Effects of Increasing Fire Frequency on Conservation Values in Eucalyptus Grassy Woodland in the Process of Invasion by Allocasuarina verticillata
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Experimental Design and Site Selection
2.3. Field Data Collection
2.4. Statistical Methods
3. Results
3.1. The Prefire Sampling Environment
3.2. Intensity and Coverage of Burns and Tree Thinning
3.3. Effects of Burn History on Species Richness, Basal Area and Cover Types
4. Discussion
5. Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkpatrick, J.B.; Gilfedder, L.; Fensham, R. City Parks and Cemeteries: Tasmania’s Grassy Heritage; Tasmanian Conservation Trust: Hobart, Australia, 1988. [Google Scholar]
- Hobbs, R.J.; Yates, C.J. Temperate Eucalypt Woodlands in Australia: Biology, Conservation, Management and Restoration, 1st ed.; Chipping Norton: Surrey Beatty, Australia, 2000. [Google Scholar]
- Tremont, R.M.; McIntyre, S. Natural Grassy Vegetation and Native Forbs in Temperate Australia: Structure, Dynamics and life histories. Aust. J. Bot. 1994, 42, 641–658. [Google Scholar] [CrossRef]
- Prober, S.M.; Thiele, K.R. Conservation of the grassy white box Woodlands: Contributions of size and disturbance to floristic composition and diversity of remnants. Aust. J. Bot. 1995, 43, 349–366. [Google Scholar] [CrossRef]
- McIntyre, S.; McIvor, J.G.; Heard, K.M. Managing & Conserving Grassy Woodlands; CSIRO Publishing: Collingwood, Australia, 2002. [Google Scholar]
- Bond, W.J.; Archibald, S. Confronting complexity: Fire policy choices in South African savanna parks. Int. J. Wildland Fire 2003, 12, 381–389. [Google Scholar] [CrossRef]
- Fensham, R.J.; Kirkpatrick, J.B. Eucalypt forest-grassland/grassy woodland boundary in central Tasmania. Aust. J. Bot. 1992, 40, 123–138. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Bridle, K.L. People, Sheep and Nature Conservation: The Tasmanian Experience; CSIRO Publishing: Collingwood, Australia, 2007. [Google Scholar]
- Landsberg, J.; Wylie, F.R. Water stress, leaf nutrients and defoliation: A model of dieback of rural eucalypts. Aust. J. Ecol. 1983, 8, 27–41. [Google Scholar] [CrossRef]
- Reid, N.; Landsberg, J. Tree decline in agricultural landscapes: What we stand to lose. In Temperate Eucalypt Woodlands in Australia: Biology, Conservation, Management and Restoration; Hobbs, R.J., Yates, C.J., Eds.; Surrey Betty: Sydney, Australia, 2000; pp. 127–166. [Google Scholar]
- Kirkpatrick, J.B.; Zacharek, A.; Chappell, K. Testing methods for mitigation of tree dieback in Tasmanian dry eucalypt forests and woodlands. Pac. Conserv. Biol. 2000, 6, 94–101. [Google Scholar] [CrossRef]
- MacDonald, M.; Kirkpatrick, J.B. Explaining bird species composition and richness in eucalypt-dominated remnants in subhumid Tasmania. J. Biogeogr. 2003, 30, 1415–1426. [Google Scholar] [CrossRef]
- Yates, C.J.; Norton, D.A.; Hobbs, R.J. Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: Implications for restoration. Aust. Ecol. 2000, 25, 36–47. [Google Scholar] [CrossRef]
- McIntyre, S.; Lavorel, S. How environmental and disturbance factors influence species composition in temperate Australian grasslands. J. V. Sci. 1994, 5, 373–384. [Google Scholar] [CrossRef]
- Bennett, L.T. The expansion of Leptospermum laevigatum on the Yanakie Isthmus, Wilson’s Promontory, under changes in burning and grazing regimes. Aust. J. Bot. 1994, 42, 555–564. [Google Scholar]
- Archer, S.; Schimel, D.S.; Holland, E.A. Mechanisms of shrubland expansion: Land use, climate or CO2? Clim. Chang. 1995, 29, 91–99. [Google Scholar] [CrossRef]
- Fensham, R.J.; Fairfax, R.J. The disappearing grassy balds of the Bunya Mountains, south-eastern Queensland. Aust. J. Bot. 1996, 44, 543–558. [Google Scholar] [CrossRef]
- Mast, J.N.; Veblen, T.T.; Hodgson, M.E. Tree invasion within a pine/grassland ecotone: An approach with historic aerial photography and GIS modelling. For. Ecol. Manag. 1997, 93, 181–194. [Google Scholar] [CrossRef]
- Bartolome, J.; Franch, J.; Plaixats, J.; Seligman, N.G. Grazing alone is not enough to maintain landscape diversity in the Montseny Biosphere Reserve. Agric. Ecosyst. Environ. 2000, 77, 267–273. [Google Scholar] [CrossRef]
- Briggs, J.M.; Knapp, A.K.; Brock, B.L. Expansion of woody plants in tall grass prairie: A fifteen-year study of fire and fire-grazing interactions. Am. Midl. Nat. 2002, 147, 287–294. [Google Scholar] [CrossRef]
- Eckhardt, C.H.; Wilgen, W.B.; Biggs, C.H. Trends in woody vegetation cover in the Kruger National Park, South Africa between 1940 and 1998. Afr. J. Ecol. 2000, 38, 108–115. [Google Scholar] [CrossRef]
- Lunt, I. Allocasuarina (Casuarinaceae) Invasion of an Unburnt Coastal Woodland at Ocean Grove, Victoria: Structural Changes 1971–1996. Aust. J. Bot. 1998, 46, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, J. Vegetation change in an urban grassy woodland 1974–2000. Aust. J. Bot. 2004, 52, 597–608. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Chang. Biol. 2000, 6, 865–869. [Google Scholar] [CrossRef]
- Murphy, B.P.; Lehmannn, C.E.R.; Russell-Smith, J. Fire regimes and woody biomass dynamics in Australian savannas. J. Biogeogr. 2014, 41, 133–144. [Google Scholar] [CrossRef]
- Close, D.C.; Davidson, N.J.; Johnson, D.W.; Abrams, M.D.; Hart, S.C.; Lunt, I.D.; Archibald, R.D.; Horton, B.; Adams, M.A. Premature Decline of Eucalyptus and Altered Ecosystem Processes in the Absence of Fire in Some Australian Forests. Bot. Rev. 2009, 75, 191–202. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Gilfedder, L.; Duncan, F.; Wapstra, M. Frequent planned fire can prevent succession to woody plant dominance in montane temperate grasslands. Austral Ecol. 2020, 45, 872–879. [Google Scholar]
- Sorensen, E.-R.; Kirkpatrick, J.B. Vegetation change in an urban grassy woodland since the early nineteenth century. Pap. Proc. R. Soc. Tasman. 2021, 155, 37–54. [Google Scholar] [CrossRef]
- Cooke, B.D. The effects of rabbit grazing on regeneration of sheoaks, Allocasuarina verticillata, and saltwater ti-trees, Melaleuca halmaturorum, in the Coorong National Park, South Australia. Aust. J. Ecol. 1987, 13, 11–20. [Google Scholar] [CrossRef]
- Hazeldine, A.; Kirkpatrick, J.B. Practical and theoretical implications of a browsing cascade in Tasmanian forest and woodland. Aust. J. Bot. 2015, 63, 135–143. [Google Scholar] [CrossRef]
- Marsden-Smedley, J.B. Planned Burning in Tasmania: Operational Guidelines and Review of Current Knowledge; Parks and Wildlife Service, DPIPWE: Hobart, Australia, 2009. [Google Scholar]
- Kirkpatrick, J.B.; Marks, F. Observation of drought damage to some native plant species in eucalypt forests and woodlands near Hobart, Tasmania. Pap. Proc. R. Soc. Tasm. 1985, 119, 15–21. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Gilfedder, L. Conserving weedy natives: Two Tasmanian endangered herbs in the Brassicaceae. Aust. J. Ecol. 1998, 23, 466–473. [Google Scholar] [CrossRef]
- Land Tasmania. TASMAP 1:5 000 Orthophoto Map Index; Department of Natural Resource and Environment Tasmania: Tasmania, Australia, 2015. [Google Scholar]
- Kirkpatrick, J. The viability of bush in cities—ten years of change in an urban grassy woodland. Aust. J. Bot. 1986, 34, 691–708. [Google Scholar] [CrossRef]
- Minitab 18 Statistical Software; Minitab, Inc.: State College, PA, USA, 2021.
