings)
Show Figures

Figure 1

25 pages, 6757 KB  
Article
Simulation-Based Optimization of Path Planning for Camera-Equipped UAVs That Considers the Location and Time of Construction Activities
by Yusheng Huang and Amin Hammad
Remote Sens. 2024, 16(13), 2445; https://doi.org/10.3390/rs16132445 - 3 Jul 2024
Cited by 1 | Viewed by 1962
Abstract
Automated progress monitoring of construction sites using cameras has been proposed in recent years. Although previous studies have tried to identify the most informative camera views according to 4D BIM to optimize installation plans, video collection using fixed or pan-tilt-zoom cameras is still [...] Read more.
Automated progress monitoring of construction sites using cameras has been proposed in recent years. Although previous studies have tried to identify the most informative camera views according to 4D BIM to optimize installation plans, video collection using fixed or pan-tilt-zoom cameras is still limited by their inability to adapt to the dynamic construction environment. Therefore, considerable attention has been paid to using camera-equipped unmanned aerial vehicles (CE-UAVs), which provide mobility for the camera, allowing it to fit its field of view automatically to the important parts of the construction site while avoiding occlusions. However, previous studies on optimizing video collection with CE-UAV are limited to the scanning of static objects on construction sites. Given the growing interest in construction activities, the existing methods are inadequate to meet the requirements for the collection of high-quality videos. In this study, the following requirements for and constraints on collecting construction-activity videos have been identified: (1) the FOV should be optimized to cover the areas of interest with the minimum possible occlusion; (2) the path of the UAV should be optimized to allow efficient data collection on multiple construction activities over a large construction site, considering the locations of activities at specific times; and (3) the data collection should consider the requirements for CV processes. Aiming to address these requirements and constraints, a method has been proposed to perform simulation-based optimization of path planning for CE-UAVs to allow automated and effective collection of videos of construction activities based on a detailed 4D simulation that includes a micro-schedule and the corresponding workspaces. This method can identify the most informative views of the workspaces and the optimal path for data capture. A case study was developed to demonstrate the feasibility of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop