Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = woody thickening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2571 KiB  
Article
Plasticity of Root Architecture and ROS–Auxin Regulation in Paeonia ostii Under Root-Zone Restriction
by Qiang Xing, Ruotong Zhao, Peng Zhou, Jun Qin, Heming Liu, Shuiyan Yu, Bin Zhao and Yonghong Hu
Plants 2025, 14(12), 1889; https://doi.org/10.3390/plants14121889 - 19 Jun 2025
Viewed by 425
Abstract
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis [...] Read more.
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis of biomass allocation and root architectural responses to the root-zone restriction (RZR) in P. ostii, comparing three container volumes (8.5, 17, and 34 L). While the total biomass increased with root zone volume (e.g., shoot biomass rose from 9.30 g to 59.94 g), RZR induced a 44.8% increase in root-to-shoot ratio, indicating carbon reallocation to enhance belowground resource acquisition. The principal component analysis identified root biomass, volume, and surface area as key plasticity drivers. Optimal root efficiency occurred at 26.09–28.23 L, where root length and tip/fork numbers peaked. Mechanistically, RZR elevated superoxide dismutase (SOD) activity by 49.74% but reduced catalase (CAT) by 74.24%, disrupting H2O2 homeostasis. Concurrently, auxin transporter genes (PIN1, AUX1) were upregulated, promoting root elongation and lateral branching through auxin redistribution. We hypothesize that ROS–auxin crosstalk mediates architectural reconfiguration to mitigate spatial stress, with thickened roots enhancing structural stability in restricted environments. The study underscores the need to optimize root zone volume in woody species cultivation, providing thresholds (e.g., >28 L for mature plants) to balance biomass yield and physiological costs in horticultural management. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

20 pages, 5390 KiB  
Article
A Genome-Wide Characterization of the Xyloglucan Endotransglucosylase/Hydrolase Family Genes and Their Functions in the Shell Formation of Pecan
by Mengyun Wen, Zekun Zhou, Jing Sun, Fanqing Meng, Xueliang Xi, Aizhong Liu and Anmin Yu
Horticulturae 2025, 11(6), 609; https://doi.org/10.3390/horticulturae11060609 - 29 May 2025
Viewed by 456
Abstract
Xyloglucan endotransglucosylases/hydrolases (XTHs) are key enzymes involved in cell wall remodeling by modifying xyloglucan–cellulose networks, thereby influencing plant growth, development, and secondary cell wall formation. While the roles of XTHs have been extensively studied in primary and secondary growth, their functions in the [...] Read more.
Xyloglucan endotransglucosylases/hydrolases (XTHs) are key enzymes involved in cell wall remodeling by modifying xyloglucan–cellulose networks, thereby influencing plant growth, development, and secondary cell wall formation. While the roles of XTHs have been extensively studied in primary and secondary growth, their functions in the formation and thickening of lignified nut shells remain largely unknown. Pecan (Carya illinoinensis), an economically important nut crop, develops a hard, lignified shell that protects the seed during fruit maturation. In this study, we performed a comprehensive genome-wide characterization of the XTH gene family in pecan and identified 38 XTH genes, which were categorized into four distinct phylogenetic groups. Structural analyses of the deduced proteins revealed conserved catalytic residues alongside divergent loop regions, suggesting functional diversification. Expression profiling across various tissues and among pecan cultivars with contrasting shell phenotypes indicated that specific XTH genes may play critical roles in shell structure formation. Moreover, gene regulatory networks in thin- and thick-shelled pecans provided new insights into the molecular mechanisms underlying shell development and thickness regulation. These findings lay a foundation for future genetic improvement strategies targeting nut shell traits in woody perennials. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

15 pages, 1387 KiB  
Article
Fire, Rain and CO2: Potential Drivers of Tropical Savanna Vegetation Change, with Implications for Carbon Crediting
by Greg Barber, Andrew Edwards and Kerstin Zander
Fire 2023, 6(12), 465; https://doi.org/10.3390/fire6120465 - 7 Dec 2023
Cited by 4 | Viewed by 2731
Abstract
A global trend of increasing tree cover in savannas has been observed and ascribed to a range of possible causes, including CO2 levels, changing rainfall and fire frequency. We tested these explanations in the Australian tropical savanna, taking 96 savanna ‘cool burning’ [...] Read more.
A global trend of increasing tree cover in savannas has been observed and ascribed to a range of possible causes, including CO2 levels, changing rainfall and fire frequency. We tested these explanations in the Australian tropical savanna, taking 96 savanna ‘cool burning’ projects from Australia’s emissions offset scheme as case studies. We obtained readings of tree cover and explanatory variables from published remote sensing or spatial data sources. These were analysed using time-series linear regression to obtain coefficients for the influence of severe fire occurrence, annual rainfall and prior percentage tree cover. Although statistically significant coefficients for the key variables were found in only half (severe fire) or one quarter (rainfall) of the individual project models, when comparing all the model coefficients across the rainfall gradient, ecologically coherent explanations emerge. No residual trend was observed, suggesting rising CO2 levels have not influenced tree cover over the study period. Our approach models tree cover change by separating ecological drivers from human-controlled factors such as fire management. This is an essential design feature of national emissions inventories and emissions offsets programs, where crediting must be additional to the expected baseline, and arise from human activity. Full article
(This article belongs to the Special Issue Climate and Human-Driven Impacts on Tropical Rainforests)
Show Figures

Figure 1

15 pages, 4593 KiB  
Article
Biology and Ultrastructural Characterization of Grapevine Badnavirus 1 and Grapevine Virus G
by Martin Jagunić, Angelo De Stradis, Darko Preiner, Pierfederico La Notte, Maher Al Rwahnih, Rodrigo P. P. Almeida and Darko Vončina
Viruses 2022, 14(12), 2695; https://doi.org/10.3390/v14122695 - 30 Nov 2022
Cited by 6 | Viewed by 2709
Abstract
The biological characteristics of grapevine viruses, such as their transmission and host range, are important for the adoption of successful prophylaxis strategies. The aim of this study was to investigate the traits of two newly described grapevine viruses widely distributed in Croatia, grapevine [...] Read more.
The biological characteristics of grapevine viruses, such as their transmission and host range, are important for the adoption of successful prophylaxis strategies. The aim of this study was to investigate the traits of two newly described grapevine viruses widely distributed in Croatia, grapevine badnavirus 1 (GBV-1) and grapevine virus G (GVG). The vine mealybug (Planoccocus ficus) proved to be a vector of GBV-1 and GVG capable of vine-to-vine transmission with overall experimental transmission rates of 61% and 14.6%, respectively. Transmission was also demonstrated by grafting, with an overall transmission rate of 53.8% for GBV-1 and 100% for GVG, as well as by green grafting using the T-budding technique. Symptoms of GBV-1 and GVG were not observed on the woody cylinders of the indicators LN 33, Kober 5BB, 110 Richter and cvs. Chardonnay and Cabernet Sauvignon. Seed transmission and mechanical transmission were not confirmed. Electron microscopy revealed accumulation of GBV-1 particles and viroplasms in the cytoplasm, but no alternations of the cell structure. Infection with GVG revealed the proliferation of tonoplast-associated vesicles inside phloem cells and cell wall thickening. Full article
(This article belongs to the Special Issue A Tribute to Giovanni P. Martelli)
Show Figures

Figure 1

14 pages, 5838 KiB  
Article
PagGRF11 Overexpression Promotes Stem Development and Dwarfing in Populus
by Yanting Tian, Ye Zhao, Yuhan Sun, Yousry A. El-Kassaby, Guoyong Song, Yueqi Mi, Juan Han and Yun Li
Int. J. Mol. Sci. 2022, 23(14), 7858; https://doi.org/10.3390/ijms23147858 - 16 Jul 2022
Cited by 6 | Viewed by 2528
Abstract
Poplar is not only an important woody plant, but also a model species for molecular plant studies. We identified PagGRF11 (pAxG07Gg0005700), a homolog of the Arabidopsis AtGRF1 (AT4G37740) and AtGRF2 (AT2G22840) gene. We transformed the poplar clone “84K” with PagGRF11, and [...] Read more.
Poplar is not only an important woody plant, but also a model species for molecular plant studies. We identified PagGRF11 (pAxG07Gg0005700), a homolog of the Arabidopsis AtGRF1 (AT4G37740) and AtGRF2 (AT2G22840) gene. We transformed the poplar clone “84K” with PagGRF11, and the transgenic overexpressed plants (PagGRF11-OE) showed plant height reduction (dwarfing), stem diameter increase, internode shortening, and larger leaf area. The Arabidopsis overexpression line grf-oe (Overexpression of PagGRF11 in Arabidopsis), mutant line atgrf (a loss-of-function mutant of the AtGRF1 gene of Arabidopsis thaliana), and mutant trans-complementary line atgrf+oe (overexpression of PagGRF11 in mutant plants (atgrf)) also showed different leaf size phenotypes. Further, tissue sections revealed that increased xylem production was the main cause of stem thickening. Transcriptome differential expression analysis of PagGRF11 overexpressed and control plants showed that PagGRF11 promoted CCCH39(C3H39) expression. The expression profile of CCCH39 in different tissues showed that it was highly expressed in xylem. Yeast single hybrid and instantaneous double luciferase assay results showed that PagGRF11 directly transcribed and activated CCCH39 expression through interaction with cis-acting element GARE (TCTGTTG), thus promoting xylem development. This is the first finding that GRF positively regulates xylem development through CCCH39 expression activation and further suggests that PagGRF11 is a potential target for increasing wood yield. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 11886 KiB  
Article
Landscape Function Analysis: Responses to Bush Encroachment in a Semi-Arid Savanna in the Molopo Region, South Africa
by Klaus Kellner, Jaco Fouché, David Tongway, Ricart Boneschans, Helga van Coller and Nanette van Staden
Sustainability 2022, 14(14), 8616; https://doi.org/10.3390/su14148616 - 14 Jul 2022
Cited by 6 | Viewed by 4066
Abstract
Various factors lead to increased woody species density, biomass and cover (so-called ‘bush encroachment’) that influence ecosystem functioning and services in semi-arid rangelands. Ultimately, bush encroachment has adverse effects on human livelihoods. An increased understanding of ecosystem functioning in bush-encroached rangelands could contribute [...] Read more.
Various factors lead to increased woody species density, biomass and cover (so-called ‘bush encroachment’) that influence ecosystem functioning and services in semi-arid rangelands. Ultimately, bush encroachment has adverse effects on human livelihoods. An increased understanding of ecosystem functioning in bush-encroached rangelands could contribute to improved management, conservation and restoration. This study, therefore, aimed to determine landscape functioning of bush-encroached and controlled savanna rangelands in the Molopo region, South Africa, by using the landscape function analysis (LFA) monitoring procedure. Mixed models revealed no significant differences based on LFA indices between bush-thickened and bush-controlled sites due to drought conditions that prevailed while the survey was carried out. Stability, which revealed the largest LFA contributing factors, always had the highest numerical value for sites that were still bush-encroached. Soil analyses revealed that grass litter patches from aeroplane-controlled sites had the highest average nutrient levels. As expected, high percentages of carbon and calcium levels were found in bush-encroached shrub litter patches. Bush-encroached landscapes are fully functional areas, especially under drought conditions. Long-term research is required to determine the effects successful management has on ecosystem functioning, especially during periods of higher rainfall. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

12 pages, 2059 KiB  
Article
Effects of Increasing Fire Frequency on Conservation Values in Eucalyptus Grassy Woodland in the Process of Invasion by Allocasuarina verticillata
by Jamie B. Kirkpatrick and Ian Jenkinson
Fire 2022, 5(2), 31; https://doi.org/10.3390/fire5020031 - 25 Feb 2022
Cited by 4 | Viewed by 4193
Abstract
Woody thickening is a widespread phenomenon in the grassy woodlands of the world, often with deleterious effects on nature conservation values. We aimed to determine whether increasing the frequency of planned fire prevented woody thickening and improved conservation values in a Eucalyptus viminalis [...] Read more.
Woody thickening is a widespread phenomenon in the grassy woodlands of the world, often with deleterious effects on nature conservation values. We aimed to determine whether increasing the frequency of planned fire prevented woody thickening and improved conservation values in a Eucalyptus viminalis grassy woodland in the process of invasion by Allocasuarina verticillata (henceforth Allocasuarina) in Hobart, Tasmania, Australia. We used a before–after control intervention design. Ten plots from which detailed vegetation data were collected in 2018 (before the burns), 2019 (between burns), 2020 (between burns) and 2021 (after the burns) were randomly located in each of four blocks. Two of the blocks were burned in both 2018 and 2021. One block was burned only in 2021, and another was not burned at all. Mechanical thinning of Allocasuarina took place in 2021 in six plots in one unburned block and in three twice-burned plots. The fires were low intensity and patchy, reflecting the reality of planned burns in this environment. Thus, there were unburned plots mixed with burned plots in each of the three burned blocks. We compared changes in vegetation and cover attributes between a preburn survey in 2018 and a postburn survey in 2021, between five fire history/thinning classes (unburned, no thinning; unburned, thinning; twice burned; burned in 2018 only; burned in 2021 only). Fires in both 2018 and 2021 resulted in lower litter cover and higher exotic species richness than one fire in 2021. Exotic species richness increase between 2018 and 2021 was greater after fires in 2018 and 2021 than after a fire in 2021 alone. Exotic species richness was lowest six years after fire and highest one to three years after fire. The basal area of Allocasuarina was, counter-intuitively, less reduced by two fires in four years than by one. Mechanical thinning reduced shrub layer cover, which largely consisted of small trees, but did not affect basal area. Our data suggested that grass cover increased until five years after a fire, declining back to a low level by eight years. The implications of the results for conservation management are that the mechanical removal of young Allocasuarina may be successful in preventing its thickening and that burning at a five-year interval is likely to best maintain understorey conservation values. The counter-intuitive results related to Allocasuarina basal area emphasise the importance of understanding cumulative effects of fire regimes on fuel cycles and the consequent effects on tree mortality. Full article
Show Figures

Figure 1

17 pages, 4198 KiB  
Article
Uncovering miRNA-mRNA Regulatory Modules in Developing Xylem of Pinus massoniana via Small RNA and Degradome Sequencing
by Tengfei Shen, Mengxuan Xu, Haoran Qi, Yuanheng Feng, Zhangqi Yang and Meng Xu
Int. J. Mol. Sci. 2021, 22(18), 10154; https://doi.org/10.3390/ijms221810154 - 21 Sep 2021
Cited by 17 | Viewed by 3206
Abstract
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found [...] Read more.
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs in the Era of Biological Big Data)
Show Figures

Figure 1

27 pages, 4795 KiB  
Article
Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient
by Dominik Florian Stangler, Hans-Peter Kahle, Martin Raden, Elena Larysch, Thomas Seifert and Heinrich Spiecker
Forests 2021, 12(3), 274; https://doi.org/10.3390/f12030274 - 27 Feb 2021
Cited by 19 | Viewed by 3370
Abstract
Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary [...] Read more.
Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary methods for investigating intra-annual wood formation dynamics to gain a better understanding of the endogenous and environmental control of tree-ring development and the impact of anticipated climatic changes on forest growth and productivity. Materials and Methods: We performed an integrated analysis of xylogenesis observations, quantitative wood anatomy, and point-dendrometer measurements of Norway spruce (Picea abies (L.) Karst.) trees growing along an elevational gradient in South-western Germany during a growing season with an anomalous dry June followed by an extraordinary humid July. Results: Strong endogenous control of tree-ring formation was suggested at the highest elevation where the decreasing rates of tracheid enlargement and wall thickening during drought were effectively compensated by increased cell differentiation duration. A shift to environmental control of tree-ring formation during drought was indicated at the lowest elevation, where we detected absence of compensatory mechanisms, eventually stimulating the formation of an intra-annual density fluctuation. Transient drought stress in June also led to bimodal patterns and decreasing daily rates of stem radial displacement, radial xylem growth, and woody biomass production. Comparing xylogenesis data with dendrometer measurements showed ambivalent results and it appears that, with decreasing daily rates of radial xylem growth, the signal-to-noise ratio in dendrometer time series between growth and fluctuations of tree water status becomes increasingly detrimental. Conclusions: Our study provides new perspectives into the complex interplay between rates and durations of tracheid development during dry-wet cycles, and, thereby, contributes to an improved and mechanistic understanding of the environmental control of wood formation processes, leading to the formation of intra-annual density fluctuations in tree-rings of Norway spruce. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