- Kirkpatrick, J.B. The status of lowland temperate grasslands in south-eastern Australia. In Management of Relict Lowland Grasslands; Sharp, S., Rehwinkel, R., Eds.; Conservation Series; ACT Parks and Conservation Service: Canberra, Australia, 1995; Volume 8, pp. 75–79. [Google Scholar]
- Ingram, J.; Kirkpatrick, J.B. Native vertebrate herbivores facilitate native plant dominance in old fields while preventing native tree invasion-implications for threatened species. Pac. Conserv. Biol. 2013, 19, 331–342. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [Green Version]
- García Criado, M.; Myers-Smith, I.H.; Bjorkman, A.D.; Lehmann, C.E.R.; Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 2020, 29, 925–943. [Google Scholar] [CrossRef]
Variable | 00 + 00.1 | 10 | 01 | 11 |
---|---|---|---|---|
Sample size | 11 | 9 | 5 | 15 |
Burn area (%) 2018 | 0 | 99 | 0 | 98 |
Burn area (%) 2021 | 0 | 0 | 58 | 56 |
Scorch height (m) 2018 | 0 | 3.7 | 0 | 3.5 |
Scorch height (m) 2021 | 0 | 0 | 1.4 | 1.5 |
Tree thinning frequency (%) | 54 | 0 | 0 | 20 |
Variable (n) | 00 (5) | 00.1 (6) | 10 (5) | 01 (9) | 11 (12) | F | p |
---|---|---|---|---|---|---|---|
Total species richness | 2.6 | 1.2 | 5.2 | 3.2 | 4.8 | 1.06 | 0.391 |
Native species richness | 1.6 | 0.2 | 2.2 | 2.3 | 2.3 | 0.47 | 0.760 |
Exotic species richness | 1.0BC | 1.0BC | 3.0A | 0.9C | 2.5AB | 3.14 | 0.028 |
Basal area (m2/ha) | 2.2 | 1.5 | 0.6 | 1.1 | 0.6 | 0.19 | 0.940 |
A. verticillata basal area | 0.6 | 1.3 | 0.2 | 0.1 | 1.3 | 0.52 | 0.722 |
Grass cover (%) | −30BC | −49C | −4A | −39BC | −21AB | 4.78 | 0.004 |
Sedge cover (%) | 12.3A | 10.8A | 12.8A | −1.1B | 3.9AB | 3.29 | 0.023 |
Herb cover (%) | −4.5 | −4.0 | −2.8 | −4.9 | −4.2 | 0.42 | 0.790 |
Shrub cover (%) | 18.2A | −1.2B | −0.5B | 4.3B | −0.9B | 3.09 | 0.029 |
Litter cover (%) | −22.9BC | −16.6AB | −37.5BC | 5.2A | −42C | 7.77 | <0.001 |
Wood cover (%) | −5.1 | −3.3 | −8.6 | −10.1 | −4.9 | 0.77 | 0.552 |
Bare, including rock, cover (%) | −61B | −37AB | −15A | −20A | −14A | 3.68 | 0.014 |
Variable | 2019–2018 | 2020–2019 | 2021–2020 | 2021–2018 |
---|---|---|---|---|
Total basal area (m2/ha) | ||||
Unburned 2018 | 0.8 (3.0) | 2.5 (2.6) | ||
Unburned 2018 + 2021 | −0.9 (2.2)AB | 1.8 (4.0) | ||
Burned only 2018 | 0.3 (2.9) | 1.1 (2.4) | −2.0 (1.4)AB | 0.6 (2.9) |
Burned only 2021 | −2.8 (2.5)B | 1.1 (2.4) | ||
Burned in 2018 + 2021 | 0.1 (1.7)A | 1.4 (2.1) | ||
Allocasuarina verticillata basal area (m2/ha) | ||||
Unburned 2018 | 0.3 (1.9) | 2.5 (2.6) | ||
Unburned 2018 + 2021 | −0.8 (2.2) | 1.0 (2.8) | ||
Burned only 2018 | −0.1 (2.4) | 1.1 (2.4) | −1.8 (2.2) | 0.2 (2.3) |
Burned only 2021 | −2.2 (2.3) | 0.1 (2.0) | ||
Burned in 2018 + 2021 | 0.1 (1.7) | 1.1 (1.5) |
Species | 00 | 00.1 | 10 | 01 | 11 | p |
---|---|---|---|---|---|---|
Urospermum dal. | 100(80) | 100 (100) | 100(40) | 11(33) | 92 (58) | <0.001 |
Olearia ramulosa | 20(40) | 17 (17) | 56(100) | 40(100) | 0.0(75) | 0.049 |
Plantago varia | 80(40) | 50(17) | 0(0) | 89(56) | 58(25) | 0.033 |
Oxalis perennans | 0 (0) | 0(0) | 60(20) | 56(22) | 50(17) | 0.046 |
Lepidosperma lat. | 80(80) | 67(67) | 100(100) | 11(11) | 42(42) | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkpatrick, J.B.; Jenkinson, I. Effects of Increasing Fire Frequency on Conservation Values in Eucalyptus Grassy Woodland in the Process of Invasion by Allocasuarina verticillata. Fire 2022, 5, 31. https://doi.org/10.3390/fire5020031
Kirkpatrick JB, Jenkinson I. Effects of Increasing Fire Frequency on Conservation Values in Eucalyptus Grassy Woodland in the Process of Invasion by Allocasuarina verticillata. Fire. 2022; 5(2):31. https://doi.org/10.3390/fire5020031
Chicago/Turabian StyleKirkpatrick, Jamie B., and Ian Jenkinson. 2022. "Effects of Increasing Fire Frequency on Conservation Values in Eucalyptus Grassy Woodland in the Process of Invasion by Allocasuarina verticillata" Fire 5, no. 2: 31. https://doi.org/10.3390/fire5020031
APA StyleKirkpatrick, J. B., & Jenkinson, I. (2022). Effects of Increasing Fire Frequency on Conservation Values in Eucalyptus Grassy Woodland in the Process of Invasion by Allocasuarina verticillata. Fire, 5(2), 31. https://doi.org/10.3390/fire5020031