Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = wind–battery hybrid power plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2499 KB  
Review
Adaptive Control and Interoperability Frameworks for Wind Power Plant Integration: A Comprehensive Review of Strategies, Standards, and Real-Time Validation
by Sinawo Nomandela, Mkhululi E. S. Mnguni and Atanda K. Raji
Appl. Sci. 2025, 15(23), 12729; https://doi.org/10.3390/app152312729 - 1 Dec 2025
Viewed by 503
Abstract
The rapid integration of wind power plants (WPPs) into modern electrical power systems (MEPSs) is crucial to global decarbonization, but it introduces significant technical challenges. Variability, intermittency, and forecasting uncertainty compromise frequency stability, voltage regulation, and grid reliability, particularly at high levels of [...] Read more.
The rapid integration of wind power plants (WPPs) into modern electrical power systems (MEPSs) is crucial to global decarbonization, but it introduces significant technical challenges. Variability, intermittency, and forecasting uncertainty compromise frequency stability, voltage regulation, and grid reliability, particularly at high levels of renewable energy integration. To address these issues, adaptive control strategies have been proposed at the turbine, plant, and system levels, including reinforcement learning-based optimization, cooperative plant-level dispatch, and hybrid energy schemes with battery energy storage systems (BESS). At the same time, interoperability frameworks based on international standards, notably IEC 61850 and IEC 61400-25, provide the communication backbone for vendor-independent coordination; however, their application remains largely limited to monitoring and protection, rather than holistic adaptive operation. Real-Time Automation Controllers (RTACs) emerge as promising platforms for unifying monitoring, operation, and protection functions, but their deployment in large-scale WPPs remains underexplored. Validation of these frameworks is still dominated by simulation-only studies, while real-time digital simulation (RTDS) and hardware-in-the-loop (HIL) environments have only recently begun to bridge the gap between theory and practice. This review consolidates advances in adaptive control, interoperability, and validation, identifies critical gaps, including limited PCC-level integration, underutilization of IEC standards, and insufficient cyber–physical resilience, and outlines future research directions. Emphasis is placed on holistic adaptive frameworks, IEC–RTAC integration, digital twin–HIL environments, and AI-enabled adaptive methods with embedded cybersecurity. By synthesizing these perspectives, the review highlights pathways toward resilient, secure, and standards-compliant renewable power systems that can support the transition to a low-carbon future. Full article
(This article belongs to the Special Issue Energy and Power Systems: Control and Management)
Show Figures

Figure 1

37 pages, 4381 KB  
Review
Enabling Reliable Freshwater Supply: A Review of Fuel Cell and Battery Hybridization for Solar- and Wind-Powered Desalination
by Levon Gevorkov, Hector del Pozo Gonzalez, Paula Arias, José Luis Domínguez-García and Lluis Trilla
Appl. Sci. 2025, 15(22), 12145; https://doi.org/10.3390/app152212145 - 16 Nov 2025
Viewed by 942
Abstract
The global water crisis, intensified by climate change and population growth, underscores the critical need for sustainable water production. Desalination is a pivotal solution, but its energy-intensive nature demands a transition from fossil fuels to renewable sources. However, the inherent intermittency of solar [...] Read more.
The global water crisis, intensified by climate change and population growth, underscores the critical need for sustainable water production. Desalination is a pivotal solution, but its energy-intensive nature demands a transition from fossil fuels to renewable sources. However, the inherent intermittency of solar and wind power poses a fundamental challenge to the stable operation of desalination plants. This review provides a comprehensive analysis of a specifically tailored solution: hybrid energy storage systems (HESS) that synergistically combine batteries and hydrogen fuel cells (FC). Moving beyond a general description of hybridization, this study delves into the strategic complementarity of this pairing, where the high-power density and rapid response of lithium-ion batteries manage short-term fluctuations, while the high-energy density and steady output of fuel cells ensure long-duration, stable baseload power. This operational synergy is crucial for maintaining consistent pressure in processes like reverse osmosis (RO), thereby reducing membrane stress and improving system uptime. A central focus of this review is the critical role of advanced energy management systems (EMS). We synthesize findings on how intelligent control strategies, from fuzzy logic to metaheuristic optimization algorithms, are essential for managing the power split between components. These sophisticated EMS strategies do not merely ensure reliability, they actively optimize the system to minimize hydrogen consumption, reduce operational costs, and extend the lifespan of the hybrid energy storage components. The analysis confirms that a lithium-ion battery-fuel cell HESS, governed by an advanced EMS, effectively mitigates renewable intermittency to significantly enhance freshwater yield and overall system reliability. By integrating component-specific hybridization with smart control, this review establishes a framework for researchers and engineers to achieve significant levels of energy efficiency, economic viability, and sustainability in renewable-powered desalination. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

38 pages, 8669 KB  
Article
Robust THRO-Optimized PIDD2-TD Controller for Hybrid Power System Frequency Regulation
by Mohammed Hamdan Alshehri, Ashraf Ibrahim Megahed, Ahmed Hossam-Eldin, Moustafa Ahmed Ibrahim and Kareem M. AboRas
Processes 2025, 13(11), 3529; https://doi.org/10.3390/pr13113529 - 3 Nov 2025
Viewed by 480
Abstract
The large-scale adoption of renewable energy sources, while environmentally beneficial, introduces significant frequency fluctuations due to the inherent variability of wind and solar output. Electric vehicle (EV) integration with substantial battery storage and bidirectional charging capabilities offers potential mitigation for these fluctuations. This [...] Read more.
The large-scale adoption of renewable energy sources, while environmentally beneficial, introduces significant frequency fluctuations due to the inherent variability of wind and solar output. Electric vehicle (EV) integration with substantial battery storage and bidirectional charging capabilities offers potential mitigation for these fluctuations. This study addresses load frequency regulation in multi-area interconnected power systems incorporating diverse generation resources: renewables (solar/wind), conventional plants (thermal/gas/hydro), and EV units. A hybrid controller combining the proportional–integral–derivative with second derivative (PIDD2) and tilted derivative (TD) structures is proposed, with parameters tuned using an innovative optimization method called the Tianji’s Horse Racing Optimization (THRO) technique. The THRO-optimized PIDD2-TD controller is evaluated under realistic conditions including system nonlinearities (generation rate constraints and governor deadband). Performance is benchmarked against various combination structures discussed in earlier research, such as PID-TID and PIDD2-PD. THRO’s superiority in optimization has also been proven against several recently published optimization approaches, such as the Dhole Optimization Algorithm (DOA) and Water Uptake and Transport in Plants (WUTPs). The simulation results show that the proposed controller delivers markedly better dynamic performance across load disturbances, system uncertainties, operational constraints, and high-renewable-penetration scenarios. The THRO-based PIDD2-TD controller achieves optimal overshoot, undershoot, and settling time metrics, reducing overshoot by 76%, undershoot by 34%, and settling time by 26% relative to other controllers, highlighting its robustness and effectiveness for modern hybrid grids. Full article
(This article belongs to the Special Issue AI-Based Modelling and Control of Power Systems)
Show Figures