22 pages, 10287 KiB  
Article
Functional Phenology of a Texas Post Oak Savanna from a CHRIS PROBA Time Series
by Michael J. Hill, Andrew Millington, Rebecca Lemons and Cherie New
Remote Sens. 2019, 11(20), 2388; https://doi.org/10.3390/rs11202388 - 15 Oct 2019
Cited by 5 | Viewed by 3899
Abstract
Remnant midwestern oak savannas in the USA have been altered by fire suppression and the encroachment of woody evergreen trees and shrubs. The Gus Engeling Wildlife Management Area (GEWMA) near Palestine, Texas represents a relatively intact southern example of thickening and evergreen encroachment [...] Read more.
Remnant midwestern oak savannas in the USA have been altered by fire suppression and the encroachment of woody evergreen trees and shrubs. The Gus Engeling Wildlife Management Area (GEWMA) near Palestine, Texas represents a relatively intact southern example of thickening and evergreen encroachment in oak savannas. In this study, 18 images from the CHRIS/PROBA (Compact High-Resolution Imaging Spectrometer/Project for On-Board Autonomy) sensor were acquired between June 2009 and October 2010 and used to explore variation in canopy dynamics among deciduous and evergreen trees and shrubs, and savanna grassland in seasonal leaf-on and leaf-off conditions. Nadir CHRIS images from the 11 useable dates were processed to surface reflectance and a selection of vegetation indices (VIs) sensitive to pigments, photosynthetic efficiency, and canopy water content were calculated. An analysis of temporal VI phenology was undertaken using a fishnet polygon at 90 m resolution incorporating tree densities from a classified aerial photo and soil type polygons. The results showed that the major differences in spectral phenology were associated with deciduous tree density, the density of evergreen trees and shrubs—especially during deciduous leaf-off periods—broad vegetation types, and soil type interactions with elevation. The VIs were sensitive to high densities of evergreens during the leaf-off period and indicative of a photosynthetic advantage over deciduous trees. The largest differences in VI profiles were associated with high and low tree density, and soil types with the lowest and highest available soil water. The study showed how time series of hyperspectral data could be used to monitor the relative abundance and vigor of desirable and less desirable species in conservation lands. Full article
(This article belongs to the Special Issue Remote Sensing of Savannas and Woodlands)
Show Figures

Graphical abstract

21 pages, 4330 KiB  
Article
Fire-Driven Decline of Endemic Allosyncarpia Monsoon Rainforests in Northern Australia
by Jeremy Freeman, Andrew C. Edwards and Jeremy Russell-Smith
Forests 2017, 8(12), 481; https://doi.org/10.3390/f8120481 - 5 Dec 2017
Cited by 5 | Viewed by 5306
Abstract
Although contemporary fire regimes in fire-prone Australian savannas are recognised as having major impacts on an array of biodiversity and environmental values, a number of studies have observed significant monsoon rainforest expansion in recent decades. Here we assess the status of a locally [...] Read more.
Although contemporary fire regimes in fire-prone Australian savannas are recognised as having major impacts on an array of biodiversity and environmental values, a number of studies have observed significant monsoon rainforest expansion in recent decades. Here we assess the status of a locally extensive endemic monsoon rainforest type, dominated by Allosyncarpia ternata (Myrtaceae), restricted to sandstone terrain including in the World Heritage property, Kakadu National Park. We undertook assessments of: (1) geographic correlates of Allosyncarpia forest distribution; (2) change in canopy cover at 40 representative forest patches at topographically exposed sites with reference to a 60-year aerial photo and fine-scale image archive, and fire mapping data; and (3) structural characteristics associated with sites exhibiting stable, contracting, and increasing canopy cover. Mean canopy cover at sampled forest patches declined by 9.5% over the study period. Most canopy loss occurred at the most fire-susceptible patches. Assessment of structural characteristics at sampled sites illustrated that canopy expansion represented vegetative recovery rather than expansion de novo. The study (1) confirms the vulnerability of exposed margins of this forest type to fire incursions; (2) illustrates the magnitude of, and describes solutions for addressing, the regional conservation management challenge; and (3) serves as a reminder that, in savanna environments, severe fire regimes can substantially outweigh the woody growth-enhancing effects of other regional (e.g., increased rainfall) and global-scale (e.g., atmospheric CO2 fertilisation) drivers. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop