Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = whole-body protein balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 274 KiB  
Article
Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle
by Raquel Tenório de Oliveira, Rafael Henrique de Tonissi e Buschinelli de Goes, Jefferson Rodrigues Gandra, Fernanda Naiara Fogaça da Cruz, Nayara Gonçalves da Silva, Lara de Souza Oliveira, Jaqueline Luiza Royer, Lucas Gabriel Batista Domiciano, Tainá Lorraine Pereira Azevedo and Carolina Marques Costa Araújo
Polymers 2025, 17(13), 1860; https://doi.org/10.3390/polym17131860 - 3 Jul 2025
Viewed by 433
Abstract
Chitosan and technical cashew nutshell liquid (CNSLt) have emerged as promising natural compounds due to their antimicrobial, immunomodulatory, and fermentation-modulating properties. This study aimed to evaluate the inclusion of chitosan and CNSLt as potential substitutes for the ionophore monensin on feed intake, ruminal [...] Read more.
Chitosan and technical cashew nutshell liquid (CNSLt) have emerged as promising natural compounds due to their antimicrobial, immunomodulatory, and fermentation-modulating properties. This study aimed to evaluate the inclusion of chitosan and CNSLt as potential substitutes for the ionophore monensin on feed intake, ruminal fermentation, nitrogen balance, and microbial protein synthesis in steers. Five crossbred steers (Bos taurus), 18 months old with an average body weight of approximately 350 kg and fitted with permanent ruminal cannulas, were assigned to a 5 × 5 Latin square design. The experimental diets consisted of: (1) control (CON), (2) monensin (MON; 25 mg/kg of dry matter [DM]), (3) chitosan (CHI; ≥850 g/kg deacetylation degree, 375 mg/kg DM), (4) CNSLt (500 mg/kg DM), and (5) CNSLt + CHI (500 + 375 mg/kg DM). Supplementation with CHI or CNSLt + CHI reduced the intake of dry matter, crude protein, and neutral detergent fiber. Additionally, fecal excretion of whole corn kernels increased in these treatments. Ruminal fermentation parameters were affected, with the CNSLt + CHI treatment promoting higher molar proportions of propionate and acetate, along with reduced estimated methane emissions. However, purine derivatives, microbial protein synthesis, and nitrogen balance were not significantly affected by any of the treatments. These results suggest that CNSLt and CHI, particularly when combined, may serve as effective natural alternatives to monensin in high-grain diets for ruminants. Full article
21 pages, 645 KiB  
Review
The Role of Adenosine Signaling in Obesity-Driven Type 2 Diabetes: Revisiting Mechanisms and Implications for Metabolic Regulation
by Giuseppe Faraco and Joana M. Gaspar
Diabetology 2025, 6(5), 43; https://doi.org/10.3390/diabetology6050043 - 19 May 2025
Viewed by 1312
Abstract
The global prevalence of obesity and type 2 diabetes has increased considerably in recent decades, primarily due to behavioral changes associated with societal progress, such as increased consumption of high-calorie foods and sedentary lifestyles. Obesity is a disease of the energy homeostasis system, [...] Read more.
The global prevalence of obesity and type 2 diabetes has increased considerably in recent decades, primarily due to behavioral changes associated with societal progress, such as increased consumption of high-calorie foods and sedentary lifestyles. Obesity is a disease of the energy homeostasis system, not merely a passive accumulation of fat. The hypothalamus serves as the regulatory center for energy balance, and together with peripheral organs, such as liver, pancreas, muscle and adipose tissue, controls food intake, energy expenditure, and whole-body metabolism. Adenosine, a product of ATP catabolism, exerts its effects through various G-protein-coupled receptors: A1R, A2AR, A2BR, and A3R. It plays a key role in regulating peripheral metabolism, including glucose homeostasis, insulin sensitivity, fat beta-oxidation, and lipolysis in adipose tissue. Beyond its roles in the CNS, adenosine receptors are also crucial in metabolic tissues, where they regulate glucose and lipid homeostasis and contribute to overall metabolic function. Several studies have been analyzing the role of adenosine system, specifically the adenosine receptors in the regulation of whole-body metabolism, and the importance of adenosine receptors in context of metabolic diseases and obesity. In this review, we provide an overview of the adenosine signaling system, highlighting its role in metabolic regulation as well as the pathophysiological mechanisms underlying obesity and type 2 diabetes. Full article
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Effects of Vitamin E Intake and Voluntary Wheel Running on Whole-Body and Skeletal Muscle Metabolism in Ovariectomized Mice
by Youngyun Jin, Hee-Jung Yoon, Ki-Woong Park, Hanall Lee, Yuan Tan, Byung-Jun Ryu, Seung-Min Lee, Chae-Eun Cho, Jae-Geun Kim, Nam-Ah Kim and Young-Min Park
Nutrients 2025, 17(6), 991; https://doi.org/10.3390/nu17060991 - 12 Mar 2025
Viewed by 886
Abstract
Background/Objectives: Ovariectomized rodents experience metabolic dysfunction in whole-body and skeletal muscle. A disrupted balance between oxidative stress and antioxidants might exacerbate metabolic dysfunction in ovariectomized rodents. Dietary antioxidants, such as vitamin E intake, before or during exercise would be beneficial by mitigating the [...] Read more.
Background/Objectives: Ovariectomized rodents experience metabolic dysfunction in whole-body and skeletal muscle. A disrupted balance between oxidative stress and antioxidants might exacerbate metabolic dysfunction in ovariectomized rodents. Dietary antioxidants, such as vitamin E intake, before or during exercise would be beneficial by mitigating the exercise-induced increase in oxidative stress in ovariectomized rodents. The purpose of the current study was to investigate the potential effect of vitamin E intake combined with voluntary exercise on whole-body and skeletal muscle metabolism in ovariectomized mice. Methods: This study used C57BL/6J wild-type female mice (n = 40, 8 weeks old), which were randomly assigned into sham (SHM), ovariectomy (OVX), ovariectomy with exercise (OVXVE), ovariectomy with vitamin E (OVXV), ovariectomy with exercise and vitamin E (OVXVE) groups. Body composition, resting metabolic rate, glucose tolerance, skeletal muscle mitochondrial function, and protein contents were assessed using dual-energy x-ray absorptiometry, indirect calorimetry, glucose tolerance test, O2K OROBOROS, and Western blot, respectively. Results: The combined treatment of vitamin E and voluntary wheel running did not show a beneficial effect on whole-body metabolism such as fat mass, energy expenditure, and glucose tolerance. However, independent of exercise intervention, vitamin E intake enhanced mitochondrial function, Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1-a), and adenosine monophosphate-activated protein kinase (AMPK) levels and also reduced oxidative stress in the skeletal muscles of ovariectomized mice. Specifically, in the soleus muscle, vitamin E intake enhanced mitochondrial function and PGC1-a content (p < 0.05). In the gastrocnemius muscle, vitamin E intake enhanced PGC1-a and AMPK levels and reduced a marker of oxidative stress (p < 0.05). Conclusions: Vitamin E, as a potent antioxidant, may play a crucial role in maintaining skeletal muscle health in ovariectomized mice. More studies are necessary to investigate whether this finding is applicable to women. Full article
(This article belongs to the Special Issue Diet, Maternal Nutrition and Reproductive Health)
Show Figures

