Fire-Driven Decline of Endemic Allosyncarpia Monsoon Rainforests in Northern Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Allosyncarpia Distribution Mapping
2.3. Canopy Cover Change Assessment
2.4. On-Ground Vegetation Structure Assessment of Canopy Change
3. Results
3.1. Allosyncarpia Forest Distribution
3.2. Canopy Cover Change
3.3. On-Ground Assessment
4. Discussion
Conservation Management
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
%Change | ||||||||
---|---|---|---|---|---|---|---|---|
Site Name | Long. | Lat. | Area in 1950 (ha) | 1950–1980’s | 1980’s–2010 | 1950–2010 | %Fire–Prone | Fire Susceptibility |
Mimolorrk a | 133.7130 | −12.4673 | 79 | 0% | −12% | −12% | 25 | Low |
Mimolorrk b | 133.6800 | −12.4266 | 29 | 2% | −18% | −16% | 35 | Moderate |
Tin camp south a | 133.1920 | −12.5620 | 24 | 3% | 1% | 4% | 40 | Moderate |
Tin camp south b | 133.1920 | −12.5620 | 32 | −5% | −9% | −14% | 35 | Moderate |
Korbelak a | 133.6180 | −12.6217 | 27 | −10% | −29% | −36% | 60 | High |
Korbelak b | 133.6320 | −12.6204 | 48 | −7% | −22% | −28% | 75 | High |
Kondulgai a | 133.7610 | −12.7112 | 23 | −2% | −20% | −22% | 55 | High |
Andulgai b | 133.7360 | −12.7289 | 14 | −7% | 13% | 5% | 10 | Low |
Makkalarl head a | 133.6410 | −12.6631 | 15 | 3% | 0% | 3% | 45 | Moderate |
Makkalarl tail b | 133.6410 | −12.6631 | 35 | −5% | −42% | −46% | 75 | High |
Nakarriken b | 133.5880 | −12.7226 | 36 | −10% | −11% | −20% | 80 | High |
Yidngarremanrneng a | 133.9770 | −12.7566 | 122 | −16% | 9% | −9% | 60 | High |
Yidngarremanrneng b | 133.9680 | −12.7414 | 35 | −8% | 18% | 9% | 2 | Low |
East alligator a | 133.3040 | −12.7953 | 14 | 12% | 19% | 32% | 25 | Low |
East alligator b | 133.3100 | −12.7935 | 22 | −8% | 14% | 5% | 30 | Moderate |
Maguk a | 132.4050 | −13.3153 | 13 | 2% | −14% | −13% | 40 | Moderate |
Maguk b | 132.4120 | −13.3102 | 8 | −1% | 1% | 0% | 55 | High |
Magela creek a | 133.1690 | −12.8224 | 12 | −6% | −2% | −7% | 65 | High |
Namarrgon creek a | 133.1190 | −12.9210 | 14 | −8% | −6% | −14% | 30 | Moderate |
Namarrgon creek b | 133.1190 | −12.9210 | 15 | −2% | −5% | −7% | 5 | Low |
Namarrgon creek d | 133.0990 | −12.8991 | 12 | 0% | 1% | 1% | 25 | Low |
Hill u662 a | 133.1930 | −12.9500 | 13 | 10% | −13% | −4% | 25 | Low |
Hill u663 b | 133.2280 | −12.9214 | 32 | −5% | −8% | −12% | 25 | Low |
Deaf Adder north b | 132.5700 | −13.3727 | 4 | −6% | −2% | −8% | 70 | High |
Deaf Adder north c | 132.9590 | −12.9667 | 15 | 0% | −4% | −4% | 25 | Low |
Deaf Adder north d | 132.9850 | −12.9641 | 24 | 5% | −9% | −5% | 5 | Low |
Deaf Adder north e | 132.9850 | −12.9641 | 10 | −1% | −9% | −9% | 40 | Moderate |
Kunbambuk a | 133.5820 | −12.9612 | 5 | −5% | −9% | −14% | 60 | High |
Kunbambuk b | 133.5780 | −12.9576 | 36 | −21% | −29% | −44% | 60 | High |
Kunbambuk c | 133.5630 | −12.9465 | 18 | −26% | −18% | −40% | 60 | High |
Round jungle a | 133.0990 | −12.8991 | 148 | 1% | 1% | 2% | 65 | High |
Round jungle b | 132.6550 | −13.3294 | 37 | −3% | −7% | −10% | 50 | High |
Round jungle c | 132.6480 | −13.2931 | 55 | 4% | −1% | 3% | 55 | High |
Round jungle d | 132.6480 | −13.2931 | 5 | 10% | 0% | 10% | 25 | Low |
Barramundie gorge a | 132.5620 | −13.3912 | 22 | −5% | −3% | −8% | 50 | High |
Barramundie gorge c | 132.5700 | −13.3727 | 9 | 6% | −26% | −21% | 33 | Moderate |
Barramundie gorge d | 132.5700 | −13.3727 | 21 | −8% | 4% | −4% | 15 | Low |
Gimbat north a | 133.3100 | −12.7935 | 57 | −5% | −12% | −17% | 40 | Moderate |
Gimbat north b | 132.9190 | −13.4550 | 35 | −3% | 0% | −3% | 40 | Moderate |
Gimbat north c | 132.9400 | −13.4172 | 26 | −22% | 16% | −9% | 20 | Low |
References
- Trapnell, C.G. Ecological results of woodland burning experiments in northern Rhodesia. J. Ecol. 1959, 47, 129–168. [Google Scholar] [CrossRef]
- Rose-Innes, R. Fire in West African vegetation. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 22–23 April 1972. [Google Scholar]
- San Jose, J.J.; Farinas, M.R.; Rosales, J. Spatial patterns of trees and structuring factors in a Trachypogon savana of the Orinoco Llanos. Biotropica 1991, 23, 114–123. [Google Scholar] [CrossRef]
- Swaine, M.D.; Hawthorne, W.D.; Orgle, T.K. The effects of fire exclusion on savanna vegetation at Kpong, Ghana. Biotropica 1992, 24, 166–172. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Price, O.; Whitehead, P.J.; Walsh, A. The “wilderness effect” and the decline of Callitris intratropica on the Arnhem Land Plateau, northern Australia. Aust. J. Bot. 2001, 49, 665–672. [Google Scholar] [CrossRef]
- Bowman, D.M.; Murphy, B.P.; Banfai, D.S. Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics? Landsc. Ecol. 2010, 25, 1247–1260. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Stanton, A.C.; Whitehead, P.J. Rain forest invasion of eucalypt-dominated woodland savanna, Iron Range, north-eastern Australia: II. Rates of landscape change. J. Biogeogr. 2004, 31, 1305–1316. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Whitehead, P.J.; Cook, G.D.; Hoare, J.L. Response of Eucalyptus-dominated savanna to frequent fires: Lessons from Munmarlary, 1973–1996. Ecol. Monogr. 2003, 73, 349–375. [Google Scholar] [CrossRef]
- Higgins, S.I.; Bond, W.J.; February, E.C.; Bronn, A.; Euston-Brown, D.I.W.; Esline, B.; Govender, N.; Rademan, L.; O’Regan, S.; Potgieter, A.L.F.; et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 2007, 88, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, C.E.; Prior, L.D.; Bowman, D.M. Decadal dynamics of tree cover in an Australian tropical savanna. Austral Ecol. 2009, 34, 601–612. [Google Scholar] [CrossRef]
- Stevens, N.; Erasmus, B.; Archibald, S.; Bond, W. Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. B 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.; José, J.S.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Van der Werf, G.; Randerson, J.L.; Collatz, G.; Mu, M.; Kasibhatla, P.; Morton, D.; Defries, R.; Jin, Y.; van Leeuwen, T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Higgins, S.I.; Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 2012, 488, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Scheiter, S.; Higgins, S.; Beringer, J.; Hutley, L.B. Climate change and long-term fire management impacts on Australian savannas. New Phytol. 2015, 205, 1211–1226. [Google Scholar] [CrossRef] [PubMed]
- Beringer, J.; Hutley, L.B.; Abramson, D.; Arndt, S.K.; Briggs, P.; Bristow, M.; Canadell, J.G.; Cernusak, L.A.; Eamus, D.; Edwards, A.C.; et al. Fire in Australian savannas: From leaf to landscape. Glob. Chang. Biol. 2015, 21, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Franklin, D.C.; Whitehead, P.J.; Pardon, G.; Matthews, J.; McMahon, P.; McIntyre, D. Geographic patterns and correlates of the decline of granivorous birds in northern Australia. Biol. Conserv. 2005, 90, 53–68. [Google Scholar] [CrossRef]
- Woinarski, J.C.Z.; Legge, S. Rowley Review: The impacts of fire on birds in Australia’s tropical savannas. Emu 2013, 113, 319–352. [Google Scholar] [CrossRef]
- Woinarski, J.C.Z.; Legge, S.; Fitzsimons, J.A.; Traill, B.J.; Burbidge, A.A.; Fisher, A.; Firth, R.S.C.; Gordon, I.J.; Griffith, A.D.; Johnson, C.N.; et al. The disappearing mammal fauna of Australia: Context, cause, and response. Conserv. Lett. 2011, 4, 192–201. [Google Scholar] [CrossRef]
- Ziembicki, M.R.; Woinarski, J.C.Z.; Webb, J.K.; Vanderduys, E.; Tuft, K.; Smith, J.; Ritchie, E.G.; Reardon, T.B.; Radford, I.J.; Preece, N.; et al. Stemming the tide: Progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 2015, 6, 169–225. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Panton, W.J. Decline of Callitris intratropica in the Northern Territory: Implications for pre- and post-European colonization fire regimes. J. Biogeogr. 1993, 20, 373–381. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Ryan, P.G.; Cheal, D.C. Fire regimes and the conservation of sandstone heath in monsoonal northern Australia: Frequency, interval, patchiness. Biol. Conserv. 2002, 104, 91–106. [Google Scholar] [CrossRef]
- Yates, C.P.; Edwards, A.C.; Russell-Smith, J. Big fires and their ecological impacts in Australian savannas: Size and frequency matters. Int. J. Wildland Fire 2008, 17, 768–781. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S. The impact of Aboriginal landscape burning on the Australian biota. New Phytol. 1998, 140, 385–410. [Google Scholar] [CrossRef]
- Ritchie, D. Things Fall Apart: The End of an Era of Systematic Indigenous Fire Management. In Culture, Ecology and Economy of Savanna Fire Management in Northern Australia: Rekindling the Wurrk Tradition; Russell-Smith, J., Whitehead, P.J., Cooke, P.M., Eds.; CSIRO Publications: Melbourne, Australia, 2009. [Google Scholar]
- Yibarbuk, D.; Whitehead, P.J.; Russell-Smith, J.; Jackson, D.; Godjuwa, C.; Fisher, A.; Cooke, P.; Choquenot, D.; Bowman, D. Fire ecology and Aboriginal land management in central Arnhem Land, Northern Australia: A tradition of ecosystem management. J. Biogeogr. 2001, 28, 325–343. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Yates, C.P.; Whitehead, P.J.; Smith, R.; Craig, R.; Allan, G.E.; Thackway, R.; Frakes, I.; Cridland, S.; Meyer, M.C.P.; et al. Bushfires ‘down under’: Patterns and implications of contemporary Australian landscape burning. Int. J. Wildland Fire 2007, 16, 361–377. [Google Scholar] [CrossRef]
- Edwards, A.; Russell-Smith, J.; Meyer, M. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. Int. J. Wildland Fire 2015, 24, 857–870. [Google Scholar] [CrossRef]
- Murphy, B.P.; Lehmann, C.E.R.; Russell-Smith, J.; Lawes, M.J. Fire regimes and woody biomass dynamics in northern Australian savannas. J. Biogeogr. 2014, 41, 133–144. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Stanton, P.J.; Whitehead, P.J.; Edwards, A.C. Rain forest invasion of eucalypt-dominated woodland savanna, Iron Range, north-eastern Australia: I. Successional Processes. J. Biogeogr. 2004, 31, 1293–1303. [Google Scholar] [CrossRef]
- Woinarski, J.C.Z.; Risler, J.; Kean, L. Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical Eucalyptus open forest, Northern Territory, Australia. Austral Ecol. 2004, 29, 156–176. [Google Scholar] [CrossRef]
- Banfai, D.; Bowman, D. Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia. Biol. Conserv. 2006, 131, 553–565. [Google Scholar] [CrossRef]
- Bowman, D.M.; Dingle, J.K. Late 20th century landscape-wide expansion of Allosyncarpia ternata (Myrtaceae) forests in Kakadu National Park, northern Australia. Aust. J. Bot. 2006, 54, 707–715. [Google Scholar] [CrossRef]
- Brook, B.W.; Bowman, D.M. Postcards from the past: Charting the landscape-scale conversion of tropical Australian savanna to closed forest during the 20th century. Landsc. Ecol. 2006, 21, 1253–1266. [Google Scholar] [CrossRef]
- Ondei, S.; Prior, L.D.; Vigilante, T.; Bowman, D.M. Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. J. Biogeogr. 2017, 44, 2331–2342. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Stanton, P. Fire Regimes and Fire Management of Rainforest Communities across Northern Australia: A Review. In Flammable Australia: The Fire Regimes and Biodiversity of a Continent; Bradstock, R.A., Williams, J.E., Gill, A.M., Eds.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Banfai, D.S.; Bowman, D.M.J.S. Drivers of rain-forest boundary dynamics in Kakadu National Park, northern Australia: A field assessment. J. Trop. Ecol. 2007, 23, 73–86. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Lucas, D.E.; Brock, J.; Bowman, D.M.J.S. Allosyncarpia-dominated rain forest in monsoonal northern Australia. J. Veg. Sci. 1993, 4, 67–82. [Google Scholar] [CrossRef]
- Haynes, C.D. The pattern and ecology of munwag: Traditional aboriginal fire regimes in north-central Arnhem Land. In Ecology of the Wet-Dry Tropics, Proceedings of the Ecological Society of Australia 13, 1985; CSIRO: Melbourne, Australia, 1985. [Google Scholar]
- Bowman, D.; Prior, L. Impact of Aboriginal landscape burning on woody vegetation in Eucalyptus tetrodonta savanna in Arnhem Land, northern Australia. J. Biogeogr. 2004, 31, 807–817. [Google Scholar] [CrossRef]
- Prior, L.D.; Bowman, D.M.J.S.; Brook, B.W. Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecol. Res. 2007, 22, 228–236. [Google Scholar] [CrossRef]
- Edwards, A.C.; Russell-Smith, J. Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: Implications for management. Int. J. Wildland Fire 2009, 18, 127–146. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Edwards, A.C.; Woinarski, J.C.Z.; McCartney, J.; Kerin, S.; Winderlich, S.; Murphy, B.P.; Watt, F. An assessment of the first ten years of the three parks (Kakadu, Litchfield, Nitmiluk) fire regime and biodiversity monitoring. In Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the WURRK Tradition; Russell-Smith, J., Whitehead, P., Cooke, P., Eds.; CSIRO Publishing: Melbourne, Australia, 2009. [Google Scholar]
- Woinarski, J.C.; Russell-Smith, J.; Andersen, A.N.; Brennan, K. Fire management and biodiversity of the western Arnhem Land Plateau. In Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition; Russell-Smith, J., Whitehead, P.J., Cooke, P.M., Eds.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 201–228. [Google Scholar]
- Commonwealth of Australia. The Nationally Protected Arnhem Plateau Sandstone Shrubland Complex; Department of Sustainability, Environment, Water, Population and Communities, Australian Government: Canberra, Australia, 2012. Available online: http://www.environment.gov.au/resource/nationally-protected-arnhem-plateau-sandstone-shrubland-complex (accessed on 10 April 2015).
- Thackway, R.; Cresswell, I. An Interim Biogeographic Regionalisation for Australia: A Framework for Establishing the National System of Reserves; Version 4.0; Australian Nature Conservation Agency: Canberra, Australia, 1995; p. 88.
