Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = wood conservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11402 KiB  
Article
Identification and Characterization of NAC Transcription Factors Involved in Pine Wilt Nematode Resistance in Pinus massoniana
by Zhengping Zhao, Jieyun Lei, Min Zhang, Jiale Li, Chungeng Pi, Jinxiu Yu, Xuewu Yan, Kun Luo and Yonggang Xia
Plants 2025, 14(15), 2399; https://doi.org/10.3390/plants14152399 - 3 Aug 2025
Viewed by 207
Abstract
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate [...] Read more.
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate potential molecular defense mechanisms, 50 NAC (NAM, ATAF1/2, and CUC2) transcription factors (PmNACs) were identified in the P. massoniana genome. Phylogenetic analysis divided these PmNACs into seven subfamilies, and motif analysis identified ten conserved motifs associated with stress responses. Twenty-three genes were selected for expression analysis in various tissues and under exogenous salicylic acid (SA), methyl jasmonate (MeJA), and PWN infection. Six genes (PmNAC1, PmNAC8, PmNAC9, PmNAC17, PmNAC18, and PmNAC20) were significantly up-regulated by both hormonal treatment and PWN infection, implying their involvement in JA/SA-mediated immune pathways. Functional characterization showed PmNAC8 is a nuclear-localized transcription factor with autoactivation activity. Furthermore, transient overexpression of PmNAC8 in Nicotiana benthamiana induced reactive oxygen species (ROS) accumulation and necrotic lesions. Collectively, these results elucidate NAC-mediated defense responses to PWN infection in P. massoniana and identify candidate genes for developing PWD-resistant pine varieties. Full article
Show Figures

Figure 1

29 pages, 6179 KiB  
Article
Assessing the Provision of Ecosystem Services Using Forest Site Classification as a Basis for the Forest Bioeconomy in the Czech Republic
by Kateřina Holušová and Otakar Holuša
Forests 2025, 16(8), 1242; https://doi.org/10.3390/f16081242 - 28 Jul 2025
Viewed by 232
Abstract
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based [...] Read more.
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based on a site classification system at the lowest level—i.e., forest stands, at the forest owner level—as a tool for differentiated management. ESs were assessed within the Czech Republic and are expressed in units in accordance with the very sophisticated Forest Site Classification System. (1) Biomass production: The vertical differentiation of ecological conditions given by vegetation tiers, which reflect the influence of altitude, exposure, and climate, provides a basic overview of biomass production; the highest value is in the fourth vegetation tier, i.e., the Fageta abietis community. Forest stands are able to reach a stock of up to 900–1200 m3·ha−1. The lowest production is found in the eighth vegetation tier, i.e., the Piceeta community, with a wood volume of 150–280 m3·ha−1. (2) Soil conservation function: Geological bedrock, soil characteristics, and the geomorphological shape of the terrain determine which habitats serve a soil conservation function according to forest type sets. (3) The hydricity of the site, depending on the soil type, determines the hydric-water protection function of forest stands. Currently, protective forests occupy 53,629 ha in the Czech Republic; however, two subcategories of protective forests—exceptionally unfavorable locations and natural alpine spruce communities below the forest line—potentially account for 87,578 ha and 15,277 ha, respectively. Forests with an increased soil protection function—a subcategory of special-purpose forests—occupy 133,699 ha. The potential area of soil protection forests could be up to 188,997 ha. Water resource protection zones of the first degree—another subcategory of special-purpose forests—occupy 8092 ha, and there is potentially 289,973 ha of forests serving a water protection function (specifically, a water management function) in the Czech Republic. A separate subcategory of water protection with a bank protection function accounts for 80,529 ha. A completely new approach is presented for practical use by forest owners: based on the characteristics of the habitat, they can obtain information about the fulfillment of the habitat’s ecosystem services and, thus, have basic information for the determination of forest categories and the principles of differentiated management. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

22 pages, 8078 KiB  
Article
Experimental Testing of the Efficiency, Stability, and Compatibility of Fillers in the Conservation and Restoration of Water-Gilded Wooden Heritage
by María-Ángeles Carabal-Montagud, Laura Osete-Cortina, Ángel Vicente-Escuder and Celia Laguarda-Gómez
Appl. Sci. 2025, 15(15), 8276; https://doi.org/10.3390/app15158276 - 25 Jul 2025
Viewed by 678
Abstract
The conservation and restoration of water-gilded wooden cultural heritage, such as polychrome sculptures, frames, panels, altarpieces, etc., requires the use of fillers that guarantee structural stability, physicochemical and mechanical compatibility with the original support, and the ability to adapt to dimensional movements induced [...] Read more.
The conservation and restoration of water-gilded wooden cultural heritage, such as polychrome sculptures, frames, panels, altarpieces, etc., requires the use of fillers that guarantee structural stability, physicochemical and mechanical compatibility with the original support, and the ability to adapt to dimensional movements induced by thermo-hygrometric variations. This study, conducted as part of the DorART Project, analyzed the behavior of nine formulations, both commercial and non-commercial, selected through a review of the state-of-the-art specialized literature, along with the use of participatory science, which focused on the practices and materials most commonly used by professionals in the field. The experimental design was based on three types of specimens: two with wooden supports, selected for evaluating their interaction with the original material and with the traditional water gilding technique, and a third type for analyzing the individual behavior of the tested materials. Analyses of adhesion, tensile strength, Shore C hardness, gloss, abrasion test results, wettability, pH changes, and chemical composition were performed using ATR-FTIR spectroscopy. The results showed significant differences depending on the type of curing used and the composition and aging behavior of the specimen. Some of the fillers demonstrated improved compatibility with water-based gilding, facilitating workability and providing structural strength. M3 and M9 demonstrated an optimal balance of workability and aging stability. The results of this study can help restorers select materials based on their specific needs, considering the requirements of mechanical adaptation to the substrate, compatibility, and durability. Full article
Show Figures

Figure 1

15 pages, 4791 KiB  
Article
Diversity and Metabolic Potential of Gut Bacteria in Dorcus hopei (Coleoptera: Lucanidae): Influence of Fungus and Rotten Wood Diets
by Pan Wang, Xiaoyan Bin, Xingjia Xiang and Xia Wan
Microorganisms 2025, 13(7), 1692; https://doi.org/10.3390/microorganisms13071692 - 18 Jul 2025
Viewed by 364
Abstract
Stag beetles are saproxylic insects, essential for decomposing rotten wood and maintaining the carbon cycle. Their gut bacteria contribute significantly to nutrient digestion and energy acquisition, making them crucial for understanding host-microbe interactions. Despite the fungivorous behavior of stag beetle larvae, research on [...] Read more.
Stag beetles are saproxylic insects, essential for decomposing rotten wood and maintaining the carbon cycle. Their gut bacteria contribute significantly to nutrient digestion and energy acquisition, making them crucial for understanding host-microbe interactions. Despite the fungivorous behavior of stag beetle larvae, research on how diet influences gut bacterial diversity remains scarce. Therefore, this study was conducted to compare the diversity and metabolic functions of gut bacteria in Dorcus hopei larvae fed on fungus (Pleurotus geesteranus) and rotten wood diets using high-throughput sequencing technology. Significant differences (p < 0.05) were observed in gut bacterial community composition between two diets, highlighting diet as a key factor shaping bacterial diversity. Additionally, gut bacterial communities varied across larval developmental stages (p < 0.05), indicating the influence of host age. Dominant bacterial phyla included Firmicutes, Bacteroidetes, and Proteobacteria. Bacteroidetes were more abundant in rotten-wood-fed larvae (7.61%) than fungus-fed larvae (0.15%), while Proteobacteria were more abundant in fungus-fed larvae. Functional analysis revealed that rotten-wood-fed larvae were primarily related to carbohydrate and amino acid metabolism, whereas fungus-fed larvae exhibited enhanced membrane transport function. This study enhances the understanding of gut bacterial diversity and functions in stag beetles, providing a theoretical foundation for their conservation and sustainable utilization. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
by Sotirios Pemas, Dimitrios Baliakas, Eleftheria Maria Pechlivani and Maria Stefanidou
Materials 2025, 18(14), 3375; https://doi.org/10.3390/ma18143375 - 18 Jul 2025
Viewed by 440
Abstract
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices [...] Read more.
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices to innovative and sustainable green alternatives. This study investigates the use of non-cementitious traditional mixtures for green construction applications through 3D printing using Liquid Deposition Modeling (LDM) technology. To explore the development of mixtures with enhanced physical and mechanical properties, natural pine and cypress wood shavings were added in varying proportions (1%, 3%, and 5%) as sustainable additives. The aim of this study is twofold: first, to demonstrate the printability of these eco-friendly mortars that can be used for conservation purposes and overcome the challenges of incorporating bio-products in 3D printing; and second, to develop sustainable composites that align with the objectives of the European Green Deal, offering low-emission construction solutions. The proposed mortars use hydrated lime and natural pozzolan as binders, river sand as an aggregate, and a polycarboxylate superplasticizer. While most studies with bio-products focus on traditional methods, this research provides proof of concept for their use in 3D printing. The study results indicate that, at low percentages, both additives had minimal effect on the physical and mechanical properties of the tested mortars, whereas higher percentages led to progressively more significant deterioration. Additionally, compared to molded specimens, the 3D-printed mortars exhibited slightly reduced mechanical strength and increased porosity, attributable to insufficient compaction during the printing process. Full article
(This article belongs to the Special Issue Eco-Friendly Materials for Sustainable Buildings)
Show Figures

Figure 1

18 pages, 522 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Viewed by 257
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
Show Figures

Figure 1

9 pages, 2671 KiB  
Article
Wood Species Identification and Property Evaluation of Archaeological Wood Excavated from J1 at Shenduntou Site, Fanchang, Anhui, China
by Liang Xu, Weiwei Yang, Mihaela Liu, Zhigao Wang and Xinyou Liu
Forests 2025, 16(7), 1173; https://doi.org/10.3390/f16071173 - 16 Jul 2025
Viewed by 337
Abstract
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as [...] Read more.
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as Firmiana simplex (L.), indicating ancient selection of this locally available species for its water resistance and mechanical suitability in well construction. Comprehensive degradation assessment revealed severe structural deterioration: maximum water content (1100% ± 85% vs. modern 120% ± 8%) demonstrated extreme porosity from hydrolysis; X-ray diffraction (XRD) showed a 69.5% reduction in cellulose crystallinity (16.1% vs. modern 52.8%); Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed near-total hemicellulose degradation, partial cellulose loss, and lignin enrichment due to chemical recalcitrance; Scanning Electron Microscopy (SEM) imaging documented multiscale damage including vessel thinning, pit membrane loss, and cell wall delamination from hydrolytic, microbial, and mineral degradation. These findings reflect Western Zhou inhabitants’ pragmatic resource utilisation while highlighting advanced material deterioration that poses significant conservation challenges, providing critical insights into Zhou-era woodcraft and human–environment interactions in the lower Yangtze region. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

21 pages, 7490 KiB  
Article
Exploring the Biocultural Nexus of Gastrodia elata in Zhaotong: A Pathway to Ecological Conservation and Economic Growth
by Yanxiao Fan, Menghua Tian, Defen Hu and Yong Xiong
Biology 2025, 14(7), 846; https://doi.org/10.3390/biology14070846 - 11 Jul 2025
Viewed by 513
Abstract
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate [...] Read more.
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate Tianma as a traditional crop but have also developed a series of traditional knowledge related to its cultivation, processing, medicinal use, and culinary applications. In this study, field surveys employing ethnobotanical methods were conducted in Yiliang County, Zhaotong City, from August 2020 to May 2024, focusing on Tianma. A total of 114 key informants participated in semi-structured interviews. The survey documented 23 species (and forms) from seven families related to Tianma cultivation. Among them, there were five Gastrodia resource taxa, including one original species, and four forms. These 23 species served as either target cultivated species, symbiotic fungi (promoting early-stage Gastrodia germination), or fungus-cultivating wood. The Fagaceae family, with 10 species, was the most dominant, as its dense, starch-rich wood decomposes slowly, providing Armillaria with a long-term, stable nutrient substrate. The cultural importance (CI) statistics revealed that Castanea mollissima, G. elata, G. elata f. flavida, G. elata f. glauca, G. elata f. viridis, and Xuehong Tianma (unknown form) exhibited relatively high CI values, indicating their crucial cultural significance and substantial value within the local community. In local communities, traditionally processed dried Tianma tubers are mainly used to treat cardiovascular diseases and also serve as a culinary ingredient, with its young shoots and tubers incorporated into dishes such as cold salads and stewed chicken. To protect the essential ecological conditions for Tianma, the local government has implemented forest conservation measures. The sustainable development of the Tianma industry has alleviated poverty, protected biodiversity, and promoted local economic growth. As a distinctive plateau specialty of Zhaotong, Tianma exemplifies how biocultural diversity contributes to ecosystem services and human well-being. This study underscores the importance of biocultural diversity in ecological conservation and the promotion of human welfare. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Figure 1

