Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,144)

Search Parameters:
Keywords = wireless sensor network (WSN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3663 KiB  
Article
Enhanced Cuckoo Search Optimization with Opposition-Based Learning for the Optimal Placement of Sensor Nodes and Enhanced Network Coverage in Wireless Sensor Networks
by Mandli Rami Reddy, M. L. Ravi Chandra and Ravilla Dilli
Appl. Sci. 2025, 15(15), 8575; https://doi.org/10.3390/app15158575 (registering DOI) - 1 Aug 2025
Viewed by 94
Abstract
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of [...] Read more.
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of interest (ROI). The main idea is to achieve maximum area coverage and connectivity with strategic deployment and the minimal number of sensor nodes. This work addresses the problem of network area coverage in randomly distributed WSNs and provides an efficient deployment strategy using an enhanced version of cuckoo search optimization (ECSO). The “sequential update evaluation” mechanism is used to mitigate the dependency among dimensions and provide highly accurate solutions, particularly during the local search phase. During the preference random walk phase of conventional CSO, particle swarm optimization (PSO) with adaptive inertia weights is defined to accelerate the local search capabilities. The “opposition-based learning (OBL)” strategy is applied to ensure high-quality initial solutions that help to enhance the balance between exploration and exploitation. By considering the opposite of current solutions to expand the search space, we achieve higher convergence speed and population diversity. The performance of ECSO-OBL is evaluated using eight benchmark functions, and the results of three cases are compared with the existing methods. The proposed method enhances network coverage with a non-uniform distribution of sensor nodes and attempts to cover the whole ROI with a minimal number of sensor nodes. In a WSN with a 100 m2 area, we achieved a maximum coverage rate of 98.45% and algorithm convergence in 143 iterations, and the execution time was limited to 2.85 s. The simulation results of various cases prove the higher efficiency of the ECSO-OBL method in terms of network coverage and connectivity in WSNs compared with existing state-of-the-art works. Full article
Show Figures

Figure 1

30 pages, 599 KiB  
Review
A Survey of Approximation Algorithms for the Power Cover Problem
by Jiaming Zhang, Zhikang Zhang and Weidong Li
Mathematics 2025, 13(15), 2479; https://doi.org/10.3390/math13152479 - 1 Aug 2025
Viewed by 90
Abstract
Wireless sensor networks (WSNs) have attracted significant attention due to their widespread applications in various fields such as environmental monitoring, agriculture, intelligent transportation, and healthcare. In these networks, the power cost of a sensor node is closely related to the radius of its [...] Read more.
Wireless sensor networks (WSNs) have attracted significant attention due to their widespread applications in various fields such as environmental monitoring, agriculture, intelligent transportation, and healthcare. In these networks, the power cost of a sensor node is closely related to the radius of its coverage area, following a nonlinear relationship where power increases as the coverage radius grows according to an attenuation factor. This means that increasing the coverage radius of a sensor leads to a corresponding increase in its power cost. Consequently, minimizing the total power cost of the network while all clients are served has become a crucial research topic. The power cover problem focuses on adjusting the power levels of sensors to serve all clients while minimizing the total power cost. This survey focuses on the power cover problem and its related variants in WSNs. Specifically, it introduces nonlinear integer programming formulations for the power cover problem and its related variants, all within the specified sensor setting. It also provides a comprehensive overview of the power cover problem and its variants under both specified and unspecified sensor settings, summarizes existing results and approximation algorithms, and outlines potential directions for future research. Full article
Show Figures

Figure 1

28 pages, 1328 KiB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 - 1 Aug 2025
Viewed by 193
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