Figure 1

17 pages, 9910 KiB  
Article
Integrating Metabolomics and Genomics to Uncover the Impact of Fermented Total Mixed Ration on Heifer Growth Performance Through Host-Dependent Metabolic Pathways
by Zhenzhen Hu, Minyu Zuo, Shixuan Ding, Yifan Zhong, Mingyuan Xue and Huichao Zheng
Animals 2025, 15(2), 173; https://doi.org/10.3390/ani15020173 - 10 Jan 2025
Viewed by 964
Abstract
With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of Zizania latifolia on systemic nutrient metabolism [...] Read more.
With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of Zizania latifolia on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7–8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of Zizania latifolia (ZF) for a two-month period. At the end of trial, blood and urine samples were collected to measure biochemical indexes and metabolomics. The results showed that high rice straw content and ZF diets could increase blood glucose and non-protein nitrogen in heifers, that is, blood glucose and urea nitrogen levels in HSF and ZF groups were higher than those in LSF and MSF groups (p < 0.05). Meanwhile, the two diets could improve the antioxidant level of heifers. Urine metabolomics analysis between the groups identified three differential metabolic pathways, including 11 metabolites. Among them, l-homoserine and o-acetylserine had significant SNPs associated with them, which promoted glutathione metabolism. Although there was no significant effect of diet on heifers’ average daily gain (ADG) in body weight (p > 0.05), there was substantial inter-individual variation in metabolites among all animals, as further correlation analyses illustrated. Twenty-eight metabolites were significantly associated with ADG (R > 0.3, p < 0.05). Four of them were identified as biomarkers, primarily regulating energy metabolism and oxidative balance. In conclusion, feeding HSF and ZF FTMR enhances glutathione metabolism and antioxidant capacity in heifers, positioning key metabolites as candidates for ADG markers. This integrative omics approach underscores the potential for enhancing livestock productivity and promoting sustainable agricultural practices. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

12 pages, 509 KiB  
Article
Blood Selenium Concentrations Are Inversely Associated with the Risk of Undernutrition in Older Adults
by Esther García-Esquinas, Adrián Carballo-Casla, Rosario Ortolá, Mercedes Sotos-Prieto, Pablo Olmedo, Fernando Gil, Elena Plans-Beriso, Pablo Fernández-Navarro, Roberto Pastor-Barriuso and Fernando Rodríguez-Artalejo
Nutrients 2023, 15(22), 4750; https://doi.org/10.3390/nu15224750 - 10 Nov 2023
Cited by 2 | Viewed by 2427
Abstract
Background: Selenium is an essential trace element with an antioxidant and anti-inflammatory capacity that has been associated in experimental studies with beneficial effects on appetite control, the regulation of the gut microbiota, and control of the anabolic–catabolic balance. The main aim of the [...] Read more.
Background: Selenium is an essential trace element with an antioxidant and anti-inflammatory capacity that has been associated in experimental studies with beneficial effects on appetite control, the regulation of the gut microbiota, and control of the anabolic–catabolic balance. The main aim of the present study was to evaluate the association between circulating selenium concentrations and the risk of developing undernutrition in older adults. Methods: This was a cohort study with 1398 well-nourished community-dwelling individuals aged ≥ 65 years residing in Spain in 2017, who were followed for a mean of 2.3 years. Whole blood selenium was measured at baseline using inductively coupled plasma-mass spectrometry. Undernutrition was assessed at baseline and at follow-up, and defined as having at least one of the three GLIM phenotypic criteria (involuntary weight loss, a low body mass index, and a reduced muscle mass) and at least one of the two etiologic criteria (reduced food consumption or nutrient assimilation and inflammation/disease burden). Results: During the follow-up, 142 participants (11%) developed moderate undernutrition and 113 (8.8%) severe undernutrition. The standardized relative risks of moderate and severe undernutrition at the 75th percentile of Se levels versus the 25th were 0.90 and 0.70, respectively. In dose–response analyses, the risk of severe undernutrition decreased linearly with increasing selenium concentrations. This association was independent of protein intake or diet quality and was stronger among participants with a diagnosis of a musculoskeletal disorder. Conclusions: The results suggest that an adequate dietary selenium status is needed to prevent undernutrition in older adults. Also, this may open the door for clinical trials with selenium supplementation, at doses considered as safe, to prevent undernutrition. Full article
Show Figures

Figure 1

42 pages, 1558 KiB  
Review
Exploring the Relationship between Micronutrients and Athletic Performance: A Comprehensive Scientific Systematic Review of the Literature in Sports Medicine
by Hadeel Ali Ghazzawi, Mariam Ali Hussain, Khadija Majdy Raziq, Khawla Khaled Alsendi, Reem Osama Alaamer, Manar Jaradat, Sondos Alobaidi, Raghad Al Aqili, Khaled Trabelsi and Haitham Jahrami
Sports 2023, 11(6), 109; https://doi.org/10.3390/sports11060109 - 24 May 2023
Cited by 38 | Viewed by 36758
Abstract
The aim of this systematic review is twofold: (i) to examine the effects of micronutrient intake on athletic performance and (ii) to determine the specific micronutrients, such as vitamins, minerals, and antioxidants, that offer the most significant enhancements in terms of athletic performance, [...] Read more.
The aim of this systematic review is twofold: (i) to examine the effects of micronutrient intake on athletic performance and (ii) to determine the specific micronutrients, such as vitamins, minerals, and antioxidants, that offer the most significant enhancements in terms of athletic performance, with the goal of providing guidance to athletes and coaches in optimizing their nutritional strategies. The study conducted a systematic search of electronic databases (i.e., PubMed, Web of Science, Scopus) using keywords pertaining to micronutrients, athletic performance, and exercise. The search involved particular criteria of studies published in English between 1950 and 2023. The findings suggest that vitamins and minerals are crucial for an athlete’s health and physical performance, and no single micronutrient is more important than others. Micronutrients are necessary for optimal metabolic body’s functions such as energy production, muscle growth, and recovery, which are all important for sport performance. Meeting the daily intake requirement of micronutrients is essential for athletes, and while a balanced diet that includes healthy lean protein sources, whole grains, fruits, and vegetables is generally sufficient, athletes who are unable to meet their micronutrient needs due to malabsorption or specific deficiencies may benefit from taking multivitamin supplements. However, athletes should only take micronutrient supplements with the consultation of a specialized physician or nutritionist and avoid taking them without confirming a deficiency. Full article
(This article belongs to the Topic Sports Medicine)
Show Figures

Figure 1

23 pages, 3235 KiB  
Article
Sepsis-like Energy Deficit Is Not Sufficient to Induce Early Muscle Fiber Atrophy and Mitochondrial Dysfunction in a Murine Sepsis Model
by Alexandre Pierre, Claire Bourel, Raphael Favory, Benoit Brassart, Frederic Wallet, Frederic N. Daussin, Sylvain Normandin, Michael Howsam, Raphael Romien, Jeremy Lemaire, Gaelle Grolaux, Arthur Durand, Marie Frimat, Bruno Bastide, Philippe Amouyel, Eric Boulanger, Sebastien Preau and Steve Lancel
Biology 2023, 12(4), 529; https://doi.org/10.3390/biology12040529 - 30 Mar 2023
Cited by 4 | Viewed by 3223
Abstract
Sepsis-induced myopathy is characterized by muscle fiber atrophy, mitochondrial dysfunction, and worsened outcomes. Whether whole-body energy deficit participates in the early alteration of skeletal muscle metabolism has never been investigated. Three groups were studied: “Sepsis” mice, fed ad libitum with a spontaneous decrease [...] Read more.
Sepsis-induced myopathy is characterized by muscle fiber atrophy, mitochondrial dysfunction, and worsened outcomes. Whether whole-body energy deficit participates in the early alteration of skeletal muscle metabolism has never been investigated. Three groups were studied: “Sepsis” mice, fed ad libitum with a spontaneous decrease in caloric intake (n = 17), and “Sham” mice fed ad libitum (Sham fed (SF), n = 13) or subjected to pair-feeding (Sham pair fed (SPF), n = 12). Sepsis was induced by the intraperitoneal injection of cecal slurry in resuscitated C57BL6/J mice. The feeding of the SPF mice was restricted according to the food intake of the Sepsis mice. Energy balance was evaluated by indirect calorimetry over 24 h. The tibialis anterior cross-sectional area (TA CSA), mitochondrial function (high-resolution respirometry), and mitochondrial quality control pathways (RTqPCR and Western blot) were assessed 24 h after sepsis induction. The energy balance was positive in the SF group and negative in both the SPF and Sepsis groups. The TA CSA did not differ between the SF and SPF groups, but was reduced by 17% in the Sepsis group compared with the SPF group (p < 0.05). The complex-I-linked respiration in permeabilized soleus fibers was higher in the SPF group than the SF group (p < 0.05) and lower in the Sepsis group than the SPF group (p < 0.01). Pgc1α protein expression increased 3.9-fold in the SPF mice compared with the SF mice (p < 0.05) and remained unchanged in the Sepsis mice compared with the SPF mice; the Pgc1α mRNA expression decreased in the Sepsis compared with the SPF mice (p < 0.05). Thus, the sepsis-like energy deficit did not explain the early sepsis-induced muscle fiber atrophy and mitochondrial dysfunction, but led to specific metabolic adaptations not observed in sepsis. Full article
(This article belongs to the Special Issue Role of Mitochondria in Muscle Disorders)
Show Figures

Figure 1

14 pages, 2172 KiB  
Article
Whole-Body Vibration Training on Oxidative Stress Markers, Irisin Levels, and Body Composition in Women with Fibromyalgia: A Randomized Controlled Trial
by Jousielle Márcia dos Santos, Redha Taiar, Vanessa Gonçalves César Ribeiro, Vanessa Kelly da Silva Lage, Pedro Henrique Scheidt Figueiredo, Henrique Silveira Costa, Vanessa Pereira Lima, Borja Sañudo, Mário Bernardo-Filho, Danúbia da Cunha de Sá-Caputo, Marco Fabrício Dias Peixoto, Vanessa Amaral Mendonça, Amandine Rapin and Ana Cristina Rodrigues Lacerda
Bioengineering 2023, 10(2), 260; https://doi.org/10.3390/bioengineering10020260 - 16 Feb 2023
Cited by 8 | Viewed by 3440
Abstract
(1) Background: Mitochondrial dysfunction and redox imbalance seem to be involved in fibromyalgia (FM) pathogenesis. The results of our previous studies suggest that whole-body vibration training (WBVT) would improve redox status markers, increase blood irisin levels, and ameliorate the body composition of women [...] Read more.
(1) Background: Mitochondrial dysfunction and redox imbalance seem to be involved in fibromyalgia (FM) pathogenesis. The results of our previous studies suggest that whole-body vibration training (WBVT) would improve redox status markers, increase blood irisin levels, and ameliorate the body composition of women with FM. (2) Objective: The current study aimed to investigate WBVT on oxidative stress markers, plasma irisin levels, and body composition in women with FM. (3) Methods: Forty women with FM were randomized into WBVT or untrained (UN) groups. Before and after 6 weeks of WBVT, body composition was assessed by dual-energy radiological absorptiometry (DXA), and inflammatory marker activities were measured by enzymatic assay. (4) Results: Body composition, blood irisin levels, and oxidative stress markers were similar between UN and WBVT groups before the intervention. After 6 weeks of intervention, the WBVT group presented higher irisin levels (WBVT: 316.98 ± 109.24 mg·dL³, WBVT: 477.61 ± 267.92 mg·dL³, p = 0.01) and lower TBARS levels (UN: 0.39 ± 0.02 nmol MDA/mg protein, WBVT: 0.24 ± 0.06 nmol MDA/mg protein, p = 0.001) and visceral adipose tissue mass (UN: 1.37 ± 0.49 kg, WBVT: 0.69 ± 0.54 kg, p = 0.001) compared to the UN group. (5) Conclusions: Six weeks of WBVT improves blood redox status markers, increases irisin levels, and reduces visceral adipose tissue mass, favoring less cell damage and more outstanding oxidative balance in women with FM. Full article
(This article belongs to the Special Issue Biomechanics, Health, Disease and Rehabilitation)
Show Figures

Figure 1

13 pages, 574 KiB  
Article
Differences in the Pro/Antioxidative Status and Cellular Stress Response in Elderly Women after 6 Weeks of Exercise Training Supported by 1000 mg of Vitamin C Supplementation
by Małgorzata Żychowska, Ewa Sadowska-Krępa, Elisabetta Damiani, Luca Tiano, Ewa Ziemann, Alicja Nowak-Zaleska, Patrycja Lipińska, Anna Piotrowska, Olga Czerwińska-Ledwig, Wanda Pilch and Jędrzej Antosiewicz
Biomedicines 2022, 10(10), 2641; https://doi.org/10.3390/biomedicines10102641 - 20 Oct 2022
Cited by 1 | Viewed by 3004
Abstract
Vitamin C supplementation and exercise influence pro/antioxidative status and the cellular stress response. We tested the effects of exercise training for 6 weeks, supported by 1000 mg of vitamin C supplementation in elderly women. Thirty-six women were divided into two groups: a control [...] Read more.
Vitamin C supplementation and exercise influence pro/antioxidative status and the cellular stress response. We tested the effects of exercise training for 6 weeks, supported by 1000 mg of vitamin C supplementation in elderly women. Thirty-six women were divided into two groups: a control group (CON) (n = 18, age 69.4 ± 6.4 years, 70.4 ±10.4 kg body mass) and a supplemented group (SUPP) (n = 18, aged 67.7 ± 5.6 years, body mass 71.46 ± 5.39 kg). Blood samples were taken twice (at baseline and 24 h after the whole period of training), in order to determine vitamin C concentration, the total oxidative status/capacity (TOS/TOC), total antioxidant status/capacity (TAS/TAC), and gene expression associated with cellular stress response: encoding heat shock factor (HSF1), heat shock protein 70 (HSPA1A), heat shock protein 27 (HSPB1), and tumor necrosis factor alpha (TNF-α). We observed a significant increase in TOS/TOC, TAS/TAC, and prooxidant/antioxidant balance in the SUPP group. There was a significant decrease in HSPA1A in the CON group and a different tendency in the expression of HSF1 and TNF-α between groups. In conclusion, vitamin C supplementation enhanced the pro-oxidation in elderly women with a normal plasma vitamin C concentration and influenced minor changes in training adaptation gene expression. Full article
(This article belongs to the Special Issue The Role of Vitamins in Human Health and Disease)
Show Figures

Figure 1

13 pages, 1609 KiB  
Article
Partial Replacement of Oat Hay with Whole-Plant Hydroponic Barley Seedlings Modulates Ruminal Microbiota and Affects Growth Performance of Holstein Heifers
by Peng Ren, Mengmeng Deng, Juan Feng, Ruocheng Li, Xiaojiao Ma, Jianxin Liu and Diming Wang
Microorganisms 2022, 10(10), 2000; https://doi.org/10.3390/microorganisms10102000 - 10 Oct 2022
Cited by 8 | Viewed by 2142
Abstract
The dairy industry is facing challenges in balancing forage supply and crop production. Therefore, forage supply based on a farm land-saving approach should be developed to overcome the human–livestock competition on farmland. The objective of this study was to learn the potential impact [...] Read more.
The dairy industry is facing challenges in balancing forage supply and crop production. Therefore, forage supply based on a farm land-saving approach should be developed to overcome the human–livestock competition on farmland. The objective of this study was to learn the potential impact of partially replacing oat hay with whole-plant hydroponic barley seedlings (HBS) produced via a land-saving hydroponic method on growth performance, digestibility, and rumen microbiota in Holstein dairy heifers. In total, 39 Holstein heifers were randomly divided into 13 blocks based on age and body weight for an 8-week experimental period. The heifers within each block were randomly allocated to one of three diets group: (1) 0% HBS and 16% oat hay (CON); (2) 4% HBS and 12% oat hay (25% HBS); and (3) 8% HBS and 8% oat hay (50% HBS). Compared to CON, feed intake, growth performance, and body N retention were similar to those in cows fed 25% HBS but lower in 50% HBS-fed animals (p < 0.05). Reduced digestibility (crude protein (CP) and organic matter (OM)) was observed in 50% HBS animals (p < 0.05). Compared to the control, the levels of Lachnospiraceae_XPB1014_group, Bacillus, and Colidextribacter were higher, but the levels of Sphaerochaeta and Ruminiclostridium were lower in 50% HBS animals (p < 0.05). Additionally, the digestibility of CP (p < 0.01, r = −0.61) and ether extract (EE) (p < 0.01, r = −0.58) was negatively correlated with Lachnospiraceae_XPB1014_group. The digestibility of OM (p = 0.01, r = −0.55), neutral detergent fiber (NDF) (p = 0.01, r = −0.56), acid detergent fiber (ADF) (p = 0.02, r = −0.52), and CP (p < 0.01, r = −0.61) was negatively correlated with Bacillus. The digestibility of NDF (p = 0.02, r = −0.52) and ADF (p = 0.03, r = −0.50) was negatively correlated with Colidextribacter. The digestibility of OM (p = 0.03, r = 0.50), NDF (p = 0.03, r = 0.50), and ADF (p = 0.03, r = 0.49) was positively correlated with Ruminiclostridium. The digestibility of OM (p = 0.04, r = 0.47), CP (p < 0.01, r = 0.58), and EE (p = 0.03, r = 0.49) was positively correlated with unclassified_f_Rikenellaceae. The digestibility of CP was positively correlated with Sphaerochaeta (p = 0.02, r = 0.53). In conclusion, the current study suggests that HBS could replace oat hay in a ratio-dependent manner. The reduced growth performance could be caused by lower feed intake and digestibility, which may be attributed to the alteration in the rumen’s microbial population. Further exploration of the inhibiting factors of HBS would broaden the application of hydroponic feed in the future. Full article
Show Figures

Figure 1

12 pages, 1433 KiB  
Article
Methylation of RUNX3 Promoter 2 in the Whole Blood of Children with Ulcerative Colitis
by Emilia Dybska, Jan Krzysztof Nowak, Aleksandra Banaszkiewicz, Anna Szaflarska-Popławska, Jarosław Kierkuś, Jarosław Kwiecień, Urszula Grzybowska-Chlebowczyk and Jarosław Walkowiak
Genes 2022, 13(9), 1568; https://doi.org/10.3390/genes13091568 - 1 Sep 2022
Cited by 1 | Viewed by 2123
Abstract
Ulcerative colitis (UC) results from a complex interplay between the environment, gut microbiota, host genetics, and immunity. Runt-related transcription factor 3 (RUNX3) regulates Th1/Th2 balance and, thus, the synthesis of cytokines and inflammation. We aimed to analyze the dependence of RUNX3 promoter 2 [...] Read more.
Ulcerative colitis (UC) results from a complex interplay between the environment, gut microbiota, host genetics, and immunity. Runt-related transcription factor 3 (RUNX3) regulates Th1/Th2 balance and, thus, the synthesis of cytokines and inflammation. We aimed to analyze the dependence of RUNX3 promoter 2 (P2) methylation level on: age, sex, body mass index (BMI), C-reactive protein (CRP), serum albumin, disease duration, Pediatric Ulcerative Colitis Activity Index (PUCAI), the Paris classification, and exposure to medications. This multicenter, cross-sectional study recruited hospitalized children with UC. Methylation of RUNX3 P2 was measured with methylation-sensitive restriction enzymes in the whole blood DNA. Sixty-four children were enrolled, with a mean age of 14.5 ± 2.8 years. Half of them were female (51.6%), and the average BMI Z-score was −0.44 ± 1.14. The mean methylation of RUNX3 P2 was 54.1 ± 13.3%. The methylation level of RUNX3 P2 did not correlate with age, sex, nutritional status, CRP, albumin, PUCAI, or the extent of colitis (Paris E1–E4). RUNX3 P2 methylation did not differ between patients recruited within two and a half months of diagnosis and children who had UC for at least a year. Current or past exposure to biologics, immunosuppressants, or steroids was not associated with RUNX3 P2 methylation. Methylation of RUNX3 promoter 2 in whole blood DNA does not seem to be associated with the characteristics of UC in children. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2304 KiB  
Article
How Different Dietary Methionine Sources Could Modulate the Hepatic Metabolism in Rainbow Trout?
by Chiara Ceccotti, Ilaria Biasato, Laura Gasco, Christian Caimi, Sara Bellezza Oddon, Simona Rimoldi, Fabio Brambilla and Genciana Terova
Curr. Issues Mol. Biol. 2022, 44(7), 3238-3252; https://doi.org/10.3390/cimb44070223 - 19 Jul 2022
Cited by 8 | Viewed by 2613
Abstract
In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important [...] Read more.
In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important to determine their bioavailability and efficacy. To address this issue, we conducted a two-month feeding trial with rainbow trout (Oncorhynchus mykiss), which were fed diets supplemented with five different forms of Met: Met-Met, L-Met, HMTBa, DL-Met, and Co DL-Met. No differences in growth performance were found in trout fed with different Met forms, but changes in the whole-body composition were found. In particular, Met-Met and L-Met promoted a significant body lipid reduction, whereas the protein retention was significantly increased in fish fed with HMTBa and Co DL-Met. The latter affected the hepatic Met metabolism promoting the trans-sulfuration pathway through the upregulation of CBS gene expression. Similarly, the L-Met enhanced the remethylation pathway through an increase in BHMT gene expression to maintain the cellular demand for Met. Altogether, our findings suggest an optimal dietary intake of all tested Met sources with similar promoting effects on fish growth and hepatic Met metabolism. Nevertheless, the mechanisms underlying these effects warrant further investigation. Full article
Show Figures

Figure 1

48 pages, 1726 KiB  
Review
Impact of Zinc Transport Mechanisms on Embryonic and Brain Development
by Jeremy Willekens and Loren W. Runnels
Nutrients 2022, 14(12), 2526; https://doi.org/10.3390/nu14122526 - 17 Jun 2022
Cited by 25 | Viewed by 5510
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in [...] Read more.
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development. Full article
(This article belongs to the Special Issue The Link between Dietary Minerals and Human Health)
Show Figures

Graphical abstract

13 pages, 950 KiB  
Review
Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines
by Zhikui Wei, You Chen and Raghu P. Upender
Int. J. Mol. Sci. 2022, 23(3), 1706; https://doi.org/10.3390/ijms23031706 - 1 Feb 2022
Cited by 26 | Viewed by 5669
Abstract
Adipokines are a growing group of peptide or protein hormones that play important roles in whole body metabolism and metabolic diseases. Sleep is an integral component of energy metabolism, and sleep disturbance has been implicated in a wide range of metabolic disorders. Accumulating [...] Read more.
Adipokines are a growing group of peptide or protein hormones that play important roles in whole body metabolism and metabolic diseases. Sleep is an integral component of energy metabolism, and sleep disturbance has been implicated in a wide range of metabolic disorders. Accumulating evidence suggests that adipokines may play a role in mediating the close association between sleep disorders and systemic metabolic derangements. In this review, we briefly summarize a group of selected adipokines and their identified function in metabolism. Moreover, we provide a balanced overview of these adipokines and their roles in sleep physiology and sleep disorders from recent human and animal studies. These studies collectively demonstrate that the functions of adipokine in sleep physiology and disorders could be largely twofold: (1) adipokines have multifaceted roles in sleep physiology and sleep disorders, and (2) sleep disturbance can in turn affect adipokine functions that likely contribute to systemic metabolic derangements. Full article
Show Figures

Figure 1

15 pages, 3448 KiB  
Review
Adipose-Derived Stem Cell: “Treat or Trick”
by Siti Syahira Airuddin, Ahmad Sukari Halim, Wan Azman Wan Sulaiman, Ramlah Kadir and Nur Azida Mohd Nasir
Biomedicines 2021, 9(11), 1624; https://doi.org/10.3390/biomedicines9111624 - 5 Nov 2021
Cited by 20 | Viewed by 3956
Abstract
Stem cells have been widely used for treating disease due to the various benefits they offer in the curing process. Several treatments using stem cells have undergone clinical trials, such as cell-based therapies for heart disease, sickle cell disease, thalassemia, etc. Adipose-derived stem [...] Read more.
Stem cells have been widely used for treating disease due to the various benefits they offer in the curing process. Several treatments using stem cells have undergone clinical trials, such as cell-based therapies for heart disease, sickle cell disease, thalassemia, etc. Adipose-derived stem cells are some of the many mesenchymal stem cells that exist in our body that can be harvested from the abdomen, thighs, etc. Adipose tissue is easy to harvest, and its stem cells can be obtained in higher volumes compared to stem cells harvested from bone marrow, for which a more invasive technique is required with a smaller volume obtained. Many scientists have expressed interest in investigating the role of adipose-derived stem cells in treating disease since their use was first described. This is due to these stem cells’ ability to differentiate into multiple lineages and secrete a variety of growth factors and proteins. Previous studies have found that the hormones, cytokines, and growth factors contained in adipose tissue play major roles in the metabolic regulation of adipose tissue, as well as in energy balance and whole-body homeostasis through their endocrine, autocrine, and paracrine functions. These are thought to be important contributors to the process of tissue repair and regeneration. However, it remains unclear how effective and safe ADSCs are in treating diseases. The research that has been carried out to date is in order to investigate the impact of ADSCs in disease treatment, as described in this review, to highlight its “trick or treat” effect in medical treatment. Full article
Show Figures

Figure 1

Back to TopTop