25 pages, 4179 KiB  
Article
A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections?
by Miran Erič, David Stopar, Enej Guček Puhar, Lidija Korat Bensa, Nuša Saje, Aleš Jaklič and Franc Solina
Heritage 2025, 8(7), 273; https://doi.org/10.3390/heritage8070273 - 9 Jul 2025
Viewed by 391
Abstract
The last decade has seen a transformative advancement in computational technologies, enabling the precise creation, evaluation, visualization, and reproduction of high-fidelity three-dimensional (3D) models of archaeological sites and artefacts. With the advent of 3D printing, both small- and large-scale objects can now be [...] Read more.
The last decade has seen a transformative advancement in computational technologies, enabling the precise creation, evaluation, visualization, and reproduction of high-fidelity three-dimensional (3D) models of archaeological sites and artefacts. With the advent of 3D printing, both small- and large-scale objects can now be reproduced with remarkable accuracy and at customizable scales. Artefacts composed of organic materials—such as wood—are inherently susceptible to biological degradation and thus require extensive, long-term conservation employing costly methodologies. These procedures often raise environmental concerns and lead to irreversible alterations in the wood’s chemical composition, dimensional properties, and the intangible essence of the original artefact. In the context of public education and the dissemination of knowledge about historical technologies and objects, 3D replicas can effectively fulfill the same purpose as original artefacts, without compromising interpretative value or cultural significance. Furthermore, the digital data embedded in 3D surface and object models provides a wealth of supplementary information that cannot be captured, preserved, or documented through conventional techniques. Waterlogged wooden objects can now be thoroughly documented in 3D, enabling ongoing, non-invasive scientific analysis. Given these capabilities, it is imperative to revisit the philosophical and ethical foundations of preserving waterlogged wood and to adopt innovative strategies for the conservation and presentation of wooden artefacts. These new paradigms can serve educational, research, and outreach purposes—core functions of contemporary museums. Full article
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 286
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

15 pages, 2253 KiB  
Article
Plant Diversity and Microbial Community Drive Ecosystem Multifunctionality in Castanopsis hystrix Plantations
by Han Sheng, Babar Shahzad, Fengling Long, Fasih Ullah Haider, Xu Li, Lihua Xian, Cheng Huang, Yuhua Ma and Hui Li
Plants 2025, 14(13), 1973; https://doi.org/10.3390/plants14131973 - 27 Jun 2025
Viewed by 392
Abstract
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity–EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require [...] Read more.
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity–EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require further investigation. This study examines how stand development influences EMF in Castanopsis hystrix L. plantations, a dominant subtropical timber species in China, by assessing six ecosystem functions (carbon stocks, wood production, nutrient cycling, decomposition, symbiosis, and water regulation) of six forest ages (6, 10, 15, 25, 30, and 34 years). The results demonstrate substantial age-dependent functional enhancement, with carbon stocks and wood production increasing by 467% and 2016% in mature stand (34 year) relative to younger stand (6 year). Nutrient cycling and water regulation showed intermediate gains (6% and 23%). Structural equation modeling identified plant diversity and microbial community composition as direct primary drivers. Tree biomass profiles emerged as the strongest biological predictors of EMF (p < 0.01), exceeding abiotic factors. These findings highlight that C. hystrix plantations can achieve high multifunctionality through stand maturation facilitated by synergistic interactions between plants and microbes. Conservation of understory vegetation and soil biodiversity represents a critical strategy for sustaining EMF, providing a science-based framework for climate-resilient plantation management in subtropical regions. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