- Ingwersen, F. Kakadu-Alligator Rivers Region, Northern Territory. In Centres of Plant Diversity: A Guide and Strategy for Their Conservation. Vol. 2. Asia, Australasia and the Pacific; Davis, S.D., Hamilton, A.C., Eds.; WWF and IUCN: Cambridge, UK, 1995; pp. 471–475. [Google Scholar]
- Crisp, M.D.; Laffan, S.; Linder, H.P.; Monro, A. Endemism in the Australian flora. J. Biogeogr. 2001, 28, 183–198. [Google Scholar] [CrossRef]
- Emerson, D.; Mills, K.; Miyakawa, K.; Hallett, M.L.; Cao, L. The petrophysics, geophysics and structure of the Koongarra site, Northern Territory. Explor. Geophys. 1993, 24, 1–71. [Google Scholar] [CrossRef]
- McAlpine, J.R. Climate and water balance. In Land Systems of the Alligator Rivers Area, Northern Territory; Land Research Series No. 38; Story, R., Ed.; CSIRO: Melbourne, Australia, 1976; pp. 35–49. [Google Scholar]
- Finlayson, C.M.; von Oertzen, I. Landscape and Vegetation Ecology of the Kakadu Region, Northern Australia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 23. [Google Scholar]
- Russell-Smith, J.; Setterfield, S.A. Monsoon rain forest seedling dynamics, northern Australia: Contrasts with regeneration in eucalypt-dominated savannas. J. Biogeogr. 2006, 33, 1597–1614. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Ryan, P.G.; Klessa, D.; Waight, G.; Harwood, R. Fire regimes, fire-sensitive vegetation, and fire management of the sandstone Arnhem Plateau, monsoonal northern Australia. J. Appl. Ecol. 1998, 35, 829–846. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Whitehead, P.; Cooke, P. Managing Fire Regimes in North Australian Savannas—Ecology, Culture, Economy. Rekindling the Wurrk Tradition; Russell-Smith, J., Whitehead, P., Cooke, P., Eds.; CSIRO Publishing: Canberra, Australia, 2009. [Google Scholar]
- Russell-Smith, J.; Edwards, A.C. Seasonality and fire severity in savanna landscapes of monsoonal northern Australia. Int. J. Wildland Fire 2006, 15, 541–550. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Edwards, A.C.; Price, O.F. Simplifying the savanna: The trajectory of fire-sensitive vegetation mosaics in northern Australia. J. Biogeogr. 2012, 39, 1303–1317. [Google Scholar] [CrossRef]
- Trauernicht, C.; Murphy, B.P.; Tangalin, N.; Bowman, D.M. Cultural legacies, fire ecology, and environmental change in the Stone Country of Arnhem Land and Kakadu National Park, Australia. Ecol. Evol. 2013, 3, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.G.; Jones, R.; Smith, M.A. Thermoluminescence dating of a 50,000-year-old human occupation site in northern Australia. Nature 1990, 345, 153–156. [Google Scholar] [CrossRef]
- Clarkson, C.; Jacobs, Z.; Marwick, B.; Fullagar, R.; Wallis, L.; Smith, M.; Roberts, R.G.; Hayes, E.; Lowe, K.; Carah, X. Human occupation of northern Australia by 65,000 years ago. Nature 2017, 547, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Russell-Smith, J.; Lucas, D.; Gapindi, M.; Gunbunuka, B.; Kapirigi, N.; Namingum, G.; Lucas, K.; Giuliani, P.; Chaloupka, G. Aboriginal resource utilization and fire management practice in western Arnhem Land, monsoonal northern Australia: Notes for prehistory, lessons for the future. Hum. Ecol. 1997, 25, 159–196. [Google Scholar] [CrossRef]
- Garde, M.; Nadjamerrek, L.B.; Kolkkiwarra, M.; Kalarriya, J.; Djandjomerr, J.; Birriyabirriya, B.; Bilindja, R.; Kubarkku, M.; Biless, P. The Language of Fire: Seasonality, Resources and Landscape Burning on the Arnhem Land Plateau. In Managing Fire Regimes in North Australian Savannas—Ecology, Culture, Economy; Russell-Smith, J., Whitehead, P., Eds.; CSIRO Publishing: Canberra, Australia, 2009; pp. 86–164. [Google Scholar]
- Cooke, P.M. Buffalo and Tin, Baki and Jesus: The Creation of a Modern Wilderness. In Culture, Ecology and Economy of Savanna Fire Management in Northern Australia: Rekindling the Wurrk Tradition; Russell-Smith, J., Whitehead, P.J., Cooke, P.M., Eds.; CSIRO Publications: Melbourne, Australia, 2009. [Google Scholar]
- Geoscience Australia. 1 Arc Second—Digital Elevation Model; US National Geospatial-Intelligence Agency (NGA), US National Aeronautics and Space Administration (NASA), Eds.; Geoscience Australia: Canberra, Australia, 2000.
- Geoscience Australia. Australia 1:250,000 Geological Series; Geoscience Australia: Canberra, Australia, 1963–1998.
- Morgan, J.L.; Gergel, S.E.; Coops, N.C. Aerial photography: A rapidly evolving tool for ecological management. BioScience 2010, 60, 47–59. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Ryan, P.G.; Durieu, R. A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: Seasonal extent, frequency and patchiness. J. Appl. Ecol. 1997, 34, 748–766. [Google Scholar] [CrossRef]
- Williams, R.J.; Gill, A.M.; Moore, P.H.R. Fire Behaviour. In Fire in Tropical Savannas: The Kapalga Experiment; Andersen, A., Cook, G., Williams, R., Eds.; Springer: New York, NY, USA, 2003; pp. 33–46. [Google Scholar]
- Fensham, R.; Fairfax, R. Assessing woody vegetation cover change in north-west Australian savanna using aerial photography. Int. J. Wildland Fire 2003, 12, 359–367. [Google Scholar] [CrossRef]
- Fensham, R.; Fairfax, R.; Ward, D. Drought-induced tree death in savanna. Glob. Chang. Biol. 2009, 15, 380–387. [Google Scholar] [CrossRef]
- Smith, I. An assessment of recent trends in Australian rainfall. Aust. Meteorol. Mag. 2004, 53, 163–173. [Google Scholar]
- Bureau of Meteorology. Climate Change Trend Maps. Available online: http://www.bom.gov.au/climate/change/index.shtml#tabs=Tracker&tracker=trend-maps (accessed on 5 August 2016).
- Roderick, M.L.; Farquhar, G.D. Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol. 2004, 24, 1077–1090. [Google Scholar] [CrossRef]
- Lewis, S.L.; Lloyd, J.; Sitch, S.; Mitchard, E.T.; Laurance, W.F. Changing ecology of tropical forests: Evidence and drivers. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 529–549. [Google Scholar] [CrossRef]
- Van Der Sleen, P.; Groenendijk, P.; Vlam, M.; Anten, N.P.; Boom, A.; Bongers, F.; Pons, T.L.; Terburg, G.; Zuidema, P.A. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 2015, 8, 24–28. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Russell-Smith, J.; Price, O.; Murphy, B.P. Managing the matrix: Decadal responses of eucalypt-dominated mesic savanna to ambient fire regimes. Ecol. Appl. 2010, 20, 1615–1632. [Google Scholar] [CrossRef] [PubMed]
- Trauernicht, C.; Murphy, B.P.; Prior, L.D.; Lawes, M.J.; Bowman, D.M. Human-imposed, fine-grained patch burning explains the population stability of a fire-sensitive conifer in a frequently burnt northern Australia savanna. Ecosystems 2016, 19, 896–909. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.Q.; Adams, P. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Russell-Smith, J. The Forest in Motion: Exploratory Studies in Western Arnhem Land, Northern Australia. In The Forest in Motion: Exploratory Studies in Western Arnhem Land, Northern Australia; Australian National University: Canberra, Australia, 1986. [Google Scholar]
- Bowman, D.M.J.S. Environmental determinants of Allosyncarpia ternata forests that are endemic to western Arnhem Land, northern Australia. Aust. J. Bot. 1991, 39, 575–589. [Google Scholar] [CrossRef]
- Fordyce, I.R.; Eamus, D.; Duff, G.A.; Williams, R.J. The role of seedling age and size in the recovery of Allosyncarpia ternata following fire. Aust. J. Ecol. 1997, 22, 262–269. [Google Scholar] [CrossRef]