18 pages, 651 KiB  
Article
Enhancing IoT Connectivity in Suburban and Rural Terrains Through Optimized Propagation Models Using Convolutional Neural Networks
by George Papastergiou, Apostolos Xenakis, Costas Chaikalis, Dimitrios Kosmanos and Menelaos Panagiotis Papastergiou
IoT 2025, 6(3), 41; https://doi.org/10.3390/iot6030041 - 31 Jul 2025
Viewed by 180
Abstract
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment [...] Read more.
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment and operation of Wireless Sensor Networks (WSNs) in such environments. This study explores the use of Convolutional Neural Networks (CNNs) for PL modeling, utilizing a comprehensive dataset collected in a smart campus setting that captures the influence of terrain and environmental variations. Several CNN architectures were evaluated based on different combinations of input features—such as distance, elevation, clutter height, and altitude—to assess their predictive accuracy. The findings reveal that CNN-based models outperform traditional propagation models (Free Space Path Loss (FSPL), Okumura–Hata, COST 231, Log-Distance), achieving lower error rates and more precise PL estimations. The best performing CNN configuration, using only distance and elevation, highlights the value of terrain-aware modeling. These results underscore the potential of deep learning techniques to enhance IoT connectivity in sparsely connected regions and support the development of more resilient communication infrastructures. Full article
Show Figures

Figure 1

18 pages, 4857 KiB  
Article
Fast Detection of FDI Attacks and State Estimation in Unmanned Surface Vessels Based on Dynamic Encryption
by Zheng Liu, Li Liu, Hongyong Yang, Zengfeng Wang, Guanlong Deng and Chunjie Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1457; https://doi.org/10.3390/jmse13081457 - 30 Jul 2025
Viewed by 106
Abstract
Wireless sensor networks (WSNs) are used for data acquisition and transmission in unmanned surface vessels (USVs). However, the openness of wireless networks makes USVs highly susceptible to false data injection (FDI) attacks during data transmission, which affects the sensors’ ability to receive real [...] Read more.
Wireless sensor networks (WSNs) are used for data acquisition and transmission in unmanned surface vessels (USVs). However, the openness of wireless networks makes USVs highly susceptible to false data injection (FDI) attacks during data transmission, which affects the sensors’ ability to receive real data and leads to decision-making errors in the control center. In this paper, a novel dynamic data encryption method is proposed whereby data are encrypted prior to transmission and the key is dynamically updated using historical system data, with a view to increasing the difficulty for attackers to crack the ciphertext. At the same time, a dynamic relationship is established among ciphertext, key, and auxiliary encrypted ciphertext, and an attack detection scheme based on dynamic encryption is designed to realize instant detection and localization of FDI attacks. Further, an H fusion filter is designed to filter external interference noise, and the real information is estimated or restored by the weighted fusion algorithm. Ultimately, the validity of the proposed scheme is confirmed through simulation experiments. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

32 pages, 5164 KiB  
Article
Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study
by Yernazar Bolat, Iain Murray, Yifei Ren and Nasim Ferdosian
Sensors 2025, 25(15), 4595; https://doi.org/10.3390/s25154595 - 24 Jul 2025
Viewed by 370
Abstract
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional [...] Read more.
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional methods like cloud-based inference and model compression often incur bandwidth, privacy, and accuracy trade-offs. This paper introduces a novel Decentralized Distributed Sequential Neural Network (DDSNN) designed for low-power MCUs in Tiny Machine Learning (TinyML) applications. Unlike the existing methods that rely on centralized cluster-based approaches, DDSNN partitions a pre-trained LeNet across multiple MCUs, enabling fully decentralized inference in wireless sensor networks (WSNs). We validate DDSNN in a real-world predictive maintenance scenario, where vibration data from an industrial pump is analyzed in real-time. The experimental results demonstrate that DDSNN achieves 99.01% accuracy, explicitly maintaining the accuracy of the non-distributed baseline model and reducing inference latency by approximately 50%, highlighting its significant enhancement over traditional, non-distributed approaches, demonstrating its practical feasibility under realistic operating conditions. Full article
Show Figures

Figure 1

23 pages, 1885 KiB  
Article
Applying Machine Learning to DEEC Protocol: Improved Cluster Formation in Wireless Sensor Networks
by Abdulla Juwaied and Lidia Jackowska-Strumillo
Network 2025, 5(3), 26; https://doi.org/10.3390/network5030026 - 24 Jul 2025
Viewed by 190
Abstract
Wireless Sensor Networks (WSNs) are specialised ad hoc networks composed of small, low-power, and often battery-operated sensor nodes with various sensors and wireless communication capabilities. These nodes collaborate to monitor and collect data from the physical environment, transmitting it to a central location [...] Read more.
Wireless Sensor Networks (WSNs) are specialised ad hoc networks composed of small, low-power, and often battery-operated sensor nodes with various sensors and wireless communication capabilities. These nodes collaborate to monitor and collect data from the physical environment, transmitting it to a central location or sink node for further processing and analysis. This study proposes two machine learning-based enhancements to the DEEC protocol for Wireless Sensor Networks (WSNs) by integrating the K-Nearest Neighbours (K-NN) and K-Means (K-M) machine learning (ML) algorithms. The Distributed Energy-Efficient Clustering with K-NN (DEEC-KNN) and with K-Means (DEEC-KM) approaches dynamically optimize cluster head selection to improve energy efficiency and network lifetime. These methods are validated through extensive simulations, demonstrating up to 110% improvement in packet delivery and significant gains in network stability compared with the original DEEC protocol. The adaptive clustering enabled by K-NN and K-Means is particularly effective for large-scale and dynamic WSN deployments where node failures and topology changes are frequent. These findings suggest that integrating ML with clustering protocols is a promising direction for future WSN design. Full article
Show Figures

Figure 1

26 pages, 3533 KiB  
Article
EDMR: An Enhanced Dynamic Multi-Hop Routing Protocol with a Novel Sleeping Mechanism for Wireless Sensor Networks
by Emad Alnawafa and Mohammad Allaymoun
Sensors 2025, 25(14), 4510; https://doi.org/10.3390/s25144510 - 21 Jul 2025
Viewed by 281
Abstract
Numerous protocols have emerged to address the energy depletion problem in Wireless Sensor Networks (WSNs). Among these protocols, the Dynamic Multi-Hop Routing (DMR) protocol adopts a dynamic technique for routing data across the network. The use of the DMR protocol has shown promising [...] Read more.
Numerous protocols have emerged to address the energy depletion problem in Wireless Sensor Networks (WSNs). Among these protocols, the Dynamic Multi-Hop Routing (DMR) protocol adopts a dynamic technique for routing data across the network. The use of the DMR protocol has shown promising results in reducing energy consumption, prolonging the network lifetime, and increasing throughput. To improve the performance of WSNs, this paper proposes the Enhanced Dynamic Multi-Hop Routing (EDMR) protocol as a modification of the DMR protocol. The EDMR protocol introduces an effective sleeping mechanism that selectively deactivates clusters that do not generate significantly updated data for a specific duration. This mechanism reduces redundant transmissions, thereby saving energy and prolonging the network lifetime. The EDMR protocol incorporates static and dynamic approaches to support two major categories of applications: monitoring and event-driven applications. The proposed protocol is evaluated against the DMR protocol, the Enhanced Dynamic Multi-Hop Technique (EMDHT-LEACH) protocol, and the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. The simulation results demonstrate that the EDMR protocol mitigates energy depletion, extends the network lifetime, increases stability, and improves network throughput toward the Base Station (BS), while reducing packet redundancy compared with the other protocols. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 853
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

23 pages, 1585 KiB  
Article
Binary Secretary Bird Optimization Clustering by Novel Fitness Function Based on Voronoi Diagram in Wireless Sensor Networks
by Mohammed Abdulkareem, Hadi S. Aghdasi, Pedram Salehpour and Mina Zolfy
Sensors 2025, 25(14), 4339; https://doi.org/10.3390/s25144339 - 11 Jul 2025
Viewed by 236
Abstract
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster [...] Read more.
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster heads (CHs) are responsible for data collection, aggregation, and forwarding, making their optimal selection essential for prolonging network lifetime. The effectiveness of CH selection is highly dependent on the choice of metaheuristic optimization method and the design of the fitness function. Although numerous studies have applied metaheuristic algorithms with suitably designed fitness functions to tackle the CH selection problem, many existing approaches fail to fully capture both the spatial distribution of nodes and dynamic energy conditions. To address these limitations, we propose the binary secretary bird optimization clustering (BSBOC) method. BSBOC introduces a binary variant of the secretary bird optimization algorithm (SBOA) to handle the discrete nature of CH selection. Additionally, it defines a novel multiobjective fitness function that, for the first time, considers the Voronoi diagram of CHs as an optimization objective, besides other well-known objectives. BSBOC was thoroughly assessed via comprehensive simulation experiments, benchmarked against two advanced methods (MOBGWO and WAOA), under both homogeneous and heterogeneous network models across two deployment scenarios. Findings from these simulations demonstrated that BSBOC notably decreased energy usage and prolonged network lifetime, highlighting its effectiveness as a reliable method for energy-aware clustering in WSNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

17 pages, 2080 KiB  
Article
IoT Services for Monitoring Food Supply Chains
by Loucas Protopappas, Dimitrios Bechtsis and Nikolaos Tsotsolas
Appl. Sci. 2025, 15(13), 7602; https://doi.org/10.3390/app15137602 - 7 Jul 2025
Viewed by 702
Abstract
Ensuring the safety and quality of perishable agrifood products throughout the supply chain is essential. Key parameters, such as temperature and humidity, must be consistently monitored to prevent spoilage, maintain nutritional value, and minimise health risks. Fluctuations in transportation conditions can compromise product [...] Read more.
Ensuring the safety and quality of perishable agrifood products throughout the supply chain is essential. Key parameters, such as temperature and humidity, must be consistently monitored to prevent spoilage, maintain nutritional value, and minimise health risks. Fluctuations in transportation conditions can compromise product integrity, leading to deterioration and an increased risk of foodborne illness. Monitoring agrifood supply chains is essential, from packaging to last-mile delivery. Distribution methods that rely on non-automated monitoring systems, such as manual temperature measurements, are error-prone due to the failure of manual treatments and increase the likelihood of product deterioration. Emerging sensor technologies and the rapid development of Information and Communication Technologies offer new possibilities for real-time tracking, enabling stakeholders to maintain optimal conditions and monitor aesthetic, physicochemical, and nutritional quality. This paper proposes a cost-effective temperature and humidity traceability system that utilises wireless sensor networks (WSN) and Internet of Things (IoΤ) services to monitor perishable products within the agrifood supply chain ecosystem. It also provides an overview of recent innovations in sensor technologies, along with food quality indicators relevant to real-time monitoring of food quality. The proposed research examines the available sensor technologies and methodologies that enable continuous monitoring of agrifood supply chains. Moreover, the paper presents a pilot full-scale project from both functional and technological perspectives. Full article
(This article belongs to the Special Issue Data-Driven Supply Chain Management and Logistics Engineering)
Show Figures

Figure 1

21 pages, 2578 KiB  
Article
Coverage Hole Recovery in Hybrid Sensor Networks Based on Key Perceptual Intersections for Emergency Communications
by He Li, Shixian Sun, Chuang Dong, Qinglei Qi, Cong Zhao, Zufeng Fu, Peng Yu and Jiajia Liu
Sensors 2025, 25(13), 4217; https://doi.org/10.3390/s25134217 - 6 Jul 2025
Viewed by 349
Abstract
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, [...] Read more.
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, thus creating coverage holes in the monitored area. Coverage holes can cause the network to fail to deliver high-quality data and can also affect network performance and the quality of service. Therefore, the detection and recovery of coverage holes are major issues in WSNs. In response to these issues, we propose a method for detecting and recovering coverage holes in wireless sensor networks. This method first divides the network into equally sized units, and then selects a representative node for each unit based on two conditions, called an agent. Then, the percentage of each unit covered by nodes can be accurately calculated and holes can be detected. Finally, the holes are recovered using the average of the key perceptual intersections as the initial value of the global optimal point of the particle swarm optimization algorithm. Simulation experiments show that the algorithm proposed in this paper reduces network energy consumption by 6.68%, decreases the distance traveled by mobile nodes by 8.51%, and increases the percentage of network hole recovery by 2.16%, compared with other algorithms. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

20 pages, 1179 KiB  
Article
Conv1D-GRU-Self Attention: An Efficient Deep Learning Framework for Detecting Intrusions in Wireless Sensor Networks
by Kenan Honore Robacky Mbongo, Kanwal Ahmed, Orken Mamyrbayev, Guanghui Wang, Fang Zuo, Ainur Akhmediyarova, Nurzhan Mukazhanov and Assem Ayapbergenova
Future Internet 2025, 17(7), 301; https://doi.org/10.3390/fi17070301 - 4 Jul 2025
Viewed by 436
Abstract
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and [...] Read more.
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and evaluate a deep learning-based Intrusion Detection System (IDS) that is both accurate and efficient for real-time threat detection in WSNs. This study proposes a hybrid IDS model combining one-dimensional Convolutional Neural Networks (Conv1Ds), Gated Recurrent Units (GRUs), and Self-Attention mechanisms. A Conv1D extracts spatial features from network traffic, GRU captures temporal dependencies, and Self-Attention emphasizes critical sequence components, collectively enhancing detection of subtle and complex intrusion patterns. The model was evaluated using the WSN-DS dataset and demonstrated superior performance compared to traditional machine learning and simpler deep learning models. It achieved an accuracy of 98.6%, precision of 98.63%, recall of 98.6%, F1-score of 98.6%, and an ROC-AUC of 0.9994, indicating strong predictive capability even with imbalanced data. In addition to centralized training, the model was tested under cooperative, node-based learning conditions, where each node independently detects anomalies and contributes to a collective decision-making framework. This distributed approach improves detection efficiency and robustness. The proposed IDS offers a scalable and resilient solution tailored to the unique challenges of WSN security. Full article
Show Figures

Figure 1

34 pages, 6019 KiB  
Article
Deploying a Wireless Sensor Network to Track Pesticide Pollution in Kiu Wetland Wells: A Field Study
by Titus Mutunga, Sinan Sinanovic, Funmilayo B. Offiong and Colin Harrison
Sensors 2025, 25(13), 4149; https://doi.org/10.3390/s25134149 - 3 Jul 2025
Viewed by 609
Abstract
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and [...] Read more.
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and machine-to-machine communication technologies (M2M) holds promise in overcoming this major global challenge. In this current research, an IoT-based wireless sensor network (WSN) is successfully deployed in rural Kenya at the Kiu watershed, providing in situ pesticide detections and a real-time data visualisation of shallow wells. Kiu is an off-grid community located in an area of intensive agriculture, where residents face a high exposure to pesticides due to farming activities and a reliance on shallow wells for domestic water. The evaluation of path loss models utilising channel characteristics obtained from this study indicate a marked departure from the continuous signal decay with distance. Transmitted packets from deployed sensor nodes indicate minimal mutations of payloads, underscoring systems reliability and data transmission integrity. Additionally, the proposed design significantly reduces the time taken to deliver pesticide measurement results to relevant stakeholders. For the entire monitoring period, pesticide residues were not detected in the selected wells, an outcome validated with lab procedures. These results are attributed to prevailing dry weather conditions which limited the leaching of pesticides to lower layers reaching the water table. Full article
(This article belongs to the Collection Sensing Technology in Smart Agriculture)
Show Figures

Figure 1

40 pages, 5045 KiB  
Review
RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities
by Stella N. Arinze, Emenike Raymond Obi, Solomon H. Ebenuwa and Augustine O. Nwajana
Telecom 2025, 6(3), 45; https://doi.org/10.3390/telecom6030045 - 1 Jul 2025
Viewed by 1114
Abstract
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts [...] Read more.
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts them into usable electrical energy. This approach offers a viable alternative for battery-dependent and hard-to-recharge applications, including streetlights, outdoor night/security lighting, wireless sensor networks, and biomedical body sensor networks. This article provides a comprehensive review of the RFEH techniques, including state-of-the-art rectenna designs, energy conversion efficiency improvements, and multi-band harvesting systems. We present a detailed analysis of recent advancements in RFEH circuits, impedance matching techniques, and integration with emerging technologies such as the Internet of Things (IoT), 5G, and wireless power transfer (WPT). Additionally, this review identifies existing challenges, including low conversion efficiency, unpredictable energy availability, and design limitations for small-scale and embedded systems. A critical assessment of current research gaps is provided, highlighting areas where further development is required to enhance performance and scalability. Finally, constructive recommendations for future opportunities in RFEH are discussed, focusing on advanced materials, AI-driven adaptive harvesting systems, hybrid energy-harvesting techniques, and novel antenna–rectifier architectures. The insights from this study will serve as a valuable resource for researchers and engineers working towards the realization of self-sustaining, battery-free electronic systems. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

Back to TopTop