15 pages, 7294 KiB  
Article
Evolutionary Dynamics and Functional Bifurcation of the C2H2 Gene Family in Basidiomycota
by Chao Duan and Jie Yang
J. Fungi 2025, 11(7), 487; https://doi.org/10.3390/jof11070487 - 27 Jun 2025
Viewed by 354
Abstract
This study performed a phylogenomic analysis of the C2H2 gene family across 30 Basidiomycota species, identifying 1032 genes distributed across six evolutionary clades (Groups I–VI). Functional diversification and lineage-specific expansions were observed: Group II (37.1%) formed a conserved core, while wood decayers (e.g., [...] Read more.
This study performed a phylogenomic analysis of the C2H2 gene family across 30 Basidiomycota species, identifying 1032 genes distributed across six evolutionary clades (Groups I–VI). Functional diversification and lineage-specific expansions were observed: Group II (37.1%) formed a conserved core, while wood decayers (e.g., Schizophyllum commune) and edible fungi (e.g., Pleurotus ostreatus) exhibited clade-specific expansions in Groups III and V, respectively. Physicochemical profiling revealed an acidic bias in Agaricomycotina proteins (pI 4.3–5.8) compared to alkaline trends in pathogens (Ustilaginomycotina/Pucciniomycotina; pI 8.3–8.6). Comparative genomics indicated that saprotrophs retained long genes (12.4 kb) with abundant introns (mean = 6.2/gene), whereas pathogens exhibited genomic streamlining (introns ≤ 2). Synteny network analysis revealed high ancestral conservation in core clusters (Cluster_1–2: 58% homologs) under strong purifying selection (Ka/Ks = 0.18–0.22), while peripheral clusters (Cluster_Mini) approached neutral evolution (Ka/Ks = 0.73). This study reveals stage-specific expression dynamics of 17 C2H2 zinc finger genes in Sarcomyxa edulis, highlighting their roles in coordinating developmental transitions (e.g., SeC2H2_1 in low-temperature adaptation, SeC2H2_7/12 in primordia initiation, and SeC2H2_8/9/13 in fruiting body maturation) through temporally partitioned regulatory programs, providing insights into fungal morphogenesis and stress-responsive adaptation. These findings underscore the dual role of C2H2 genes in sustaining conserved regulatory networks and facilitating ecological adaptation, providing new insights into fungal genome evolution. Full article
Show Figures

Figure 1

21 pages, 851 KiB  
Article
How Rodent Species Adapt to the Food Resources of Their Habitat
by Sergio Del Arco and Jose María Del Arco
Animals 2025, 15(13), 1874; https://doi.org/10.3390/ani15131874 - 25 Jun 2025
Viewed by 322
Abstract
Three rodent species with similar characteristics coexist in the centre of the Iberian Peninsula (Wood mouse Apodemus sylvaticus, Algerian mouse Mus spretus and Common vole Microtus arvalis). This study examines if habitat segregation exists between the species, as a means of [...] Read more.
Three rodent species with similar characteristics coexist in the centre of the Iberian Peninsula (Wood mouse Apodemus sylvaticus, Algerian mouse Mus spretus and Common vole Microtus arvalis). This study examines if habitat segregation exists between the species, as a means of preventing the intense competition that may exclude any of these species. One of the three species recently arrived in the area. The other two have been consuming resources for a long time. Our aim is to check whether adaptations have been acquired during this time. To do this, we placed the three rodent species in semi-wild enclosures consisting of three different habitats and fed them acorns from the two most abundant oak species of the area for one week. We estimated the number of acorns and the mass per acorn that each species consumed in each habitat. It was found that each species prefers different habitats. The two species that were first installed in the area participated in acorn dissemination through transport and storage. They also conserved the embryos of the acorns consumed. The newly arrived species did not transport acorns and destroys them during consumption, behaving as a true predator species. The three species segregate their habitats to avoid competition. The two species that have been in the area for a longer time exhibit a relationship with the oaks that is akin to mutualism. Full article
(This article belongs to the Special Issue Adaptation of Vertebrates to Diverse Environments)
Show Figures