- Fordyce, I.R.; Eamus, D.; Duff, G.A. Episodic seedling growth in Allosyncarpia ternata, a lignotuberous monsoon rainforest tree of tropical Australia. Austral Ecol. 2000, 25, 25–35. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S. Preliminary observations on the mortality of Allosyncarpia ternata stems on the Arnhem Land plateau, northern Australia. In Australian Forestry; Institute of Foresters of Australia: Perth, Australia, 1994; pp. 62–64. [Google Scholar]
- Wilson, B.A.; Bowman, D.M.J.S. Fire, storm, flood and drought: The vegetation ecology of Howards Peninsula, Northern Territory, Australia. Aust. J. Ecol. 1987, 12, 165–174. [Google Scholar] [CrossRef]
- Hutley, L.; Evans, B.; Beringer, J.; Cook, G.; Maier, S.; Razon, E. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Cook, G.D.; Goyens, C.M. The impact of wind on trees in Australian tropical savannas: Lessons from Cyclone Monica. Austral Ecol. 2008, 33, 462–470. [Google Scholar] [CrossRef]
- Russell-Smith, J. The Status and Condition of Monsoon Vine-Forests in the Kakadu Region: A Management Report. In Unpublished Report to Australian National Parks and Wildlife Service, Canberra; Australian National Parks and Wildlife Service: Canberra, Australia, 1984. [Google Scholar]
- Petty, A.; Werner, P.; Lehmann, C.; Riley, J.; Banfai, D.; Elliott, L. Savanna responses to feral buffalo in Kakadu National Park, Australia. Ecol. Monogr. 2007, 77, 441–463. [Google Scholar] [CrossRef]
- Archer, S.; Schimel, D.S.; Holland, E.A. Mechanisms of shrubland expansion: Land use, climate or CO2? Clim. Chang. 1995, 29, 91–99. [Google Scholar] [CrossRef]
- Scholes, R.J.; Archer, S.R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 1997, 28, 517–544. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Chang. Biol. 2000, 6, 865–869. [Google Scholar] [CrossRef]
- Murphy, B.P.; Cochrane, M.A.; Russell-Smith, J. Prescribed burning protects endangered tropical heathlands of the Arnhem Plateau, northern Australia. J. Appl. Ecol. 2015, 52, 980–991. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Evans, J.; Edwards, A.C.; Simms, A. Assessing ecological performance thresholds in fire-prone Kakadu National Park, northern Australia. Ecosphere 2017, 8, e01856. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Yates, C.P.; Edwards, A.C.; Whitehead, P.J.; Murphy, B.P. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 2015, 10, e0143426. [Google Scholar] [CrossRef] [PubMed]
Selection Criteria | Metric |
---|---|
Functional analysis size | Area 10–150 ha |
Distinct, isolated, forest patch | Minimum 100 m distance from another patch >10 ha |
Functional shape | Patch perimeter (km): area (ha) ratio within parameters, as below: Patch 10–39 ha: <15 Patch 40–79 ha: <12.5 Patch 80–150 ha: <10 |
Broad geographic distribution | Patches from western, eastern, southern regions, as defined by contiguous 1:250,000 topographic mapping covering the majority of Allosyncarpia’s range |
Not associated with major river | Exclude patches associated with stream order >5 |
Not in path of major cyclone, especially very damaging Cyclone Monica in 2006 | Exclude patches <50 km from coast |
Topographic variation | Include patches both in relatively subdued sandstone, and open sandy terrain, but exclude patches in steep (>20°) terrain to ensure assessment reliability |
Image availability | Available historical aerial photos at consistent scales, and 2010 high resolution satellite imagery |
Image quality | Amenable for visual interpretation |
Cost efficiency | If possible, select more than one patch meeting above criteria per imagery sample |
Geographic Context | Arnhem Plateau Study Area (%) | Allosyncarpia Distribution (%) | Sampled Forest Patches (%; No. of Sites Given in Parentheses) |
---|---|---|---|
Mean annual rainfall (mm) | |||
1200–1300 | 23.0% | 0 | 0 |
1300–1400 | 42.0% | 34.0% | 35.0% (14) |
1400–1500 | 25.0% | 32.0% | 37.5% (15) |
1500–1600 | 10.0% | 33.0% | 27.5% (11) |
Proximity to Drainage | |||
<250 m from major river | 1.0% | 0 | |
<25 m from stream | 8.0% | 8 sites | |
Terrain | |||
steep: >20% | 3.0% | 14.0% | 0% |
rugged: 5–20% | 23.0% | 59.0% | 37.5% (15) |
flat: <5% | 74.0% | 27.0% | 62.5% (25) |
Surface type | |||
Rocky | 51.5% | 90.0% | 60.0% (23) |
Sandy | 48.5% | 10.0% | 40.0% (17) |
Interaction between terrain and surface | |||
Steep rocky | 2.0% | 12.0% | 0% |
Steep x sandy | 1.0% | 2.0% | 0% |
Rugged x rocky | 17.0% | 54.5% | 37.5% (15) |
Rugged x sandy | 5.0% | 4.5% | 0.0% |
Flat x rocky | 32.5% | 23.0% | 22.5% (9) |
Flat x sandy | 42.5% | 4.0% | 40.0% (16) |
Canopy Cover Change | ||||
---|---|---|---|---|
Geographic Context | No. of Patches | 1950–1982/87 | 1982/87–2010 | 1950–2010 |
Patch trend summary | ||||
Mean trend | 40 | (−3.7 ± 1.3) | (−6.1 ± 2.1) | (−9.5 ± 2.4) |
No. declining patches | 22 | 23 | 29 | |
No. increasing patches | 8 | 7 | 8 | |
No. stable patches | 10 | 10 | 3 | |
Warddeken IPA 1 | 24 | (−4.9 ± 1.5) | (−8.4 ± 2.4) | (−8.4 ± 2.2) |
Kakadu National Park | 16 | (−1.6 ± 0.5) | (−4.1 ± 1.4) | (−6.0 ± 1.9) |
Rainfall zone | ||||
1300–1400 mm | 14 | −8.1 ± 2.7 | −12.2 ± 3.9 | −19.2 ± 6.1 |
1400–1500 mm | 15 | −2.3 ± 0.5 | −2.0 ± 0.7 | −4.6 ± 1.5 |
1500–1600 mm | 11 | 0.0 ± 0.2 | −3.8 ± 1.2 | −3.8 ± 1.6 |
Terrain | ||||
Steep: >20° | 0 | |||
Rugged: 5–20° | 10 | (−2.2 ± 0.8) | (−1.7 ± 0.6) | (−4.1 ± 1.4) |
Flat: <5° | 19 | (−7.5 ± 2.3) | (−7.7 ± 2.3) | (−14.3 ± 4.3) |
Mixed (Flat and Rugged) | 11 | (1.4 ± 0.5) | (−7.2 ± 2.5) | (−6.1 ± 2.1) |
Surface type | ||||
Sandstone/Rocky | 25 | (−3.8 ± 1.0) | (−5.3 ± 1.4) | (−10.3 ± 0.5) |
Sandy plain | 15 | (−3.5 ± 1.6) | (−7.3 ± 2.5) | (−9 ± 3.0) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freeman, J.; Edwards, A.C.; Russell-Smith, J. Fire-Driven Decline of Endemic Allosyncarpia Monsoon Rainforests in Northern Australia. Forests 2017, 8, 481. https://doi.org/10.3390/f8120481
Freeman J, Edwards AC, Russell-Smith J. Fire-Driven Decline of Endemic Allosyncarpia Monsoon Rainforests in Northern Australia. Forests. 2017; 8(12):481. https://doi.org/10.3390/f8120481
Chicago/Turabian StyleFreeman, Jeremy, Andrew C. Edwards, and Jeremy Russell-Smith. 2017. "Fire-Driven Decline of Endemic Allosyncarpia Monsoon Rainforests in Northern Australia" Forests 8, no. 12: 481. https://doi.org/10.3390/f8120481
APA StyleFreeman, J., Edwards, A. C., & Russell-Smith, J. (2017). Fire-Driven Decline of Endemic Allosyncarpia Monsoon Rainforests in Northern Australia. Forests, 8(12), 481. https://doi.org/10.3390/f8120481