Figure 1

24 pages, 10428 KB  
Article
Hybrid Energy Storage Capacity Optimization for Power Fluctuation Mitigation in Offshore Wind–Photovoltaic Hybrid Plants Using TVF-EMD
by Chenghuan Tian, Qinghu Zhang, Dan Mei, Xudong Zhang, Zhengping Li and Erqiang Chen
Processes 2025, 13(10), 3282; https://doi.org/10.3390/pr13103282 - 14 Oct 2025
Viewed by 703
Abstract
The large-scale integration of coordinated offshore wind and offshore photovoltaic (PV) generation introduces pronounced power fluctuations due to the intrinsic randomness and intermittency of renewable energy sources (RESs). These fluctuations pose significant challenges to the secure, stable, and economical operation of modern power [...] Read more.
The large-scale integration of coordinated offshore wind and offshore photovoltaic (PV) generation introduces pronounced power fluctuations due to the intrinsic randomness and intermittency of renewable energy sources (RESs). These fluctuations pose significant challenges to the secure, stable, and economical operation of modern power systems. To address this issue, this study proposes a hybrid energy storage system (HESS)-based optimization framework that simultaneously enhances fluctuation suppression performance, optimizes storage capacity allocation, and improves life-cycle economic efficiency. First, a K-means fuzzy clustering algorithm is employed to analyze historical RES power data, extracting representative daily fluctuation profiles to serve as accurate inputs for optimization. Second, the time-varying filter empirical mode decomposition (TVF-EMD) technique is applied to adaptively decompose the net power fluctuations. High-frequency components are allocated to a flywheel energy storage system (FESS), valued for its high power density, rapid response, and long cycle life, while low-frequency components are assigned to a battery energy storage system (BESS), characterized by high energy density and cost-effectiveness. This decomposition–allocation strategy fully exploits the complementary characteristics of different storage technologies. Simulation results for an integrated offshore wind–PV generation scenario demonstrate that the proposed method significantly reduces the fluctuation rate of RES power output while maintaining favorable economic performance. The approach achieves unified optimization of HESS sizing, fluctuation mitigation, and life-cycle cost, offering a viable reference for the planning and operation of large-scale offshore hybrid renewable plants. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

25 pages, 3199 KB  
Article
Challenges in Aquaculture Hybrid Energy Management: Optimization Tools, New Solutions, and Comparative Evaluations
by Helena M. Ramos, Nicolas Soehlemann, Eyup Bekci, Oscar E. Coronado-Hernández, Modesto Pérez-Sánchez, Aonghus McNabola and John Gallagher
Technologies 2025, 13(10), 453; https://doi.org/10.3390/technologies13100453 - 7 Oct 2025
Viewed by 668
Abstract
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. [...] Read more.
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. The system also incorporates a 250 kW small hydroelectric plant and a wood drying kiln that utilizes surplus wind energy. This study conducts a comparative analysis between HY4RES, a research-oriented simulation model, and HOMER Pro, a commercially available optimization tool, across multiple hybrid energy scenarios at two aquaculture sites. For grid-connected configurations at the Primary site (base case, Scenarios 1, 2, and 6), both models demonstrate strong concordance in terms of energy balance and overall performance. In Scenario 1, a peak power demand exceeding 1000 kW is observed in both models, attributed to the biomass kiln load. Scenario 2 reveals a 3.1% improvement in self-sufficiency with the integration of photovoltaic generation, as reported by HY4RES. In the off-grid Scenario 3, HY4RES supplies an additional 96,634 kWh of annual load compared to HOMER Pro. However, HOMER Pro indicates a 3.6% higher electricity deficit, primarily due to battery energy storage system (BESS) losses. Scenario 4 yields comparable generation outputs, with HY4RES enabling 6% more wood-drying capacity through the inclusion of photovoltaic energy. Scenario 5, which features a large-scale BESS, highlights a 4.7% unmet demand in HY4RES, whereas HOMER Pro successfully meets the entire load. In Scenario 6, both models exhibit similar load profiles; however, HY4RES reports a self-sufficiency rate that is 1.3% lower than in Scenario 1. At the Secondary site, financial outcomes are closely aligned. For instance, in the base case, HY4RES projects a cash flow of 54,154 EUR, while HOMER Pro estimates 55,532 EUR. Scenario 1 presents nearly identical financial results, and Scenario 2 underscores HOMER Pro’s superior BESS modeling capabilities during periods of reduced hydroelectric output. In conclusion, HY4RES demonstrates robust performance across all scenarios. When provided with harmonized input parameters, its simulation results are consistent with those of HOMER Pro, thereby validating its reliability for hybrid energy management in aquaculture applications. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
Show Figures

Figure 1

14 pages, 1242 KB  
Article
Renewable Energy Systems for Isolated Residential Houses: A Case Study Favoring Wind Power
by Deivis Avila, Ángela Hernández and Graciliano Nicolás Marichal
Processes 2025, 13(10), 3127; https://doi.org/10.3390/pr13103127 - 29 Sep 2025
Viewed by 703
Abstract
This study models different hybrid systems based on renewable energies that can be supported by diesel generators to meet the energy needs of isolated homes in the Canary Islands. The research will cover the energy requirements of a residential house, including the production [...] Read more.
This study models different hybrid systems based on renewable energies that can be supported by diesel generators to meet the energy needs of isolated homes in the Canary Islands. The research will cover the energy requirements of a residential house, including the production of fresh water using a reverse osmosis desalination plant. The system is designed to operate independently of the electrical grid. The HOMER software package was used to model and optimize the hybrid systems. The model was fed with data on the electrical demands of residential homes (including the consumption by the small reverse osmosis desalination plant) as well as the technical specifications of the various devices and renewable energy sources, such as solar radiation and wind speed potentials. The software considers various configurations to optimize hybrid systems, selecting the most suitable one based on the available renewable energy sources at the selected location. The data used in the research were collected on the eastern islands of the Canary Islands (Gran Canaria, Lanzarote and Fuerteventura). Based on the system input parameters, the simulation and optimization performed in HOMER, taking into account the lowest “Levelized Cost of Energy”, it can be concluded that the preferred hybrid renewable energy system for this region is a small wind turbine with a nominal power of 1.9 kW, eight batteries, and a small diesel generator with a nominal power of 1.0 kW. The knowledge from this research could be applied to other geographical areas of the world that have similar conditions, namely a shortage of water and plentiful renewable energy sources. Full article
Show Figures

Figure 1

28 pages, 4658 KB  
Article
Simulation, Optimization, and Techno-Economic Assessment of 100% Off-Grid Hybrid Renewable Energy Systems for Rural Electrification in Eastern Morocco
by Noure Elhouda Choukri, Samir Touili, Abdellatif Azzaoui and Ahmed Alami Merrouni
Processes 2025, 13(9), 2801; https://doi.org/10.3390/pr13092801 - 1 Sep 2025
Viewed by 1325
Abstract
Hybrid Renewable Energy Systems (HRESs) can be an effective and sustainable way to provide electricity for remote and rural villages in Morocco; however, the design and optimization of such systems can be a challenging and difficult task. In this context, the objective of [...] Read more.
Hybrid Renewable Energy Systems (HRESs) can be an effective and sustainable way to provide electricity for remote and rural villages in Morocco; however, the design and optimization of such systems can be a challenging and difficult task. In this context, the objective of this research is to design and optimize different (HRESs) that incorporate various renewable energy technologies, namely Photovoltaics (PVs), wind turbines, and Concentrating Solar Power (CSP), whereas biomass generators and batteries are used as a storage medium. Overall, 15 scenarios based on different HRES configurations were designed, simulated, and optimized by the HOMER software for the site of Ain Beni Mathar, located in eastern Morocco. Furthermore, the potential CO2 emissions reduction from the different scenarios was estimated as well. The results show that the scenario including PVs and batteries is most cost-effective due to favorable climatic conditions and low costs. In fact, the most optimal HRES from a technical and economic standpoint is composed of a 48.8 kW PV plant, 213 batteries, a converter capacity of 43.8 kW, and an annual production of 117.5 MWh with only 8.8% excess energy, leading to an LCOE of 0.184 USD/kWh with a CO2 emissions reduction of 81.7 tons per year, whereas scenarios with wind turbines, CSP, and biomass exhibit a higher LCOE in the range of 0.472–1.15 USD/kWh. This study’s findings confirm the technical and economic viability of HRESs to supply 100% of the electricity demand for rural Moroccan communities, through a proper HRES design. Full article
(This article belongs to the Special Issue Advances in Heat Transfer and Thermal Energy Storage Systems)
Show Figures

Figure 1

24 pages, 12245 KB  
Article
Evaluating the Economic Feasibility of Utility-Scale Hybrid Power Plants Under Divergent Policy Environments: A Multi-Objective Approach
by Shree Om Bade, Hossein Salehfar, Olusegun Stanley Tomomewo, Johannes Van der Watt and Michael Mann
Energies 2025, 18(17), 4608; https://doi.org/10.3390/en18174608 - 30 Aug 2025
Viewed by 828
Abstract
This study presents a novel policy-integrated optimization framework for utility-scale hybrid power plants (HPP), including wind–solar–battery, addressing a critical gap in hybrid renewable energy system design by simultaneously evaluating technical, operational, and economic performance under dynamic policy environments. Unlike conventional approaches that treat [...] Read more.
This study presents a novel policy-integrated optimization framework for utility-scale hybrid power plants (HPP), including wind–solar–battery, addressing a critical gap in hybrid renewable energy system design by simultaneously evaluating technical, operational, and economic performance under dynamic policy environments. Unlike conventional approaches that treat these factors separately, this multi-objective optimization model uniquely combines (1) technical reliability assessment through Loss of Load Probability (LOLP) metrics, (2) operational efficiency analysis via curtailment minimization, and (3) economic viability evaluation using net present value (NPV) optimization—all while accounting for policy incentive structures. Applying this framework to comparative U.S. and India case studies reveals how tailored policy combinations can enhance project viability compared to single-incentive scenarios. The results indicate that HPPs are financially unviable without policy support, but targeted incentives like Investment Tax Credits (ITCs) and Production Tax Credits (PTCs) in the U.S. and Accelerated Depreciation (AD), Generation-Based Incentives (GBIs), and Viability Gap Funding (VGF) can improve their viability. The U.S. scenario sees a 197% increase in NPV and a reduction in LCOE to USD 0.055/kWh, while India achieves a 107% turnaround in NPV and an LCOE of USD 0.039/kWh. Sensitivity and breakeven analyses reveal that interest rates and consistent policy support are critical, especially in emerging markets. Specific policy thresholds are identified for feasibility, providing actionable benchmarks. By bridging the gap between technical optimization and policy analysis, this work provides both a methodological advance for HPP design and practical insights for policymakers seeking to accelerate HPP. While this study centers on incentive-driven feasibility, it also outlines key modeling limitations and future improvements, such as market participation, environmental constraints, and advanced system design that will support future HPP planning. Full article
Show Figures

Figure 1

39 pages, 5351 KB  
Article
Optimal Sizing and Techno-Economic Evaluation of a Utility-Scale Wind–Solar–Battery Hybrid Plant Considering Weather Uncertainties, as Well as Policy and Economic Incentives, Using Multi-Objective Optimization
by Shree Om Bade, Olusegun Stanley Tomomewo, Michael Mann, Johannes Van der Watt and Hossein Salehfar
Energies 2025, 18(13), 3528; https://doi.org/10.3390/en18133528 - 3 Jul 2025
Cited by 3 | Viewed by 1674
Abstract
This study presents an optimization framework for a utility-scale hybrid power plant (HPP) that integrates wind power plants (WPPs), solar power plants (SPPs), and battery energy storage systems (BESS) using historical and probabilistic weather modeling, regulatory incentives, and multi-objective trade-offs. By employing multi-objective [...] Read more.
This study presents an optimization framework for a utility-scale hybrid power plant (HPP) that integrates wind power plants (WPPs), solar power plants (SPPs), and battery energy storage systems (BESS) using historical and probabilistic weather modeling, regulatory incentives, and multi-objective trade-offs. By employing multi-objective particle swarm optimization (MOPSO), the study simultaneously optimizes three key objectives: economic performance (maximizing net present value, NPV), system reliability (minimizing loss of power supply probability, LPSP), and operational efficiency (reducing curtailment). The optimized HPP (283 MW wind, 20 MW solar, and 500 MWh BESS) yields an NPV of $165.2 million, a levelized cost of energy (LCOE) of $0.065/kWh, an internal rate of return (IRR) of 10.24%, and a 9.24-year payback, demonstrating financial viability. Operational efficiency is maintained with <4% curtailment and 8.26% LPSP. Key findings show that grid imports improve reliability (LPSP drops to 1.89%) but reduce economic returns; higher wind speeds (11.6 m/s) allow 27% smaller designs with 54.6% capacity factors; and tax credits (30%) are crucial for viability at low PPA rates (≤$0.07/kWh). Validation via Multi-Objective Genetic Algorithm (MOGA) confirms robustness. The study improves hybrid power plant design by combining weather predictions, policy changes, and optimizing three goals, providing a flexible renewable energy option for reducing carbon emissions. Full article
Show Figures

Graphical abstract

18 pages, 5502 KB  
Article
Interaction Mechanism and Oscillation Characteristics of Grid-Connected Concentrating Solar Power–Battery Energy Storage System–Wind Hybrid Energy System
by Shengliang Cai, Guobin Fu, Xuebin Wang, Guoqiang Lu, Rui Song, Haibin Sun, Zhihang Xue, Yangsunnan Xu and Peng Kou
Energies 2025, 18(6), 1339; https://doi.org/10.3390/en18061339 - 8 Mar 2025
Cited by 4 | Viewed by 1490
Abstract
Solar thermal concentrating solar power (CSP) plants have attracted growing interest in the field of renewable energy generation due to their capability for large-scale electricity generation, high photoelectric conversion efficiency, and enhanced reliability and flexibility. Meanwhile, driven by the rapid advancement of power [...] Read more.
Solar thermal concentrating solar power (CSP) plants have attracted growing interest in the field of renewable energy generation due to their capability for large-scale electricity generation, high photoelectric conversion efficiency, and enhanced reliability and flexibility. Meanwhile, driven by the rapid advancement of power electronics technology, extensive wind farms (WFs) and large-scale battery energy storage systems (BESSs) are being increasingly integrated into the power grid. From these points of view, grid-connected CSP–BESS–wind hybrid energy systems are expected to emerge in the future. Currently, most studies focus solely on the stability of renewable energy generation systems connected to the grid via power converters. In fact, within CSP–BESS–wind hybrid energy systems, interactions between the CSP, collection grid, and the converter controllers can also arise, potentially triggering system oscillations. To fill this gap, this paper investigated the interaction mechanism and oscillation characteristics of a grid-connected CSP–BESS–wind hybrid energy system. Firstly, by considering the dynamics of CSP, BESSs, and wind turbines, a comprehensive model of a grid-connected CSP–BESS–wind hybrid energy system was developed. With this model, the Nyquist stability criterion was utilized to analyze the potential interaction mechanism within the hybrid system. Subsequently, the oscillation characteristics were examined in detail, providing insights to inform the design of the damping controller. Finally, the analytical results were validated through MATLAB/Simulink simulations. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

28 pages, 12760 KB  
Article
Hydro–Wind–PV–Integrated Operation Optimization and Ultra-Short-Term HESS Configuration
by Jinhua Zhang, Haizheng Wang, Chuanxi Fan, Jiahao Hu and Xinyue Zhang
Electronics 2024, 13(23), 4778; https://doi.org/10.3390/electronics13234778 - 3 Dec 2024
Cited by 3 | Viewed by 1499
Abstract
In order to address the challenges associated with optimizing multi-timescale operations and allocating ultra-short-term energy storage for HWP integration, this study takes into account both the economic and reliability aspects of the HWP integration base. It proposes a model for optimizing operations and [...] Read more.
In order to address the challenges associated with optimizing multi-timescale operations and allocating ultra-short-term energy storage for HWP integration, this study takes into account both the economic and reliability aspects of the HWP integration base. It proposes a model for optimizing operations and allocating energy storage capacity, achieving optimization across long-term, short-term, and ultra-short-term operations for an MECB. Initially, operation optimization is implemented for an entire group of terraced hydropower plants by regulating them with annual regulating capabilities on a long-term timescale. The objectives are to maximize the daily average minimum output and annual power generation. Subsequently, short-term operation optimization focuses on maximizing HWP power feed-in, minimizing new energy power curtailment, and reducing residual load standard deviation while ensuring the guaranteed output optimization results for the long term. Finally, to mitigate ultra-short-term fluctuations in new energy, a HESS with specified capacity and power is configured with the goal of minimizing comprehensive costs. Additionally, to address the challenge of smoothing negative fluctuations, which is hindered by charging and discharging efficiency limitations, a variable baseline is introduced, deviating from the conventional 0 MW baseline. A simulation study based on data from the hydro–wind–PV hybrid project in the Beipanjiang River Basin, China, demonstrates the following: (1) after long-term system optimization, the total power generation capacity of the system increases by 9.68%, while the peak-to-valley difference in output is significantly reduced; (2) short-term system optimization significantly reduces both the average variance in residual loads and the amount of power curtailed over five representative days; (3) the system incorporates 398.62 MWh of lithium-ion battery storage with a power of 412.47 MW and 51.09 MWh of supercapacitor storage with a power of 223.32 MW, which, together, completely smooth out the ultra-short-term fluctuations in new energy output. Full article
Show Figures

Figure 1

15 pages, 2676 KB  
Article
Structural Decomposition of the Passivity-Based Control System of Wind–Solar Power Generating and Hybrid Battery-Supercapacitor Energy Storage Complex
by Ihor Shchur, Marek Lis and Rostyslav-Ivan Kuzyk
Dynamics 2024, 4(4), 830-844; https://doi.org/10.3390/dynamics4040042 - 6 Nov 2024
Viewed by 1302
Abstract
Wind–solar power generating and hybrid battery-supercapacitor energy storage complex is used for autonomous power supply of consumers in remote areas. This work uses passivity-based control (PBC) for this complex in accordance with the accepted energy management strategy (EMS). Structural and parametric synthesis of [...] Read more.
Wind–solar power generating and hybrid battery-supercapacitor energy storage complex is used for autonomous power supply of consumers in remote areas. This work uses passivity-based control (PBC) for this complex in accordance with the accepted energy management strategy (EMS). Structural and parametric synthesis of the overall PBC system was carried out, which was accompanied by a significant amount of research. In order to simplify this synthesis, a structural decomposition of the overall dynamic system of the object presented in the form of a port-Hamiltonian system, which was described by a system of differential equations of the seventh order, into three subsystems was applied. These subsystems are a wind turbine, a PV plant, and a hybrid battery-supercapacitor system. For each of the subsystems, it is quite simple to synthesize the control influence formers according to the interconnections and damping assignment (IDA) method of PBC, which locally performs the tasks set by the EMS. The results obtained by computer simulation of the overall and decomposed systems demonstrate the effectiveness of this approach in simplifying synthesis and debugging procedures of complex multi-physical systems. Full article
Show Figures

Figure 1

50 pages, 14654 KB  
Systematic Review
Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review
by Carlos Cacciuttolo, Valentina Guzmán and Patricio Catriñir
Energies 2024, 17(22), 5532; https://doi.org/10.3390/en17225532 - 6 Nov 2024
Cited by 11 | Viewed by 6532
Abstract
South America is a place on the planet that stands out with enormous potential linked to renewable energies. Countries in this region have developed private investment projects to carry out an energy transition from fossil energies to clean energies and contribute to climate [...] Read more.
South America is a place on the planet that stands out with enormous potential linked to renewable energies. Countries in this region have developed private investment projects to carry out an energy transition from fossil energies to clean energies and contribute to climate change mitigation. The sun resource is one of the more abundant sources of renewable energies that stands out in South America, especially in the Atacama Desert. In this context, South American countries are developing sustainable actions/strategies linked to implementing solar photovoltaic (PV) and concentrated solar power (CSP) facilities and achieving carbon neutrality for the year 2050. As a result, this systematic review presents the progress, new trends, and the road to a sustainable paradigm with disruptive innovations like artificial intelligence, robots, and unmanned aerial vehicles (UAVs) for solar energy facilities in the region. According to the findings, solar energy infrastructure was applied in South America during the global climate change crisis era. Different levels of implementation in solar photovoltaic (PV) facilities have been reached in each country, with the region being a worldwide research and development (R&D) hotspot. Also, high potential exists for concentrated solar power (CSP) facilities considering the technology evolution, and for the implementation of the hybridization of solar photovoltaic (PV) facilities with onshore wind farm infrastructures, decreasing the capital/operation costs of the projects. Finally, synergy between solar energy infrastructures with emerging technologies linked with low-carbon economies like battery energy storage systems (BESSs) and the use of floating solar PV plants looks like a promising sustainable solution. Full article
Show Figures

Figure 1

16 pages, 5329 KB  
Article
Comparison of Different Power Generation Mixes for High Penetration of Renewables
by Giovanni Brumana, Elisa Ghirardi and Giuseppe Franchini
Sustainability 2024, 16(19), 8435; https://doi.org/10.3390/su16198435 - 27 Sep 2024
Cited by 4 | Viewed by 2401
Abstract
Growing environmental concerns have driven the installation of renewable systems. Meanwhile, the continuous decline in the levelized cost of energy (LCOE), alongside the decreasing cost of photovoltaics (PVs), is compelling the power sector to accurately forecast the performance of energy plants to maximize [...] Read more.
Growing environmental concerns have driven the installation of renewable systems. Meanwhile, the continuous decline in the levelized cost of energy (LCOE), alongside the decreasing cost of photovoltaics (PVs), is compelling the power sector to accurately forecast the performance of energy plants to maximize plant profitability. This paper presents a comprehensive analysis and optimization of a hybrid power generation system for a remote community in the Middle East and North Africa (MENA) region, with a 10 MW peak power demand. The goal is to achieve 90 percent of annual load coverage from renewable energy. This study introduces a novel comparison between three different configurations: (i) concentrated solar power (parabolic troughs + thermal energy storage + steam Rankine cycle); (ii) fully electric (PVs + wind + batteries); and (iii) an energy mix that combines both solutions. The research demonstrates that the hybrid mix achieves the lowest levelized cost of energy (LCOE) at 0.1364 USD/kWh through the use of advanced transient simulation and load-following control strategies. The single-technology solutions were found to be oversized, resulting in higher costs and overproduction. This paper also explores a reduction in the economic scenario and provides insights into cost-effective renewable systems for isolated communities. The new minimum cost of 0.1153 USD/kWh underscores the importance of integrating CSP and PV technologies to meet the very stringent conditions of high renewable penetration and improved grid stability. Full article
Show Figures

Figure 1

27 pages, 4090 KB  
Article
An Effective Strategy for Achieving Economic Reliability by Optimal Coordination of Hybrid Thermal–Wind–EV System in a Deregulated System
by Ravindranadh Chowdary Vankina, Sadhan Gope, Subhojit Dawn, Ahmed Al Mansur and Taha Selim Ustun
World Electr. Veh. J. 2024, 15(7), 289; https://doi.org/10.3390/wevj15070289 - 28 Jun 2024
Cited by 11 | Viewed by 1389
Abstract
This paper describes an effective operating strategy for electric vehicles (EVs) in a hybrid facility that leverages renewable energy sources. The method is to enhance the profit of the wind–thermal–EV hybrid plant while maintaining the grid frequency (fPG) and energy level [...] Read more.
This paper describes an effective operating strategy for electric vehicles (EVs) in a hybrid facility that leverages renewable energy sources. The method is to enhance the profit of the wind–thermal–EV hybrid plant while maintaining the grid frequency (fPG) and energy level of the EV battery storage system. In a renewable-associated power network, renewable energy producers must submit power supply proposals to the system operator at least one day before operations begin. The market managers then combine the power plans for the next several days based on bids from both power providers and distributors. However, due to the unpredictable nature of renewable resources, the electrical system cannot exactly adhere to the predefined power supply criteria. When true and estimated renewable power generation diverges, the electrical system may experience an excess or shortage of electricity. If there is a disparity between true and estimated wind power (TWP, EWP), the EV plant operates to minimize this variation. This lowers the costs associated with the discrepancy between actual and projected wind speeds (TWS, EWS). The proposed method effectively reduces the uncertainty associated with wind generation while being economically feasible, which is especially important in a deregulated power market. This study proposes four separate energy levels for an EV battery storage system (EEV,max, EEV,opt, EEV,low, and EEV,min) to increase system profit and revenue, which is unique to this work. The optimum operating of these EV battery energy levels is determined by the present electric grid frequency and the condition of TWP and EWP. The proposed approach is tested on a modified IEEE 30 bus system and compared to an existing strategy to demonstrate its effectiveness and superiority. The entire work was completed using the optimization technique called sequential quadratic programming (SQP). Full article
(This article belongs to the Special Issue Data Exchange between Vehicle and Power System for Optimal Charging)
Show Figures

Figure 1

Back to TopTop