Figure 1

14 pages, 2468 KiB  
Article
The Effects of Different Management Intensities on Biodiversity Conservation in the Wooded Grasslands of the Central Apennines
by Marina Allegrezza, Giulio Tesei, Matteo Francioni, Demetra Giovagnoli, Marco Bianchini and Paride D’Ottavio
Forests 2025, 16(7), 1034; https://doi.org/10.3390/f16071034 - 20 Jun 2025
Viewed by 225
Abstract
Wooded grasslands are agroforestry systems of high biological and cultural value, which are increasingly threatened by land-use abandonment in Mediterranean marginal areas. In the central-southern Apennines, little is known about their ecological dynamics under different management regimes. This study assesses how three management [...] Read more.
Wooded grasslands are agroforestry systems of high biological and cultural value, which are increasingly threatened by land-use abandonment in Mediterranean marginal areas. In the central-southern Apennines, little is known about their ecological dynamics under different management regimes. This study assesses how three management intensities (High: mowing plus grazing; Low: grazing only; and Abandoned: no management for ~50 years) affect the wooded grasslands in a protected area of the Central Apennines. Vascular plant composition and cover were recorded along radial transects from isolated Fagus sylvatica L. trunks to the adjacent grassland, with plots grouped in four positions (Trunk, Mid-canopy, Edge, and Grassland). The canopy cover, shrub height, species richness, and ecological roles of species were analysed. The results show that light availability, driven by canopy and shrub cover, shapes a gradient from shade-adapted species near the trunk to heliophilous grassland species in open areas. In the Abandoned site, shrub encroachment reduces light even beyond the canopy, facilitating the spread of shade-tolerant and pre-forest species, accelerating succession towards a closed-canopy forest. High-intensity management preserves floristic gradients and grassland species, while Low-intensity management shows early signs of succession at the canopy edge. These findings highlight the importance of traditional mowing and grazing in maintaining the biodiversity and ecological functions of wooded grasslands and emphasize the need for timely interventions where management declines. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 2245 KiB  
Review
Life Cycle Assessment with Carbon Footprint Analysis in Glulam Buildings: A Review
by Ruijing Liu, Lihong Yao, Yingchun Gong and Zhen Wang
Buildings 2025, 15(12), 2127; https://doi.org/10.3390/buildings15122127 - 19 Jun 2025
Viewed by 776
Abstract
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from [...] Read more.
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from representative countries across six continents show that wood buildings, compared to traditional materials, have a reduced carbon footprint. The geographical distribution of forest resources significantly influences the carbon footprint of glulam production. Europe and North America demonstrate optimal performance metrics (e.g., carbon sequestration), attributable to advanced technology and investment in long-term sustainable forest management. Our review research shows the lowest glulam carbon footprints (28–70% lower than traditional materials) due to clean energy and sustainable practices. In contrast, Asia and Africa exhibit systemic deficits, driven by resource scarcity, climatic stressors, and land-use pressures. South America and Oceania display transitional dynamics, with heterogeneous outcomes influenced by localized deforestation trends and conservation efficacy. Glulam buildings outperformed concrete and steel across 11–18 environmental categories, with carbon storage offsetting 30–47% of emissions and energy mixes cutting operational impacts by up to 67%. Circular strategies like recycling and prefabrication reduced end-of-life emissions by 12–29% and cut construction time and costs. Social benefits included job creation (e.g., 1 million in the EU) and improved well-being in wooden interiors. To further reduce carbon footprint disparities, this study emphasizes sustainable forest management, longer building lifespans, optimized energy mixes, shorter transport distances, advanced production technologies, and improved recycling systems. Additionally, the circular economy and social benefits of glulam buildings, such as reduced construction costs, value recovery, and job creation, are highlighted. In the future, prioritizing equitable partnerships and enhancing international exchanges of technical expertise will facilitate the adoption of sustainable practices in glulam buildings and advance decarbonization goals in the global building sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop